(12) United States Patent (10) Patent No.: US 9,136,937 B1 Cheng Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 9,136,937 B1 Cheng Et Al US009136937B1 (12) United States Patent (10) Patent No.: US 9,136,937 B1 Cheng et al. (45) Date of Patent: Sep. 15, 2015 (54) SYSTEMAND METHOD FOR PROVIDING (56) References Cited ANTENNA DIVERSITY IN MULTIPLE SUB-CARRIER COMMUNICATION SYSTEMS U.S. PATENT DOCUMENTS 7.305.056 B2 * 12/2007 Kroeger ........................ 375,348 (75) Inventors: Hao-Ren Cheng, Miaoli County (TW); 7,636,593 B2 * 12/2009 Kurioka . 455,575.7 William J. McFarland, Los Altos, CA 8,755,476 B2 * 6/2014 Li et al. ....... 375/347 2004,022.9650 A1* 11, 2004 Fitton et al. ... 455,561 (US) 2005/0107045 A1* 5/2005 Kroeger .......................... 455.83 2005.0245224 A1* 11/2005 Kurioka ...... 455,272 (73) Assignee: Qualcomm Incorporated, San Diego, 2005/0254608 A1* 11/2005 Lee et al. .... 375/347 CA (US) 2007/0230604 A1* 10, 2007 Nakamura .. 375,260 2008/005104.6 A1* 2, 2008 Ruckriem ... ... 455,132 2008. O139153 A1* 6, 2008 Tuo et al. .... 455/2772 (*) Notice: Subject to any disclaimer, the term of this 2010/009 1904 A1* 4/2010 Wang et al. ... 375,296 patent is extended or adjusted under 35 2010, 0183099 A1* 7, 2010 Toda et al. .. ... 375/340 U.S.C. 154(b) by 680 days. 2010/0195754 A1* 8, 2010 Li et al. ......................... 375,267 (21) Appl. No.: 12/706,141 FOREIGN PATENT DOCUMENTS (22) Filed: Feb. 16, 2010 WO WO 2008133298 A1 * 11, 2008 * cited by examiner (51) Int. Cl. H3K9/00 (2006.01) Primary Examiner — Linda Wong HO3D 3/00 (2006.01) (74) Attorney, Agent, or Firm — Bay Area Technology Law H04B I/44 (2006.01) Group PC H04B 7/85 (2006.01) H04B 7/06 (2006.01) (57) ABSTRACT H04B 7/08 (2006.01) A system and method to provide antenna diversity by Switch (52) U.S. Cl. ing between antenna feeds to optimize signal quality. Antenna CPC .......... H04B 7/18545 (2013.01); H04B 770602 conditions are determined during an OFDM guard interval to minimize disruption of symbol transmission. When the signal (2013.01); H04B 7/0802 (2013.01); H04B quality assessment determines that an improved signal is 7/0805 (2013.01); H04B 7/1855 (2013.01) available on an alternative antenna, an antenna change is (58) Field of Classification Search performed to Switch to the alternative antenna, also during a USPC ......... 375/219, 295,316, 328,346, 351, 220, GI, again minimizing disruption in information transmission. 375/222, 240.26-240.28, 254, 259,285, Preferably, the process is continually applied, so that antenna 375/284, 278, 299, 307, 324,339, 340, 348, conditions are monitored for changing conditions and the 375/354; 455/3.01, 3.04, 428,403, 13.3, 7, antenna experiencing the best signal is selected. 455/39, 63.3, 73,78, 83,560 See application file for complete search history. 22 Claims, 6 Drawing Sheets 41 thresholds?doppler and delay \. 402. Determine current antenna power 403. 'ss Current antenna power below feshold 4. Test atternate antenna Alternate antana power above threshold? Switch to new antenna s Hold at new antenna U.S. Patent Sep. 15, 2015 Sheet 2 of 6 US 9,136,937 B1 307 N. 306 305 w M 309 FIG. 3 U.S. Patent Sep. 15, 2015 Sheet 3 of 6 US 9,136,937 B1 401 - Doppler and delay thresholds? 402 --- Determine current antenna power 403 Current antenna power below threshold? Test afternate antenna Alternate antenna power above threshold? 408 Switch to new antenna Hold at new antenna FG. 4 U.S. Patent Sep. 15, 2015 Sheet 4 of 6 US 9,136,937 B1 -3 -SS - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - Doppler Frequency (Hz) F.G. 5 ls -8) 8S - - - - - - F - -S 10' Oppler Frequency (Hz) FIG. 6 U.S. Patent Sep. 15, 2015 Sheet 5 of 6 US 9,136,937 B1 i L r Doppler Frequency HZ ) FIG 7 .3 - - - - - - - - - - - - - - - - - L- - - - - - - - - - - -9. Doppler Frequency (HZ) FIG. 8 U.S. Patent Sep. 15, 2015 Sheet 6 of 6 US 9,136,937 B1 RSS (13-seg) O YO 8 sec US 9,136,937 B1 1. 2 SYSTEMAND METHOD FOR PROVIDING characteristics In pilot-based systems, a known symbol, or ANTENNA DIVERSITY IN MULTIPLE "pilot, is transmitted at given Sub-carrier frequencies and at SUB-CARRIER COMMUNICATION SYSTEMS given times. Since the receiver knows the transmitted symbol, any errors to the transmitted pilot due to Sub-carrier condi FIELD OF THE PRESENT INVENTION tions can be estimated and an appropriate correction calcu lated. Channel conditions for all Sub-carriers and times can The present invention relates to improving signal quality in likewise be interpolated from the pilot information, allowing mobile digital communication systems in general and more equalization of the signal and Subsequent coherent demodu specifically to methods and systems for providing antenna lation diversity in mobile, wireless OFDM systems. 10 Further details regarding the design of OFDM systems can be found in co-pending, commonly-assigned U.S. patent BACKGROUND OF THE INVENTION application Ser. No. 12/272.629, filed Nov. 17, 2008, Ser. No. 12/277,247, filed Nov. 24, 2008, Ser. No. 12/277,258, filed Advanced multimedia services continue to drive require Nov. 24, 2008, Ser. No. 12/365,726, filed Feb. 4, 2009, and ments for increasing data rates and higher performance in 15 Ser. No. 12/398,952, filed Mar. 5, 2009, all of which are wireless systems. Current technologies for high performance hereby incorporated by reference in their entirety communication systems, such as those specified by the Japa Antenna diversity is a well recognized technique that gen nese integrated services digital broadcasting terrestrial stan erally employs two or more antennas to provide improved dard (ISDB-T), employ communication methods based on quality and reliability by reducing multipath interference. Orthogonal Frequency Division Multiplexing (OFDM). The multiple antennas give the receiver different observations As known to those of skill in the art, multipath interference of the same signal, each of which are subject to different presents a significant impediment to effective wireless com conditions. Accordingly, even if one antennais Suffering from munication. Since a clearline-of-sight rarely exists between a poor reception, an alternate antenna may still have good sig transmitter and receiver, a signal typically gets reflected by nal quality. buildings and other various obstacles. As a result, multiple 25 One class of existing diversity reception technologies versions of the signal travel along different paths before arriv includes systems that combine the signals received from each ing at the receiver. Each path is subject to different conditions antenna. An example of this technique involves daisy-chain which can introduce phase shifts, time delays, attenuations, ing receivers so that a multiple receivers associated with each and other distortions that can destructively interfere with one antenna combines the signal with the others in series A more another at the receiver. For example, the variable transmission 30 Sophisticated system uses maximum ratio combining (MRC) delays can result in inter-symbol interference (ISI) when the to selectively weight and add the signals coherently to pro different data signals arrive at the receiver simultaneously vide better results than simple addition Such methods are In OFDM multiple sub-carrier systems, a higher rate data widely used in mobile and portable digital TV receivers How signal is divided among multiple narrowband Sub-carriers ever, any system that relies on combining signals must have that are orthogonal to one another in the frequency domain. 35 duplicate a significant portion of the signal processing archi Thus, the higher rate data signal is transmitted as a set of tecture for each antenna, depending upon the stage at which parallel lower rate data signals carried on separate Sub-carri the signals are combined. Accordingly, such techniques offer CS good performance but at a Substantial cost, typically almost a A received OFDM symbol in an OFDM system generally multiple equivalent to the number of antennas employed consists of both data and pilot synchronization information 40 compared to a single antenna system. transmitted on the multiple sub-carriers multiplexed together Another strategy for diversity reception relies on Switching and spanning multiple sample periods. Modulation and between antennas based upon the quality of the signal being demodulation in an OFDM system uses an inverse fast Fou received. This technique offers appreciable cost savings but rier transform (IFFT) at the transmitter and a fast Fourier represents implementation and performance challenges, pri transform (FFT) at the receiver. At the transmitter, a cyclic 45 marily due to loss of data and channel information during the prefix of a section of the IFFT output for each OFDM symbol Switching process. is typically appended to the beginning of the OFDM symbol Thus, it would be desirable to provide a system and method as a guard interval (GI). The length of the OFDM symbol of antenna diversity using antenna selection that offers before adding the guard interval is known as the useful sym increased performance. In particular, it would be desirable to bol period duration. At the receiver, the cyclic prefix is 50 provide antenna Switching while minimizing disruption of removed prior to the FFT demodulation by the appropriate data reception or channel estimation. positioning of an FFT window, with size equal to the useful symbol period duration, along a received sample sequence. SUMMARY OF THE INVENTION The FFT demodulation transforms the window of received time domain samples, in the received sample sequence, to a 55 In accordance with the above needs and those that will be frequency domain (OFDM) symbol. mentioned and will become apparent below, this disclosure is A principle advantage of this type of communication sys directed to a method for providing antenna diversity in a tem is that the lower data rate occupies alonger symbol period multiple Sub-carrier digital communication receiver compris than in a higher rate single carrier system.
Recommended publications
  • User Verification on Smartphones Via Tapping Behaviors
    You are How You Touch: User Verification on Smartphones via Tapping Behaviors Nan Zheng∗, Kun Baiy, Hai Huangy and Haining Wangz ∗College of William and Mary, Williamsburg, VA, USA yIBM T.J. Watson Research Center, Yorktown Heights, NY, USA zUniversity of Delaware, Newark, DE, USA Email: [email protected], fkunbai,[email protected], [email protected] Abstract—Smartphone users have their own unique behavioral could even exploit the oily residues left on the screen of a patterns when tapping on the touch screens. These personal smartphone to derive the passcode [6]. Therefore, it is highly patterns are reflected on the different rhythm, strength, and desirable to enhance the smartphone’s user authentication with angle preferences of the applied force. Since smartphones are equipped with various sensors like accelerometer, gyroscope, a non-intrusive user verification mechanism, which is user- and touch screen sensors, capturing a user’s tapping behaviors transparent and is able to further verify if the successfully can be done seamlessly. Exploiting the combination of four logged-in user is the true owner of a smartphone. features (acceleration, pressure, size, and time) extracted from In this paper, we explore the feasibility of utilizing user smartphone sensors, we propose a non-intrusive user verification tapping behaviors for user verification in a passcode-enabled mechanism to substantiate whether an authenticating user is the true owner of the smartphone or an impostor who happens to smartphone. The rationale behind our work is that individual know the passcode. Based on the tapping data collected from human users have their own unique behavioral patterns while over 80 users, we conduct a series of experiments to validate the tapping on the touch screen of a smartphone.
    [Show full text]
  • 2019 Dodge Challenger Owner's Manual
    2019 Challenger 2019 Challenger OWNER’S MANUAL 19LA-126-AB ©2018 FCA US LLC. All Rights Reserved. Second Edition Dodge is a registered trademark of FCA US LLC. Printed in the U.S.A. VEHICLES SOLD IN CANADA This manual illustrates and describes the operation of With respect to any Vehicles Sold in Canada, the name features and equipment that are either standard or op- FCA US LLC shall be deemed to be deleted and the name tional on this vehicle. This manual may also include a FCA Canada Inc. used in substitution therefore. description of features and equipment that are no longer DRIVING AND ALCOHOL available or were not ordered on this vehicle. Please Drunken driving is one of the most frequent causes of disregard any features and equipment described in this accidents. manual that are not on this vehicle. Your driving ability can be seriously impaired with blood FCA US LLC reserves the right to make changes in design alcohol levels far below the legal minimum. If you are and specifications, and/or make additions to or improve- drinking, don’t drive. Ride with a designated non- ments to its products without imposing any obligation drinking driver, call a cab, a friend, or use public trans- upon itself to install them on products previously manu- portation. factured. WARNING! Driving after drinking can lead to an accident. Your perceptions are less sharp, your reflexes are slower, and your judgment is impaired when you have been drinking. Never drink and then drive. Copyright © 2018 FCA US LLC SECTION TABLE OF CONTENTS PAGE 1 1 INTRODUCTION
    [Show full text]
  • College of William & Mary Department of Computer Science
    Technical Report WM-CS-2012-06 College of William & Mary Department of Computer Science WM-CS-2012-06 You Are How You Touch: User Verification on Smartphones via Tapping Behaviors Nan Zheng, Kun Bai, Hai Huang, and Haining Wang December 06, 2012 You Are How You Touch: User Verification on Smartphones via Tapping Behaviors * * Nan Zheng , Kun Bai†, Hai Huang†, and Haining Wang * College of William and Mary †IBM T.J. Watson Research Center Williamsburg, VA, USA Hawthorne, NY, USA {nzheng,hnw}@cs.wm.edu {kunbai,haih}@us.ibm.com ABSTRACT detect the location of screen taps on smartphones based on Smartphone users have their own unique behavioral pat- accelerometer and gyroscope readings and then derive the terns when tapping on the touch screens. These personal letters or numbers on the screen [6, 23, 27, 32]. An attacker patterns are reflected on the di↵erent rhythm, strength, and could even exploit the oily residues left on the screen of a angle preferences of the applied force. Since smartphones are smartphone to derive the passcode [2]. Therefore, it is highly equipped with various sensors like accelerometer, gyroscope, desirable to enhance the smartphone’s user authentication and touch screen sensors, capturing a user’s tapping behav- with a non-intrusive user verification mechanism, which is iors can be done seamlessly. Exploiting the combination user-transparent and is able to further verify if the success- of four features (acceleration, pressure, size, and time) ex- fully logged-in user is the true owner of a smartphone. tracted from smartphone sensors, we propose a non-intrusive In this paper, we explore the feasibility of utilizing user user verification mechanism to substantiate whether an au- tapping behaviors for user verification in a passcode-enabled thenticating user is the true owner of the smartphone or an smartphone.
    [Show full text]
  • 2019 Chrysler 300 User's Guide
    Whether it’s providing information about specific product features, taking a tour through your vehicle’s heritage, knowing what steps to take following an accident, or scheduling your next appointment, we know you’ll find the app an important extension of your Chrysler brand vehicle. Simply download the app, select your make and model and enjoy the ride. To get this app, go directly to the App Store® or Google Play® Store and enter the search keyword “Chrysler” (U.S. residents only). www.chrysler.com/en/owners (U.S.) provides special offers tailored to your needs, customized vehicle galleries, personalized service records and more. To get this information, just create an account and check back often. Get warranty and other information online – you can review and print or download a copy of the Owner’s Manual, Navigation/Uconnect manuals and the limited warranties provided by FCA US LLC for your vehicle by visiting www.mopar.com (U.S.) or www.owners.mopar.ca (Canada). Click on the applicable link in the “Popular Topics” area of the www.mopar.com (U.S.) or www.owners.mopar.ca (Canada) homepage and follow the instructions to select the applicable year, make and model of your vehicle. Download a FREE electronic copy of the most up-to-date Owner’s Manual, media and warranty booklet by visiting: www.mopar.com/en-us/care/owners-manual.html (U.S. residents); www.owners.mopar.ca (Canadian residents). CHRYSLER 300 Chrysler.com (U.S.) 19LX-926-AA 2019 USER GUIDE Chrysler.ca (Canada) EDITION SECOND ©2018 FCA US LLC.
    [Show full text]
  • AN INVESTIGATION of the POSSIBILITIES of ROOM-SCALE WIRELESS POWER TRANSFER Karuna Adhikari
    University of Texas at Tyler Scholar Works at UT Tyler Electrical Engineering Theses Electrical Engineering Summer 8-2-2018 AN INVESTIGATION OF THE POSSIBILITIES OF ROOM-SCALE WIRELESS POWER TRANSFER Karuna Adhikari Follow this and additional works at: https://scholarworks.uttyler.edu/ee_grad Part of the Electrical and Computer Engineering Commons Recommended Citation Adhikari, Karuna, "AN INVESTIGATION OF THE POSSIBILITIES OF ROOM-SCALE WIRELESS POWER TRANSFER" (2018). Electrical Engineering Theses. Paper 39. http://hdl.handle.net/10950/1184 This Thesis is brought to you for free and open access by the Electrical Engineering at Scholar Works at UT Tyler. It has been accepted for inclusion in Electrical Engineering Theses by an authorized administrator of Scholar Works at UT Tyler. For more information, please contact [email protected]. AN INVESTIGATION OF THE POSSIBILITIES OF ROOM-SCALE WIRELESS POWER TRANSFER by KARUNA ADHIKARI A thesis/dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering Department of Electrical Engineering David M. Beams, Ph.D., P.E., Committee Chair College of Engineering The University of Texas at Tyler May 2018 The University of Texas at Tyler Tyler, Texas This is to certify that the Master’s Thesis of KARUNA ADHIKARI has been approved for the thesis/dissertation requirement on July 10th, 2018 for the Master of Science in Electrical Engineering Approvals: © Copyright 2018 by Karuna Adhikari All rights reserved. Acknowledgements I would like to extend my sincere thanks to my parents and family members for their kind support and encouragement which helped me in completion of this paper.
    [Show full text]
  • Touchpower: Interaction-Based Power Transfer for Power-As-Needed Devices
    TouchPower: Interaction-based Power Transfer for Power-as-needed Devices TENGXIANG ZHANG, Tsinghua University XIN YI, Tsinghua University CHUN YU, Tsinghua University ∗ YUNTAO WANG , Tsinghua University NICHOLAS BECKER, University of Washington YUANCHUN SHI, Tsinghua University The trend toward ubiquitous deployment of electronic devices demands novel low maintenance power schemes to decrease the burden of maintaining such a large number of devices. In this paper, we propose Interaction-based Power Transfer (IPT):a novel power scheme for power-as-needed devices (i.e., devices that only require power during interaction). IPT allows for the removal of built-in batteries on these devices, and to instead be powered up through direct contact interaction with the user (e.g. gripping a mouse, holding a pen). We prove the concept and show the potential of IPT through our TouchPower prototype. TouchPower transfers on-body power to off-body power-as-needed devices through contact between electrodes on aglove worn by the user and those on the target device during the interaction process. We design TouchPower to automatically detect the contact topology at runtime to supply power accordingly, and place electrodes on the glove so that TouchPower is compatible with various interactions with different objects. We also show the methodology of placing electrodes onthe device-end, and evaluate it on a mouse and a remote controller. Results show that during interaction, TouchPower is able to provide stable power supply to these devices with only a small sacrifice in regards to interaction naturalness. At lastwe demonstrate six applications of TouchPower, and discuss the limitations and potential of TouchPower and IPT systems.
    [Show full text]
  • Decreased Spontaneous Electrical Activity in Neuronal Networks
    Decreased spontaneous electrical activity in neuronal networks exposed to radiofrequency 1800 MHz signals Corinne El Khoueiry, Daniela Moretti, Rémy Renom, Francesca Camera, Rosa Orlacchio, André Garenne, Florence Poulletier de Gannes, Emmanuelle Poque-Haro, Isabelle Lagroye, Bernard Veyret, et al. To cite this version: Corinne El Khoueiry, Daniela Moretti, Rémy Renom, Francesca Camera, Rosa Orlacchio, et al.. Decreased spontaneous electrical activity in neuronal networks exposed to radiofrequency 1800 MHz signals. Journal of Neurophysiology, American Physiological Society, 2018, 120 (6), pp.2719-2729. 10.1152/jn.00589.2017. hal-01943451 HAL Id: hal-01943451 https://hal.inria.fr/hal-01943451 Submitted on 17 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 DECREASED SPONTANEOUS ELECTRICAL ACTIVITY IN NEURONAL 2 NETWORKS EXPOSED TO RADIOFREQUENCY 1800 MHZ SIGNALS 3 4 Corinne El Khoueiry1, Daniela Moretti2, Rémy Renom1, Francesca Camera3, Rosa Orlacchio4, André 5 Garenne5, Florence Poulletier De Gannes1, Emmanuelle Poque-Haro1, Isabelle Lagroye1,
    [Show full text]
  • VU Research Portal
    VU Research Portal Hearing screening by telephone Smits, J.C.M. 2005 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Smits, J. C. M. (2005). Hearing screening by telephone: fundamentals & applications. Proefschrift Vrije Universiteit Amsterdam. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 02. Oct. 2021 Hearing screening by telephone fundamentals & applications The research described in this thesis was carried out at the Audiology section of the department of Otorhinolaryngology / Head & Neck Surgery, VU University Medical Center, Amsterdam, the Netherlands. Cover-design by Aaf Printed by Febodruk BV ISBN-10: 90-9020208-0 ISBN-13: 978-90-9020208-2 Financial support for publication of this thesis was kindly provided by: Nationale Hoorstichting, Stichting Atze Spoor Fonds, Oticon Nederland BV, Veenhuis Medical Audio BV, GN Resound BV, Siemens Audiologie Techniek BV, Schoonenberg Hoorcomfort.
    [Show full text]
  • NBER WORKING PAPER SERIES ACCOUNTING for INNOVATION in CONSUMER DIGITAL SERVICES: IT STILL MATTERS David Byrne Carol Corrado
    NBER WORKING PAPER SERIES ACCOUNTING FOR INNOVATION IN CONSUMER DIGITAL SERVICES: IT STILL MATTERS David Byrne Carol Corrado Working Paper 26010 http://www.nber.org/papers/w26010 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 June 2019, Revised February 2020 The views expressed in this paper are those of the authors and do not necessarily reflect those of the Board of Governors, other members of its staff, or the National Bureau of Economic Research. Corresponding author ([email protected]) This paper was prepared for the NBER/CRIW Conference, “Measuring Innovation in the 21st Century,” Georgetown University, Washington, D.C., March 10-11, 2017. We have benefited from presentations of this paper at the 5th IMF Statistical Forum in Washington, D.C.(November 2017), the ESCoE Measurement Conference in London (May 2018) and the 5th World KLEMS Conference in Cambridge, Mass (June 2018). We received no financial support for this paper. NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications. © 2019 by David Byrne and Carol Corrado. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source. Accounting for Innovation in Consumer Digital Services: IT Still Matters David Byrne and Carol Corrado NBER Working Paper No. 26010 June 2019, Revised February 2020 JEL No. E01,E21,E22,O31 ABSTRACT This paper develops a framework for measuring digital services in the face of ongoing innovations in the delivery of content to consumers.
    [Show full text]
  • Proximodistal Organization of the CA2 Hippocampal Area I
    bioRxiv preprint doi: https://doi.org/10.1101/331025; this version posted May 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Proximodistal organization of the CA2 hippocampal area I. Fernandez-Lamo1,*, D. Gomez-Dominguez1,*, A. Sanchez-Aguilera1,*, E. Cid1, M. Valero1 and L. Menendez de la Prida1 1Instituto Cajal, CSIC, Ave Doctor Arce 37, Madrid, Spain * Equal contribution Lead contact: [email protected] Author contribution: LMP designed the study. IFL, ASA, EC, MV obtained data. DGD, IFL, ASA, MV, EC, LMP analyzed and interpreted data. LMP wrote the paper. Acknowledgments: Supported by grants from the Spanish Ministerio de Economía y Competitividad (MINECO) to LMP (BFU2015-66887-R) and the Fundación Tatiana Perez de Guzman el Bueno. DGD and MV were supported by a PhD fellowship from the Spanish Ministry of Economy (BES-2013-064171) and from the Ministry of Education, Culture and Sports (FPU12/03776), respectively. We thank to the Deisseroth lab for sharing their optogenetic constructs. VGAT–Venus transgenic rats were generated by Drs. Y. Yanagawa, M. Hirabayashi, and Y.Kawaguchi at the National Institute for Physiological Sciences (Okazaki, Japan) using pCS2–Venus provided by Dr. A. Miyawaki. VGAT line progenitors were provided by the National Bioresource Project Rat (Kyoto, Japan) 1 bioRxiv preprint doi: https://doi.org/10.1101/331025; this version posted May 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
    [Show full text]
  • Induced Mouse Model of Secondary Hemophagocytic Lymphohistiocytosis Ellen Brisse1, Maya Imbrechts1, Tania Mitera1, Jessica Vandenhaute1, Carine H
    Brisse et al. Virology Journal (2017) 14:240 DOI 10.1186/s12985-017-0908-0 RESEARCH Open Access Lytic viral replication and immunopathology in a cytomegalovirus- induced mouse model of secondary hemophagocytic lymphohistiocytosis Ellen Brisse1, Maya Imbrechts1, Tania Mitera1, Jessica Vandenhaute1, Carine H. Wouters2, Robert Snoeck3, Graciela Andrei3 and Patrick Matthys1* Abstract Background: Hemophagocytic lymphohistiocytosis (HLH) is a rare immunological disorder caused by unbridled activation of T cells and macrophages, culminating in a life-threatening cytokine storm. A genetic and acquired subtype are distinguished, termed primary and secondary HLH, respectively. Clinical manifestations of both forms are frequently preceded by a viral infection, predominantly with herpesviruses. The exact role of the viral infection in the development of the hemophagocytic syndrome remains to be further elucidated. Methods: We utilized a recently developed murine model of cytomegalovirus-associated secondary HLH and dissected the respective contributions of lytic viral replication and immunopathology in its pathogenesis. Results: HLH-like disease only developed in cytomegalovirus-susceptible mouse strains unable to clear the virus, but the severity of symptoms was not correlated to the infectious viral titer. Lytic viral replication and sustained viremia played an essential part in the pathogenesis since abortive viral infection was insufficient to induce a full- blown HLH-like syndrome. Nonetheless, a limited set of symptoms, in particular anemia, thrombocytopenia and elevated levels of soluble CD25, appeared less dependent of the viral replication but rather mediated by the host’s immune response, as corroborated by immunosuppressive treatment of infected mice with dexamethasone. Conclusion: Both virus-mediated pathology and immunopathology cooperate in the pathogenesis of full-blown virus-associated secondary HLH and are closely entangled.
    [Show full text]
  • Optimal Transmitter Placement in Wireless Mesh Networks
    Calhoun: The NPS Institutional Archive DSpace Repository Theses and Dissertations 1. Thesis and Dissertation Collection, all items 2009-06 Optimal transmitter placement in wireless mesh networks Nicholas, Paul J. Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/4688 Downloaded from NPS Archive: Calhoun NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS OPTIMAL TRANSMITTER PLACEMENT IN WIRELESS MESH NETWORKS by Paul J. Nicholas June 2009 Thesis Advisor: David Alderson Second Reader: Brian Steckler Approved for public release; distribution is unlimited THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED June 2009 Master’s Thesis 4. TITLE AND SUBTITLE Optimal Transmitter Placement in Wireless Mesh 5. FUNDING NUMBERS Networks 6. AUTHOR(S) Paul J. Nicholas 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Naval Postgraduate School REPORT NUMBER Monterey, CA 93943-5000 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.
    [Show full text]