CHEM 217 - History of Modern Medicinal Chemistry and Drug Development

Total Page:16

File Type:pdf, Size:1020Kb

CHEM 217 - History of Modern Medicinal Chemistry and Drug Development CHEM 217 - History of Modern Medicinal Chemistry and Drug Development Instructor: Dana Lashley This course was designed to be taught as part of the W&M Study Abroad program at Cambridge University in the United Kingdom. Due to cancellation it is now offered as an on-Campus COLL 300 class. This course can also alternatively satisfy the COLL 200 requirement (NQR looking out to the CSI domain). Class time: MTWRF between July 6th and August 7th. This class is taught synchronously or LIVE at 12.20-1.50pm. There is no class on SOME Fridays. Please see schedule further below! Introduction: It’s not just the Germans! In the early days of the 19th century, many major concepts in the realm of organic chemistry were undoubtedly coined by German scientists. Perhaps the most notable of these was Wöhler’s laboratory synthesis of urea, which disproved the long-standing belief that organic compounds could only be made inside of living organisms. Or maybe it was the spectacular discovery of the structure of benzene by Kekulé, which famously came to him in a dream. In the modern-era organic and medicinal chemistry of the 20th and 21st century however, there have been countless groundbreaking contributions from scientists across the United Kingdom. The discovery of the Citric Acid Cycle by H.A. Krebs at the University of Sheffield, and the discovery of the very first antibiotic drug Penicillin-G by Alexander Fleming in London in the early 20th century are just two examples. The list is as impressive as it is endless, but amongst all of these, what could be more awe-inspiring than the elucidation of the structure of our hereditary material, DNA? This was an achievement that revolutionized the entire field of biochemistry. Furthermore, it is a discovery with a direct connection to the city of Cambridge. Rosalind Franklin was a pioneer female scientist who studied chemistry at the University of Cambridge and received the equivalent of a B.A. in 1941. She went on to work at King’s College in London where she obtained the first X-ray images of DNA. These images were, without her knowledge or permission, used by Watson and Crick in their discovery of the DNA double helix structure in 1953. At the time of this discovery Watson and Crick worked at the Cavendish Laboratory, located in Cambridge. The unraveling of the molecular structure of DNA is considered not only a turning point in biochemistry but also a milestone in the history of mankind. In 1962 Watson and Crick received the Nobel Price in Physiology or Medicine for their work. Franklin died a few years earlier and was not included in the award. Objectives: In this course students will explore modern-era groundbreaking discoveries in the field of Medicinal Chemistry and Drug Development. Highlights will be the discussion of Alkaloid Natural products such as Morphine and Cocaine, Fleming’s discovery of Penicillin G and the elucidation of the structure of DNA as well as the historical and medicinal consequences of these events for mankind. Specifically highlighted, because of timely relevance, will be antiviral drugs and the novel Coronavirus. Students will also become familiar with terminology in the field of medicinal chemistry and pharmacology as they will learn about different classes of drugs and important techniques in toxicology and pharmacology. The course will begin by briefly looking at ancient medicine of the antiquity and middle-ages before highlighting the modern-era discovery of groundbreaking drugs and medicinal practices and culminate with an outlook on both industrial and academic research structure. The processes governing modern day pharmaceutical drug development and the different phases of clinical research will also be discussed in this context. Since the course was supposed to be taught as part of a Study Abroad program in Cambridge, discoveries in the United Kingdom will certainly be emphasized to give students context to their visiting environment. However, drug discovery and development of other leading European countries such as Germany will also be highlighted and explored. Prerequisites: The course has a pre-requisite of Organic Chemistry 1, as this would facilitate students’ understanding of the drug structure and actions. Textbook: none ! Any class readings will be handed out or posted on Blackboard. This will include scientific journal articles that pertain to the NQR domain, as well as book excerpts and articles pertaining to the CSI content. Planned lessons: (this is very ambitious ! In reality, we may not get past topic 15…) 1. Introduction to Medicinal Chemistry: What are Drugs and Natural Products? 2. The drugs of Antiquity: Ancient natural pharmaceuticals from herbs, plants, roots, vines and fungi used in traditional Egyptian, Greek, Roman, Indian and Chinese Medicine (~3000 BC - 19th century) 3. Alkaloids with emphasis on Morphine, Cocaine and Atropine. Also discussion of Opioids (Morphine, Codein and synthetic derivatives such as Heroin). Also: Opioid crisis, Substance Abuse and treatment. 4. The rise of the Pharmaceutical Chemistry and Pharmacology and the first synthetic drugs (1869 onward). Chloroform, chloral hydrate, bromide salts, paraldehyde and urethanes 5. Barbiturates (1903 onward) with focus on Veronal, Luminal, Vesparax and Thiopental. Use as sedatives, hypnotics, sleeping aids, anesthesia and use in capital punishment. 6. Introduction to FDA law: Controlled substance laws for Narcotics and other drugs. 7. Introduction to pharmacology and toxicology. Determination of the median lethal dose LD50 and the median effective dose ED50 8. The first Analgesics and Antipyretics and the role of synthetic dyes such as mauveine by British chemist Henry Perkin (1838-1907). Emphasis on Acetaminophen (Tylenol) and Aspirin 9. Discovery of the Structure of DNA (Watson, Crick and Franklin 1953). Nucleoside and Nucleotide nomenclature. 10. Viruses and Nucleosidic Anti-Viral Drugs – Highlighting the novel Coronavirus and Covid-19 as well as Ebola. 11. Discovery of Penicillin (Alexander Fleming 1929) and other classes of Antibiotics 12. Depression and anti-Depressive drugs. 13. Schizophrenia and Anti-Psychotic drugs (Neuroleptics) 14. Steroids and the development of the Contraceptive Pill (1950s Carl Djerassi) 15. Student Presentations on select topics Potential additional lessons if we have time: 16. Peptide drugs with focus on Oxytocin and Insulin. Intro to Bioengineering. 17. Modern rationale design drug development and clinical trials 18. Ethics of Animal testing 19. Blockbuster drugs and Pharmaceutical companies Week 1: Intro on Monday. Lectures Tue-Thu. Friday: intro to literature research and scientific citations. Week 2: Lectures Mon-Thu. Friday: individual discussion of Natural Product Paper or Student Presentation ideas. By appointment only. No traditional class is held Friday! Week 3: MUST HAVE PRESENTATION TOPIC PICKED AND APPROVED BY Monday July 20th! Lectures Mon-Thu. Friday: individual discussion of Natural Product Paper or Student Presentation content! By appointment only. No traditional class is held Friday! Week 4: Student presentations Mon-Fri. Natural Product paper due on Friday, July 31st! Week 5: Student presentations continued Mon&Tue. Lectures Wed&Thu. FINAL EXAM Fri, Aug 7th. Assessments Students final grades will be determined according to the below assessments: 30% (Group or Solo) Presentation on Select Med. Chem Topic 25% Natural Product Paper 25% Final exam 20% Participation (Group or Solo) Presentation. Students will prepare a 15 minute presentation on a select medicinal chemistry topic in the last two weeks of the semester. Topic choices must be made by mid-semester and the selected topics must be approved by the instructor. Optionally you may decide to work in groups of two and present on the same topic. In that case each student should present for 15 minutes. The presentation should capture both the scientific importance (NQR) and the historical and cultural context of the topic, thereby integrating the CSI domain. Natural Product Paper. Students will select a Natural Product of choice and write a literature review through researching and critically evaluating of primary literature. Detailed criteria and instructions for the paper will be posted on BB and also handed out on the first day of class. This paper is due by July 31st on 23.59pm (electronic submission on Blackboard). You may turn the paper in at any time during the semester and do not have to wait until the deadline. Final exam. The cumulative final exam will assess the students understanding of lecture and reading topics. This exam will be the major means of assessment for the NQR domain and will include drug structure, nomenclature, mechanism of action and pharmacological calculations. The historical and cultural contexts (CSI) of drug discovery as highlighted in lecture will also be subject to the exam. The Final exam is on Friday, August 7th. The Final Exam will be proctored using Honor Lock. Participation. Students are expected to attend class and actively participate by engaging in discussions. Moreover, students are expected to apply their critical thinking skills when presented information and ask questions to seek clarification. This goes both for lectures as well as after student presentations. During group presentations students will be asked to assess their peers’ presentations based on a set of given criteria on a handed out form. Final Grades: A-/A 90-100% Excellent performance and mastery of the material B-/B/B+ 80-89.99% Very good understanding of the material C-/C/C+ 70-79.99% Adequate performance D-/D/D+ 60-69.99% Poor performance F below 60% Unsatisfactory performance Inclusion and Diversity: I value all students regardless of their background, country of origin, race, religion, ethnicity, disability status, sexual orientation or gender identity. I am committed to providing a climate of excellence and inclusiveness within all aspects of this course. If there are aspects of your culture or identity that you would like to share with me as they relate to your success in this class, I am happy to meet to discuss.
Recommended publications
  • Biomolecules
    biomolecules Communication MBLinhibitors.com, a Website Resource Offering Information and Expertise for the Continued Development of Metallo-β-Lactamase Inhibitors Zishuo Cheng 1, Caitlyn A. Thomas 1, Adam R. Joyner 2, Robert L. Kimble 1, Aidan M. Sturgill 1 , Nhu-Y Tran 1, Maya R. Vulcan 1, Spencer A. Klinsky 1, Diego J. Orea 1, Cody R. Platt 2, Fanpu Cao 2, Bo Li 2, Qilin Yang 2, Cole J. Yurkiewicz 1, Walter Fast 3 and Michael W. Crowder 1,* 1 Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; [email protected] (Z.C.); [email protected] (C.A.T.); [email protected] (R.L.K.); [email protected] (A.M.S.); [email protected] (N.-Y.T.); [email protected] (M.R.V.); [email protected] (S.A.K.); [email protected] (D.J.O.); [email protected] (C.J.Y.) 2 Department of Computer Science and Software Engineering, Miami University, Oxford, OH 45056, USA; [email protected] (A.R.J.); [email protected] (C.R.P.); [email protected] (F.C.); [email protected] (B.L.); [email protected] (Q.Y.) 3 Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy and the LaMontagne Center for Infectious Disease, University of Texas, Austin, TX 78712, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-513-529-2813 Received: 17 February 2020; Accepted: 12 March 2020; Published: 16 March 2020 Abstract: In an effort to facilitate the discovery of new, improved inhibitors of the metallo-β-lactamases (MBLs), a new, interactive website called MBLinhibitors.com was developed.
    [Show full text]
  • Recreating Ancient Metabolic Pathways Before Enzymes Kamila B
    Recreating ancient metabolic pathways before enzymes Kamila B. Muchowska, Elodie Chevallot-Beroux, Joseph Moran To cite this version: Kamila B. Muchowska, Elodie Chevallot-Beroux, Joseph Moran. Recreating ancient metabolic path- ways before enzymes. Bioorganic and Medicinal Chemistry, Elsevier, 2019, 27 (12), pp.2292-2297. 10.1016/j.bmc.2019.03.012. hal-02516541 HAL Id: hal-02516541 https://hal.archives-ouvertes.fr/hal-02516541 Submitted on 23 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Graphical Abstract To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered. Recreating ancient metabolic pathways Leave this area blank for abstract info. before enzymes Kamila B. Muchowskaa* , Elodie Chevallot-Berouxa, and Joseph Morana* University of Strasbourg, CNRS, ISIS UMR 7006, 67000 Strasbourg, France Bioorganic & Medicinal Chemistry journal homepage: www.elsevier.com Recreating ancient metabolic pathways before enzymes Kamila B. Muchowska,a* Elodie Chevallot-Beroux,a and Joseph Morana* a University of Strasbourg, CNRS, ISIS UMR 7006, 67000 Strasbourg, France. ARTICLE INFO ABSTRACT Article history: The biochemistry of all living organisms uses complex, enzyme-catalyzed metabolic reaction Received networks.
    [Show full text]
  • Combinatorial Chemistry: a Guide for Librarians
    City University of New York (CUNY) CUNY Academic Works Publications and Research City College of New York 2002 Combinatorial Chemistry: A Guide for Librarians Philip Barnett CUNY City College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/cc_pubs/266 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Issues in Science and Technology Librarianship Winter 2002 DOI:10.5062/F4DZ0690 URLs in this document have been updated. Links enclosed in{curly brackets} have been changed. If a replacement link was located, the new URL was added and the link is active; if a new site could not be identified, the broken link was removed. Combinatorial Chemistry: A Guide for Librarians Philip Barnett Associate Professor and Science Reference Librarian Science/Engineering Library City College of New York (CUNY) [email protected] Abstract In the 1980s a need to synthesize many chemical compounds rapidly and inexpensively spawned a new branch of chemistry known as combinatorial chemistry. While the techniques of this rapidly growing field are used primarily to find new candidate drugs, combinatorial chemistry is also finding other applications in various fields such as semiconductors, catalysts, and polymers. This guide for librarians explains the basics of combinatorial chemistry and elucidates the key information sources needed by combinatorial chemists. Introduction Most librarians who serve chemists or chemistry students are familiar with the six main disciplines of chemistry. These are: Physical chemistry applies the fundamental laws of physics, such as thermodynamics, electricity, and quantum mechanics, to explain chemical behavior.
    [Show full text]
  • Medicinal Chemistry & Analysis
    M. Surendra et al. / IJMCA / Vol 2 / Issue 1 / 2012 / 12-30. International Journal of Medicinal Chemistry & Analysis www.ijmca.com e ISSN 2249 - 7587 Print ISSN 2249 - 7595 A REVIEW ON BASIC CHROMATOGRAPHIC TECHNIQUES *M. Surendra, T. Yugandharudu, T. Viswasanthi Nirmala College of Pharmacy, Buddayapalle (P), Kadapa - 516002, Andhra Pradesh, India. ABSTRACT This article presents a review of basic chromatographic techniques applied to the determination of various pharmaceuticals is discussed. It describes about various Chromatographic techniques and is usage. Also it briefly describes about the instruments, methods used in it. Chromatographic separations can be carried out using a variety of supports, including immobilized silica on glass plates (thin layer chromatography), volatile gases (gas chromatography), paper (paper chromatography), and liquids which may incorporate hydrophilic, insoluble molecules (liquid chromatography). Keywords: Chromatography, HPLC, TLC, GC, Method development, Validation. INTRODUCTION Chromatography is the science which is studies which must be purified for use as "biopharmaceuticals" or the separation of molecules based on differences in their medicines. It is important to remember, however, that structure and/or composition. In general, chromatography chromatography can also be applied to the separation of involves moving a preparation of the materials to be other important molecules including nucleic acids, separated - the "test preparation" - over a stationary carbohydrates, fats, vitamins, and more. support. The molecules in the test preparation will have One of the important goals of biotechnology is different interactions with the stationary support leading to the production of the therapeutic molecules known as separation of similar molecules. Test molecules which "biopharmaceuticals," or medicines [2]. There are a display tighter interactions with the support will tend to number of steps that researchers go through to reach this move more slowly through the support than those goal: molecules with weaker interactions.
    [Show full text]
  • European Journal of Medicinal Chemistry
    EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Audience p.1 • Impact Factor p.1 • Abstracting and Indexing p.2 • Editorial Board p.2 • Guide for Authors p.3 ISSN: 0223-5234 DESCRIPTION . The European Journal of Medicinal Chemistry is a global journal that publishes studies on the main aspects of medicinal chemistry. It provides a medium for publication of original research papers and also welcomes critical review papers. A typical paper would report on the design (with or without the support of computational methods), organic synthesis, characterization and biochemical/pharmacological evaluation of novel, potent compounds preferentially with a clear (or proven) mechanism of action and/or target. Other topics of interest are molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present a clear rational for a study, provide insight into the strategy and design of compounds and into the mechanism of action, and biological targets. Manuscripts reporting only computational studies are out-of-scope unless a new method (broadly applicable, validated and available to the community) is reported. Authors are kindly invited to look to published articles for the scope of the journal and the organisation of papers. Benefits to authors We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications, language services and much more. Please click here for more information on our author services.Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center AUDIENCE .
    [Show full text]
  • What Is Medicinal Chemistry
    Unit 1 Prepared By: Neetu Sabarwal Department of Pharmaceutical Chemistry SOS Pharmaceutical Sciences Jiwaji University. Gwalior Content INTRODUCTION TO MEDICINAL CHEMISTRY • History and development of medicinal chemistry Physicochemical properties in relation to biological action • Ionization, Solubility, Partition Coefficient, Hydrogen bonding, Protein binding, Chelation, • Bioisosterism, Optical and Geometrical isomerism. Drug metabolism • Drug metabolism principles- Phase I and Phase II. • Factors affecting drug metabolism including stereo chemical aspects. CHEMISTRY What is Chemistry? • Chemistry is known as the central of science. • It is a branch of physical science that studies the composition, structure, properties and changes of matter. • MATTER = Solid / Liquid/ Gas. BRANCHES OF CHEMISTRY PHYSICAL CHEMISTRY • the branch of chemistry concerned with the application of the techniques and theories of physics to the study of chemical systems. • Branches : chemical Kinetics, Electrochemistry, spectroscopy, photochemistry. INORGANIC CHEMISTRY • deals with the synthesis and behaviour of inorganic and organometallic compounds • Branches :Bioinorganic, Cluster, Material & Nuclear Chemistry ORGANIC CHEMISTRY • study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms. • Branches : Biochemistry, biophysical, Biorganic, P’ceutical, Medicinal WHAT IS MEDICINAL CHEMISTRY • It is a discipline or intersection of chemistry especially synthetic organic
    [Show full text]
  • What to Make Next? Augmented Design
    Building innovative drug discovery alliances What to make next? Augmented Design Cresset UGM, 29th June 2017 Building innovative drug discovery alliances What to make next? Augmented Design Or 2 Old blokes and a couple of buns Cresset UGM, 29th June 2017 What to make next? PAGE 2 What’s medicinal chemistry? PAGE 3 What do I make next? Lead Telemetry 1st Candidate • MPO scores comprised of: Potency MPO Solubility Score Protein binding Metabolic stability LogD Project progression PAGE 4 Good medicinal chemistry? Project Progress as a Function of Time & compound number pIC 50 Comp. 3 Comp. 4 (LLE 8.0) (LLE 8.0) First co-crystal structure delivered Structure based design: Comp. 2 - Targeting specific unconserved (LLE 7.9) Target Rapid progress increasing potency Core redesigned: cysteine residue Off Target 1 Docking based design: - Replacement of aromatic CH Off Target 2 - Introduction of axial methyl “lock” with heteroatom - Rigidification of molecule Comp. 1 - Intramolecular H-bonding (LLE 6.8) Rapidly regained potency Advanced Lead identified Ames liability removed AO liability identified No Ames liability … with drop in potency No AO activity Initial Hit (LLE 3.2) Ames liability Selectivity improved identified 6 months PAGE 5 Key tactics for early series evaluation Establishing the Pharmacophore Understanding Conformation • Determine which molecular features are driving or limiting • Assessing conformational potency landscape of hit series • Evolution of molecular • Exploration of molecular scaffolds using series features limiting
    [Show full text]
  • Introduction to Biological Chemistry
    CHAPTER Introduction to Biological Chemistry Reza Karimi 1 1. Learn about the basic chemistry related to atoms and molecules. Understand the roles of orbitals and lone-pair electrons in a few common atoms (e.g., N, F, C, O) and comprehend nucleophilic/electrophilic attacks and their impact on oxidation, reduction, addition, and substitution reactions. 2. List and explain the importance of medicinal functional groups that commonly are found in drug molecules and appreciate the important roles that drug structures play in pharmaceutical sciences. 3. Understand basic concepts in acid–base theory and their roles in the structures of drug molecules. 4. Learn about salt formation, ionization, and water solubility of drug molecules, and explain the role of medici- nal functional groups in ionization, salt formation, salt hydrolysis, and water solubility of drug molecules. CHAPTER OUTLINE CHAPTER 5. Implement a series of Learning Bridge assignments at your experiential sites to bridge your didactic learning with your experiential experiences. S 1. Brønsted-Lowry acid–base: definition used to express the acidic or basic properties of acids and bases. E V 2. Buffer: a mixture of an acid and its conjugate base in a solution that causes the solution to resist a pH change. 3. Compound: a combination of two or more substances, ingredients, or elements. While the ecti J majority of drugs on the market are compounds, not all compounds are drugs. B 4. Conjugate acid: a base that has gained a proton. O 5. Conjugate base: an acid that has lost its proton. 6. Covalence: the number of covalent bonds present.
    [Show full text]
  • Organic Chemistry Concepts and Applications for Medicinal Chemistry Joseph E
    Organic Chemistry Concepts and Applications for Medicinal Chemistry Joseph E. Rice Rutgers,the State University of New Jersey, Piscataway, NJ, USA This accessible primer reviews how organic molecules are put together, their 3D structure and properties, and the relationship between chemical structure and medicinal activity. KEY FEATURES • Focused approach to review those organic chemistry concepts that are most important for medicinal chemistry practice and understanding ISBN: 978‐0‐12‐800739‐6 • Accessible content to refresh the reader's knowledge of bonding, structure, functional groups, stereochemistry, and more PUB DATE: May 2014 • Appropriate level of coverage for students in organic chemistry, medicinal LIST PRICE: $59.95 chemistry, and related areas; individuals seeking content review for graduate FORMAT: Paperback and medical courses and exams; pharmaceutical patent attorneys; and PAGES: c. 224 chemists and scientists requiring a review of pertinent material TRIM: 6w x 9h DESCRIPTION AUDIENCE Organic Chemistry Concepts and Applications for Medicinal Chemistry provides a Advanced students moving valuable refresher for understanding the relationship between chemical bonding from organic chemistry to and those molecular properties that help to determine medicinal activity. This medicinal/pharmaceutical book explores the basic aspects of structural organic chemistry without going into chemistry; exam takers in the various classes of reactions. Two medicinal chemistry concepts are also pharmacy, medicine, etc; introduced: partition coefficients and the nomenclature of cyclic and polycyclic professionals in chemistry ring systems that comprise a large number of drug molecules. Given the and pharmaceutics who systematic name of a drug, the reader is guided through the process of drawing an require review for practice accurate chemical structure.
    [Show full text]
  • Medicinal Chemistry 101 Overview
    Medicinal Chemistry 101: From Bench to Bedside Overview The drug development process is a team effort across multiple scientific disciplines, including biology, chemistry and pharmacology. A medicinal chemist is a scientist with a background in organic chemistry who works in a lab to discover potential drug compounds that may combat disease. Medicinal chemists serve a very important role in the small molecule discovery process – from bench to bedside. Finding a target Multidisciplinary scientific teams work to identify something in the body that plays a role in disease. This process is called target Target identification. Targets are often Identification proteins, which include enzymes, ion and channels and receptors. Validation Once a target has been found, it must be confirmed that modulating the target can mitigate its disease- causing nature. This is called target validation. Getting the first hit Once a target has been identified and validated, chemists will screen vast libraries of chemical Hit-to-Lead compounds against the target to see which types of chemicals will engage with the target, known as hit-to-lead. If successful, a few different chemical structures will show activity against the target. With these first hits, scientists can then begin optimizing these chemical structures. Turning ‘hits’ into drug candidates Lead Using years of knowledge of Optimization organic chemistry, medicinal chemists are able to experiment with the chemical structures of the ‘hits’. Medicinal chemists will make subtle alterations to the makeup of the structure, always refining to ensure the best engagement and activity with the target. This is known as lead optimization. Moving closer to clinical trials Pre-Clinical Development Refining and optimizing a chemical structure can take several years, until a drug candidate is selected.
    [Show full text]
  • Organic Chemistry in Drug Discovery
    D RUG D ISCOVERY References and Notes 24. D. Konz, A. Klens, K. Schorgendorfer, M. A. Marahiel, 48. Y. Sun et al., Chem. Biol. 10, 431 (2003). 1. D. E. Cane, C. T. Walsh, C. Khosla, Science 282,63 Chem. Biol. 4, 927 (1997). 49. H. J. Kwon et al., Science 297, 1327 (2002). (1998). 25. N. J. Hillson, C. T. Walsh, Biochemistry 42, 766 (2003). 50. A. M. van Wageningen et al., Chem. Biol. 5, 155 (1998). ECTION 2. S. Omura et al., Proc. Natl. Acad. Sci. U.S.A. 98, 26. S. A. Sieber, M. A. Marahiel, J. Bacteriol. 185, 7036 51. J. Recktenwald et al., Microbiology 148, 1105 (2002). S 12215 (2001). (2003). 52. J. Pootoolal et al., Proc. Natl. Acad. Sci. U.S.A. 99, 3. H. B. Bode, B. Bethe, R. Hofs, A. Zeeck, ChemBioChem 27. T. Brautaset et al., Chem. Biol. 7, 395 (2000). 8962 (2002). 3, 619 (2002). 28. C. N. Boddy, T. L. Schneider, K. Hotta, C. T. Walsh, C. 53. M. Sosio, S. Stinchi, F. Beltrametti, A. Lazzarini, S. 4. Y. Tang, T. S. Lee, C. Khosla, PLoS Biol., 2, 227 (2004). Khosla, J. Am. Chem. Soc. 125, 3428 (2003). Donadio, Chem. Biol. 10, 541 (2003). 5. H. D. Mootz, D. Schwarzer, M. A. Marahiel, ChemBio- 29. J. W. Trauger, R. M. Kohli, H. D. Mootz, M. A. Marahiel, 54. M. Sosio et al., Microbiology 150, 95 (2004). PECIAL Chem 3, 490 (2002). C. T. Walsh, Nature 407, 215 (2000). 55. D. Bischoff et al., Angew. Chem. Int. Ed. Engl. 40, S 6.
    [Show full text]
  • 6 Appendix. Description of Graduate Course Electives
    PURDUE DRUG DISCOVERY TRAINING PROGRAM Appendix. Description of graduate course electives (in order of course subject and number) • BCHM/BIOL 536 (Biological & Structural Aspects of Drug Design & Action): Overview of drug discovery pipeline process, and biological structures and mechanisms-of-action behind currently marketed therapeutics. Includes general principles of target selection, assay development, high-throughput screening, and structure-based drug design. Focuses mainly on small-molecule drugs, with examples of biologics at the end of the course. • BCHM 605 (Macromolecules): This course covers the basic principles underlying the secondary and tertiary structures of proteins and nucleic acids that contribute to their function. Students become familiar with methods used to determine three-dimensional structures and global conformations, enabling their critical evaluation of structural models. Topics include native and engineered biomacromolecules with novel functions, membrane proteins, and drug design. • BCHM 610 (Regulation of Eukaryotic Gene Expression): This course focuses on recent advances in gene expression and its mechanisms, with examples taken from the current primary literature. Topics include transcription, messenger RNA decay, microRNAs, and connections between gene expression steps. Students digest and interpret scientific literature through reading, discussions, and oral presentations, and also gain experience in developing hypotheses by writing research proposals. • BCHM 615 (Pathways): This advanced graduate-level course in cell biology covers the major intracellular signaling pathways and cell cycle regulation of eukaryotes, with readings taken from the primary literature. • BIOL 511 (Introduction to X-ray Crystallography): This course covers the basic laws and principles guiding the analysis of two- and three-dimensionally ordered structures using optical, electron, and X-ray diffraction methods.
    [Show full text]