(12) Patent Application Publication (10) Pub. No.: US 2016/0354315 A1 Li (43) Pub

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2016/0354315 A1 Li (43) Pub US 20160354315A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0354315 A1 Li (43) Pub. Date: Dec. 8, 2016 (54) DOSAGE FORMS AND USE THEREOF Publication Classification (71) Applicant: Triastek, Inc., Nanjing (CN) (51) Int. Cl. A69/20 (2006.01) (72) Inventor: Xiaoling Li, Dublin, CA (US) A6IR 9/24 (2006.01) A63L/92 (2006.01) (52) U.S. Cl. (21) Appl. No.: 15/173,596 CPC ........... A61K 9/2031 (2013.01); A61K 9/2027 (2013.01); A61K 31/192 (2013.01); A61 K 9/209 (2013.01) (22) Filed: Jun. 3, 2016 (57) ABSTRACT The present disclosure provides a stable solid pharmaceuti Related U.S. Application Data cal dosage form for oral administration. The dosage form includes a Substrate that forms at least one compartment and (60) Provisional application No. 62/170,645, filed on Jun. a drug content loaded into the compartment. The dosage 3, 2015, provisional application No. 62/313,092, filed form is so designed that the active pharmaceutical ingredient on Mar. 24, 2016. of the drug content is released in a controlled manner. Patent Application Publication Dec. 8, 2016 Sheet 1 of 20 US 2016/0354315 A1 FG. A F.G. B. Peak carcetitration, tax ise F.G. C Patent Application Publication Dec. 8, 2016 Sheet 2 of 20 US 2016/0354315 A1 F.G. 2B Patent Application Publication Dec. 8, 2016 Sheet 3 of 20 US 2016/0354315 A1 F.G. 3 Patent Application Publication Dec. 8, 2016 Sheet 4 of 20 US 2016/0354315 A1 Patent Application Publication Dec. 8, 2016 Sheet 5 of 20 US 2016/0354315 A1 F.G. 4E F.G. 5 Patent Application Publication Dec. 8, 2016 Sheet 6 of 20 US 2016/0354315 A1 Patent Application Publication Dec. 8, 2016 Sheet 7 of 20 US 2016/0354315 A1 F.G. 8B Patent Application Publication Dec. 8, 2016 Sheet 8 of 20 US 2016/0354315 A1 F.G. 9 Patent Application Publication Dec. 8, 2016 Sheet 9 of 20 US 2016/0354315 A1 FIG 10B Patent Application Publication Dec. 8, 2016 Sheet 10 of 20 US 2016/0354315 A1 ti t t FIG 10C FIG. OD Patent Application Publication Dec. 8, 2016 Sheet 11 of 20 US 2016/0354315 A1 rescriptics: ------------------------------------------------------ it apexific itse and - - % dirig existic: \ey weighi ete/\: \"u/ ^ * FIG 11 Patent Application Publication Dec. 8, 2016 Sheet 12 of 20 US 2016/0354315 A1 --- - ^ --- *- ^. ---. \ --- FG, 12A FIG. 12B Patent Application Publication Dec. 8, 2016 Sheet 13 of 20 US 2016/0354315 A1 F.G. 13A FIG 3B Patent Application Publication Dec. 8, 2016 Sheet 14 of 20 US 2016/0354315 A1 FIG. 4C Patent Application Publication Dec. 8, 2016 Sheet 15 of 20 US 2016/0354315 A1 - s ---s: --- ^ * ----- 1. N r - - -- *r tra. f * . - S- --- e.Yas- -i.- 'w F.G. 1SA F.G. 1 SB Patent Application Publication Dec. 8, 2016 Sheet 16 of 20 US 2016/0354315 A1 1300 ^ 1 3 O 3 s w 2. x --- - 4. * 7- --- . 1304 C c/s (76 Crs) --- ar -l. aar, xx l Her -1 - 1301 k s as a *... F.G. 16B Patent Application Publication Dec. 8, 2016 Sheet 17 of 20 US 2016/0354315 A1 1401 1404. F.G. 17 A FG. 7B FIG. 17C Patent Application Publication Dec. 8, 2016 Sheet 18 of 20 US 2016/0354315 A1 F.G. 18A F.G. 18B :- 3eixeic acid reliease perceitsges assisgred a w by 3-is - My 83 */6ex P868000 reiesse areitage ( ^ geeksgress by gsi restice s 6 ? Citreatography i * 3 48 38 / s: s / * - 20 to so. 88 80 is kio 60 Beiease timefraits FIG. 18C Patent Application Publication Dec. 8, 2016 Sheet 19 of 20 US 2016/0354315 A1 FIG. 19A FIG. 19B Patent Application Publication Dec. 8, 2016 Sheet 20 of 20 US 2016/0354315 A1 O.30 0.25 0.20 5 O. 15 O. 10 O.05 O.OO O 2O 40 60 80 1OO 120 Time (min) FIG. 19C O.18 O. 16 0.14 O. 12 O. 10 É O.08 0.06 O.04 0.02 O.00 -0.02 O 20 40 60 8O 1 OO Time (min) FIG. 19) US 2016/0354315 A1 Dec. 8, 2016 DOSAGE FORMS AND USE THEREOF copolymer 57/30/13, polyvinylpyrrolidone-co-vinyl-acetate (PVP-VA), polyvinylpyrrolidone-polyvinyl acetate copoly CROSS-REFERENCE TO RELATED mer (PVP-VA) 60/40, polyvinylpyrrollidone (PVP), polyvi APPLICATIONS nyl acetate (PVAc) and polyvinylpyrrolidone (PVP) 80/20, polyethylene glycol-polyvinyl alcohol graft copolymer 0001. This application claims priority to U.S. Provisional 25/75, kollicoat IR-polyvinyl alcohol 60/40, polyvinyl alco Patent Applications Ser. Nos. 62/170,645, filed Jun. 3, 2015, hol (PVA or PV-OH), poly(vinyl acetate) (PVAc), poly(butyl 62/296,087, filed Feb. 17, 2016 and 62/313,092, filed Mar. methacrylate-co-(2-dimethylaminoethyl) methacrylate-co 24, 2016, the entire disclosures of which are incorporated methyl methacrylate) 1:2:1, poly(dimethylaminoethylmeth herein by reference. acrylate-co-methacrylic esters), poly(ethyl acrylate-co FIELD OF THE INVENTION methyl methacrylate-co-trimethylammonioethyl methacrylate chloride), poly(methyl acrylate-co-methyl 0002 The present invention generally relates to a phar methacrylate-co-methacrylic acid) 7:3:1, poly(methacrylic maceutical dosage form and controlled release of biologi acid-co-methylmethacrylate) 1:2, poly(methacylic acid-co cally active agents, diagnostic agents, reagents, cosmetic ethyl acrylate) 1:1, poly(methacylic acid-co-methyl meth agents, and agricultural/insecticide agents. acrylate) 1:1, poly(ethylene oxide) (PEO), poly(ethylene glycol) (PEG), hyperbranched polyesteramide, hydroxypro BACKGROUND pyl methylcellulose phthalate, hypromellose phthalate, 0003 Pharmaceutical drug products must be manufac hydroxypropyl methylcellulose or hypromellose (HMPC), tured into dosage forms in order to be marketed for use. hydroxypropyl methylcellulose acetate Succinate or Conventional dosage forms typically involve a mixture of hypromellose acetate succinate (HPMCAS), poly(lactide active pharmaceutical ingredients and inactive components co-glycolide) (PLGA), carbomer, poly(ethylene-co-vinyl (excipients), along with other non-reusable materials such as acetate), ethylene-vinyl acetate copolymer, polyethylene a capsule shell. Categories of dosage forms include liquid (PE), and polycaprolactone (PCL), hydroxyl propyl cellu dosage forms (e.g., Solutions, syrups, elixirs, Suspensions lose(HPC), Polyoxyl 40 Hydrogenerated Castor Oil, Methyl and emulsions), Solid dosage forms (e.g., tablets, capsules, cellulose (MC), Ethyl cellulose (EC), Poloxamer, hydroxy caplets and gel-caps), and semi-solid dosage form (e.g., propyl methylcellulose phthalate (HPMCP), Poloxamer, ointments and Suppositories), among which Solid dosage Hydrogenated Castor & Soybean Oil, Glyceryl Palmitoste forms are more advantages to administer drugs in systemic arate, Carnauba Wax, polylactic acid (PLA), polyglycolic effect through oral route. acid (PGA), Cellulose acetate butyrate (CAB), Colloidal 0004 Tablets are most commonly used solid dosage Silicon, Dioxide, Sucrose, Glucose, Polyvinyl Acetate forms, which shows more benefits in terms of manufactur Phthalate (PVAP) and a combination thereof. ing, packaging and shipping, and easy to identify and 0007. In certain embodiments, the compartment has a Swallow. After being administered into a living organism, a shape selected from the group consisting of a pie shape, a tablet undergoes interplay with the body in exerting phar cone shape, a pyramid shape, a cylindrical shape, a cubic or maceutical effects. The active pharmaceutical ingredient cuboidal shape, a triangular or polygonal prism shape, a must be released from the tablet before being absorbed into tetrahedron and a combination thereof. the blood circulation. The pharmaceutical ingredient then 0008. In certain embodiments, the first drug content is in disperses, disintegrates or dissolves throughout the fluids a form of nanoparticles, microneedles or forms a net. and tissues of the body. During drug absorption, disposition, 0009. In certain embodiments, the drug content com metabolism, and elimination process, dosage forms play a prises an active pharmaceutical ingredient (API). In certain critical role in determining the release profile and bioavail embodiments, the API is selected from the groups consisting ability of the drugs. Therefore, there is a continuing needs of local anesthetics, antiepileptic drugs and anticonvulsants, for developing dosage forms that provides controlled drug anti-Alzheimer's disease drugs, analgesics, antipodagric, delivery systems, which may offer desired drug plasma anti-hypertensive drugs, antiarrhythmic drugs, diuretic levels, reduced side effects as well as improved patient drugs, drugs for treating liver diseases, drugs for treating compliance. pancreatic diseases, antihistamine drugs, anti-allergic drugs, glucocorticoid drugs, hormone drugs and contraceptive BRIEF SUMMARY OF THE INVENTION drugs, hypoglycemic drugs, anti-osteoporosis drugs, antibi 0005. In one aspect, the present disclosure provides a otics, Sulfonamides, quinolones, and other synthetic antibac dosage form including a Substrate forming at least one terial drugs, anti-tuberculosis drugs, antiviral drugs, anti compartment and a drug content loaded into the compart neoplasm drugs, immune-modulators, cosmetically active ment. In certain embodiments, the drug content is operably agents and traditional Chinese medicine. In certain embodi linked to the substrate. In certain embodiments, the drug ments, the API is a biologically active agent, a diagnostic content is detached from the substrate and freely movable in agent, a reagent for Scientific research, a cosmetic agent, or the compartment. an agricultural/insecticide agent. 0006. In certain embodiments, the substrate is made from 0010. In certain embodiments, the drug content further a thermoplastic material selected from the group consisting comprises an excipient. In certain embodiments, the excipi of a hydrophilic polymer, a hydrophobic polymer, a ent is made from materials selected from the group consist Swellable polymer, a non-Swellable polymer, a porous poly ing of cocoa butter, polyethylene glycol (PEG), Sucrose, mer, a non-porous polymer, an erodible polymer, a non glucose, galactose, fructose, Xyloselactose, maltose, treha erodible polymer. In certain embodiments, the thermoplastic lose, Sorbitol, mannitol, maltodextrins, raffinose, stachyose, material is selected from the group consisting of polyvinyl fructo-oligosaccharides, water-soluble oligomers and poly caprolactam-polyvinyl acetate-polyethylene glycol graft mers and a combination thereof.
Recommended publications
  • 1 Randomized Trials of Retosiban Versus Placebo Or Atosiban In
    Randomized trials of retosiban versus placebo or atosiban in spontaneous preterm labor George Saade MDa, Andrew Shennan MDb, Kathleen J Beach MDc,1, Eran Hadar MDd, Barbara V Parilla MDe,2, Jerry Snidow PharmDf,3, Marcy Powell MDg, Timothy H Montague PhDh, Feng Liu PhDh,4, Yosuke Komatsu MDi,5, Laura McKain MDj,6, Steven Thornton DMk aDepartment of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA; bDepartment of Women and Children’s Health, King’s College London, St Thomas’ Hospital, London, UK; cDepartment of Maternal and Fetal Medicine, GSK, Research Triangle Park, NC, USA; dHelen Schneider Hospital for Women, Rabin Medical Center, Petach-Tikva, Israel and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; eDepartment of Obstetrics and Gynecology, Advocate Lutheran General Hospital, Park Ridge, IL, USA; fAlternative Discovery and Development, GSK, Research Triangle Park, NC, USA; gCentral Safety Department, GSK, Research Triangle Park, NC, USA; hClinical Statistics, Quantitative Sciences, GSK, Collegeville, PA, USA; iMaternal and Neonatal Health Unit, Alternative Discovery & Development, R&D, GSK, Research Triangle Park, NC, USA; jPharmacovigilance, PPD, Wilmington, NC, USA; kBarts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK 1At the time of the trial; 2At the time of the trial, present address: Rush Center for Maternal- Fetal Medicine, Aurora, IL, USA; 3At the time of the trial; 4At the time of the trial, present address: AstraZeneca,
    [Show full text]
  • 1 the Effect of an Oxytocin Receptor Antagonist (Retosiban, GSK221149A) on the 2 Response of Human Myometrial Explants to Prolonged Mechanical Stretch
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo 1 The effect of an oxytocin receptor antagonist (retosiban, GSK221149A) on the 2 response of human myometrial explants to prolonged mechanical stretch. 3 4 Alexandros A. Moraitis, Yolande Cordeaux, D. Stephen Charnock-Jones, Gordon C. S. 5 Smith. 6 Department of Obstetrics and Gynaecology, University of Cambridge; NIHR Cambridge 7 Comprehensive Biomedical Research Centre, CB2 2SW, UK. 8 9 Abbreviated title: Retosiban and myometrial contractility. 10 Key terms: Retosiban, myometrial contractility, preterm birth, multiple pregnancy, oxytocin 11 receptor. 12 Word count: 2203 13 Number of figures: 3 14 15 Correspondending author and person to whom reprint requests should be addressed: 16 Gordon CS Smith. Department of Obstetrics and Gynaecology, University of Cambridge, 17 The Rosie Hospital, Cambridge, CB2 0SW, UK. 18 Tel: 01223 763888/763890; Fax: 01223 763889; 19 E-mail: [email protected] 20 21 Disclosure statement: 22 GS receives/has received research support from GE (supply of two diagnostic ultrasound 23 systems) and Roche (supply of equipment and reagents for biomarker studies). GS has 24 been paid to attend advisory boards by GSK and Roche. GS has acted as a paid consultant 25 to GSK. GS is named inventor in a patent submitted by GSK (UK), for the use of retosiban to 26 prevent preterm birth in multiple pregnancy (PCT/EP2014/062602), based on the work 27 described in this paper. GS and DSCJ have been awarded £199,413 to fund further 28 research on retosiban by GSK. AM has received a travel grant by GSK to present at the 1 29 Society of Reproductive Investigation (SRI) annual conference in March 2015.
    [Show full text]
  • Copyright by Ernesto Lopez 2015
    Copyright by Ernesto Lopez 2015 The Dissertation Committee for Ernesto Lopez Certifies that this is the approved version of the following dissertation: The role of arginine vasopressin receptor 2 in microvascular hyperpermeability during severe sepsis and septic shock Committee: Perenlei Enkhbaatar, M.D., Ph.D. Supervisor or Mentor, Chair Jose M. Barral M.D., Ph.D. Donald S. Prough, M.D. Robert A. Cox, Ph.D. Jae-Woo Lee, M.D. _______________________________ David W. Niesel, PhD. Dean, Graduate School The role of arginine vasopressin receptor 2 in microvascular hyperpermeability during severe sepsis and septic shock by Ernesto Lopez, M.D. Dissertation Presented to the Faculty of the Graduate School of The University of Texas Medical Branch in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas Medical Branch 2015 Acknowledgements First I would like to gratefully thank my mentor, Dr. Enkhbaatar for his dedication and support and for giving me the opportunity to work in his lab as a graduate student. Dr. Enkhbaatar helped me to improve my scientific and professional skills with great attention. I had a true opportunity to be exposed to every aspect of the biomedical sciences. Moreover, I would like to express my gratitude to the members of my dissertation committee Dr. Prough, Dr. Cox, Dr. Barral and Dr. Lee as well as Dr. Hawkins, Dr. Herndon, Dr. Rojas and Jacob MS, for all the critiques and ideas that certainly enhanced this project. I would also like to thank to all current and past members of the translational intensive care unit (TICU) for their enormous support and professionalism in completing this project; John Salsbury, Christina Nelson, Ashley Smith, Timothy Walker, Mackenzie Gallegos, Jisoo Kim, Uma Nwikoro, Ryan Scott, Jeffrey Jinkins, Lesia Tower, Cindy Moncebaiz, Cindy Hallum, Lindsey Willis, Paul Walden, Randi Bolding, Jameisha Lee, Mengyi Ye, as well as Drs.
    [Show full text]
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • Joel L. Young, M.D
    Joel L. Young, M.D. 441 South Livernois Road, Suite 100 Rochester Hills, Michigan 48307 Phone: 248-608-8800 / Fax: 248-608-2490 / E-mail: [email protected] Professional History 2000 – Present: Chief Medical Officer and Founder, Clinical Trials Group at the Rochester Center for Behavioral Medicine, Rochester Hills, MI 1993 – Present: Medical Director and Founder, Rochester Center for Behavioral Medicine, Rochester Hills, MI (www.rcbm.net). 2008 (Current): Clinical Associate Professor of Psychiatry, Wayne State University, Detroit, MI. 2000 – 2007: Medical Director, Crittenton Network for Behavioral Health, Rochester, MI. 2000 – 2002: Chief of Staff, Department of Psychiatry, Crittenton Hospital, Rochester, MI. July, 1993 – 1997: Medical Director, Psychiatric Emergency Services, Crittenton Hospital. July, 1992 – June, 1993: Chief Resident of Adult Services, Department of Psychiatry, University of Michigan Hospitals, Ann Arbor, MI. Oct. 1991-Sept. 1993: Unit Psychiatrist, Bon Secours Adolescent Mental Health Unit, Grosse Pointe, MI. August, 1991 – 1996: Consulting Psychiatrist, Beacon Hill Clinic, Birmingham, MI. July, 1991 – June, 1992: Consulting Psychiatrist, Washtenaw County Community Mental Health Services, Ann Arbor, MI. July, 1990 – June, 1992: House Officer, Department of Psychiatry, University of Michigan Hospitals. June, 1989 – June, 1990: Intern, Departments of Internal Medicine, Pediatrics and Psychiatry, University of Michigan Hospitals. Boards 2018 Fellow: American Board of Psychiatry and Neurology 2017 Re-certification of Geriatric Qualifications by the American Board of Psychiatry and Neurology through 2027. 2017 Re-certification of Forensic Qualifications by the American Board of Psychiatry and Neurology through 2027 2014 Re-Certification by the American Board of Psychiatry and Neurology 2007 Re-certification by the American Board of Adolescent Psychiatry.
    [Show full text]
  • Supported by an Educational Grant from Sunovion Pharmaceuticals Inc. Faculty
    Supported by an educational grant from Sunovion Pharmaceuticals Inc. Faculty Leslie Citrome, MD, MPH C. Brendan Montano, MD Clinical Professor of Psychiatry and CT Clinical Research Behavioral Sciences Director, Principal Investigator New York Medical College Private Practice, Internal Medicine Valhalla, New York Cromwell, Connecticut Faculty Disclosure • Dr. Citrome: Consultant—Acadia, Alkermes, Allergan, Intra-Cellular Therapeutics, Janssen, Lundbeck, Merck, Neurocrine, Noven, Osmotica, Otsuka, Pfizer, Shire, Sunovion, Takeda, Teva, Vanda; Royalties—Springer Healthcare (book), UpToDate (reviewer), Wiley (Editor in Chief, International Journal of Clinical Practice); Shareholder (and spouse)—Bristol-Myers Squibb, Eli Lilly, J & J, Merck, Pfizer; Speaker—Acadia, Alkermes, Allergan, Janssen, Lundbeck, Merck, Neurocrine, Otsuka, Pfizer, Shire, Sunovion, Takeda, Teva. • Dr. Montano: Consultant—Allergan, Shire/Takeda Pharmaceutical Company Ltd., Sunovion Pharmaceuticals Inc., Arbor Pharmaceuticals Ltd.; Research Support—Allergan, Avanir, Sunovion Pharmaceuticals Inc., Tonix, BioHaven, Axsome Therapeutics, Arbor Pharmaceuticals Ltd.; Speakers Bureau— Allergan, Shire/Takeda Pharmaceutical Company Ltd., Arbor Pharmaceutical Ltd. Disclosure • The faculty have been informed of their responsibility to disclose to the audience if they will be discussing off-label or investigational use(s) of drugs, products, and/or devices (any use not approved by the US Food and Drug Administration). – The off-label and investigational use of antidepressants, topiramate,
    [Show full text]
  • Horizon Scanning Status Report June 2019
    Statement of Funding and Purpose This report incorporates data collected during implementation of the Patient-Centered Outcomes Research Institute (PCORI) Health Care Horizon Scanning System, operated by ECRI Institute under contract to PCORI, Washington, DC (Contract No. MSA-HORIZSCAN-ECRI-ENG- 2018.7.12). The findings and conclusions in this document are those of the authors, who are responsible for its content. No statement in this report should be construed as an official position of PCORI. An intervention that potentially meets inclusion criteria might not appear in this report simply because the horizon scanning system has not yet detected it or it does not yet meet inclusion criteria outlined in the PCORI Health Care Horizon Scanning System: Horizon Scanning Protocol and Operations Manual. Inclusion or absence of interventions in the horizon scanning reports will change over time as new information is collected; therefore, inclusion or absence should not be construed as either an endorsement or rejection of specific interventions. A representative from PCORI served as a contracting officer’s technical representative and provided input during the implementation of the horizon scanning system. PCORI does not directly participate in horizon scanning or assessing leads or topics and did not provide opinions regarding potential impact of interventions. Financial Disclosure Statement None of the individuals compiling this information have any affiliations or financial involvement that conflicts with the material presented in this report. Public Domain Notice This document is in the public domain and may be used and reprinted without special permission. Citation of the source is appreciated. All statements, findings, and conclusions in this publication are solely those of the authors and do not necessarily represent the views of the Patient-Centered Outcomes Research Institute (PCORI) or its Board of Governors.
    [Show full text]
  • Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
    CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products.
    [Show full text]
  • Molecular Basis of Ligand Recognition and Activation of Human V2 Vasopressin Receptor
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.18.427077; this version posted January 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Molecular basis of ligand recognition and activation of human V2 vasopressin receptor Fulai Zhou1, 12, Chenyu Ye2, 12, Xiaomin Ma3, 12, Wanchao Yin1, Qingtong Zhou4, Xinheng He1, 5, Xiaokang Zhang6, 7, Tristan I. Croll8, Dehua Yang1, 5, 9, Peiyi Wang3, 10, H. Eric Xu1, 5, 11, Ming-Wei Wang1, 2, 4, 5, 9, 11, Yi Jiang1, 5, 1. The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China 2. School of Pharmacy, Fudan University, Shanghai 201203, China 3. Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 515055, China 4. School of Basic Medical Sciences, Fudan University, Shanghai 200032, China 5. University of Chinese Academy of Sciences, 100049 Beijing, China 6. Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; 7. Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China 8. Cambridge Institute for Medical Research, Department of Haematology, University of Cambridge, Cambridge, UK 9. The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, China 10. Department of Biology, Southern University of Science and Technology, Shenzhen 515055, China 11. School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China 12. These authors contributed equally: Fulai Zhou, Chenyu Ye, and Xiaomin Ma.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • 1 Advances in Therapeutic Peptides Targeting G Protein-Coupled
    Advances in therapeutic peptides targeting G protein-coupled receptors Anthony P. Davenport1Ϯ Conor C.G. Scully2Ϯ, Chris de Graaf2, Alastair J. H. Brown2 and Janet J. Maguire1 1Experimental Medicine and Immunotherapeutics, Addenbrooke’s Hospital, University of Cambridge, CB2 0QQ, UK 2Sosei Heptares, Granta Park, Cambridge, CB21 6DG, UK. Ϯ Contributed equally Correspondence to Anthony P. Davenport email: [email protected] Abstract Dysregulation of peptide-activated pathways causes a range of diseases, fostering the discovery and clinical development of peptide drugs. Many endogenous peptides activate G protein-coupled receptors (GPCRs) — nearly fifty GPCR peptide drugs have been approved to date, most of them for metabolic disease or oncology, and more than 10 potentially first- in-class peptide therapeutics are in the pipeline. The majority of existing peptide therapeutics are agonists, which reflects the currently dominant strategy of modifying the endogenous peptide sequence of ligands for peptide-binding GPCRs. Increasingly, novel strategies are being employed to develop both agonists and antagonists, and both to introduce chemical novelty and improve drug-like properties. Pharmacodynamic improvements are evolving to bias ligands to activate specific downstream signalling pathways in order to optimise efficacy and reduce side effects. In pharmacokinetics, modifications that increase plasma-half life have been revolutionary. Here, we discuss the current status of peptide drugs targeting GPCRs, with a focus on evolving strategies to improve pharmacokinetic and pharmacodynamic properties. Introduction G protein-coupled receptors (GPCRs) mediate a wide range of signalling processes and are targeted by one third of drugs in clinical use1. Although most GPCR-targeting therapeutics are small molecules2, the endogenous ligands for many GPCRs are peptides (comprising 50 or fewer amino acids), which suggests that this class of molecule could be therapeutically useful.
    [Show full text]
  • Vasopressin, Norepinephrine, and Vasodilatory Shock After Cardiac Surgery Another “VASST” Difference?
    Vasopressin, Norepinephrine, and Vasodilatory Shock after Cardiac Surgery Another “VASST” Difference? James A. Russell, A.B., M.D. AJJAR et al.1 designed, Strengths of VANCS include H conducted, and now report the blinded randomized treat- in this issue an elegant random- ment, careful follow-up, calcula- ized double-blind controlled trial tion of the composite outcome, of vasopressin (0.01 to 0.06 U/ achieving adequate and planned Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/126/1/9/374893/20170100_0-00010.pdf by guest on 01 October 2021 min) versus norepinephrine (10 to sample size, and evaluation of 60 μg/min) post cardiac surgery vasopressin pharmacokinetics. with vasodilatory shock (Vaso- Nearly 20 yr ago, Landry et al.2–6 pressin versus Norepinephrine in discovered relative vasopressin defi- Patients with Vasoplegic Shock ciency and benefits of prophylactic After Cardiac Surgery [VANCS] (i.e., pre cardiopulmonary bypass) trial). Open-label norepinephrine and postoperative low-dose vaso- was added if there was an inad- pressin infusion in patients with equate response to blinded study vasodilatory shock after cardiac drug. Vasodilatory shock was surgery. Previous trials of vasopres- defined by hypotension requiring sin versus norepinephrine in cardiac vasopressors and a cardiac index surgery were small and underpow- greater than 2.2 l · min · m-2. The “[The use of] …vasopressin ered for mortality assessment.2–6 primary endpoint was a compos- Vasopressin stimulates arginine ite: “mortality or severe complica- infusion for treatment of vasopressin receptor 1a, arginine tions.” Patents with vasodilatory vasodilatory shock after vasopressin receptor 1b, V2, oxy- shock within 48 h post cardiopul- tocin, and purinergic receptors monary bypass weaning were eli- cardiac surgery may causing vasoconstriction (V1a), gible.
    [Show full text]