Species Analysis of Inorganic Compounds in Workroom Air by Atomic Spectroscopy

Total Page:16

File Type:pdf, Size:1020Kb

Species Analysis of Inorganic Compounds in Workroom Air by Atomic Spectroscopy ANALYTICAL SCIENCES VOL. 7 SUPPLEMENT 1991 1029 SPECIES ANALYSIS OF INORGANIC COMPOUNDS IN WORKROOM AIR BY ATOMIC SPECTROSCOPY SIRI HETLAND', IVAR MARTINSEN', BERNARD RADZIUK2 and YNGVAR THOMASSEN' 1 National Institute of Occupational Health , P.O.Box 8149 DEP, N-0033 Oslo 1, Norway 2 Department of Applied Research , Bodenseewerk Perkin-Elmer GmbH, P.O.Box 10 11 64, D-7770 Uberlingen, Germany Abstract - Sampling methods for the determination of volatile inorganic compounds in workroom air are described. The main factor affecting the adsorption capacity of activated charcoal for iron pentacarbonyl is air flow rate. Nickel tetracarbonyl is collected quantitatively at flow rates of up to 11/min if the volume of air sampled does not exceed 1001. Arsine, phosphine and stibine are collected quantitatively from air by use of a double filter air cassette Silver nitrate impregnated backing pads are shown to trap the hydrides with better than 99.9% efficiency. Several atomic spectroscopic methods have been applied to the determination of these volatile species, with electrothermal atomic absorption and inductively coupled plasma atomic emission spectroscopy being preferred. Concentrations of the hydrides in various workroom atmospheres were found to be well below the Threshold Limit Values. Key words arsine, stibine, phosphine, iron pentacarbonyl, nickel tetracarbonyl, species analysis The term chemical species refers to a specific form (monatomic or molecular) or configuration in which an element can occur, or to a distinct groups of atoms consistently present in different compounds or matrices . The individual species may be gaseous, solid, crystalline or in solution depending upon the nature of the sample. A parent species is an unchanging component (e.g. CH3Hg+), a matrix species is a combined form (e.g. CH3HgL, with L-OH, protein etc.) while an analyte species is the form (e.g. CH3HgC1) detected by the analytical method used. Species analysis( sPeciation) is the identification and quantification of these three types of species. Species distribution describes the abundance or fractional occurrence, species reactivity is related to characteristic reactions, responses or effects while species transformation is the conversion of one species to another. The above definitions have recently been suggested for use in "speciation'' studies {1J. Exposure of workers in occupational settings is most frequently to inorganic compounds present mainly in particulate or volatile forms (gases). The recently increasing interest in the occurrence of organometallie compounds in the work environment has also led to a demand for new sampling and analytical methods with adequate selectivity and sensitivity. An excellent review of this topic has been published in Arbete och Halsa [2]. The Threshold Limit Values( TLV's) which have been established in most countries refer to airborne concentrations of substances and represent conditions under which it is believed that nearly all workers may be repeatedly exposed day after day without adverse health effects. These limits are neither fine lines between safe and dangerous concentrations nor a relative index of toxicity. In spite of the fact that serious injury is not believed likely as a result of exposure to the threshold limit concentrations, the best preventive practice is to maintain concentrations of all atmospheric contaminants as low as possible. Moreover, the potential health hazard posed by chemical substances in inhaled air depends mainly on the parent species. While most guidelines are set for the total amounts of elements, some threshold limit values for parent species have been recommended as well. The most important inorganic substances for which speciation is needed are listed in Table 1. Of the species listed in Table 1, hydrogen fluoride occurs the most frequently in workroom air. This compound is emitted during production of primary aluminium metal and is one of the important components in the evaluation and monitoring of the exposure of workers in the aluminium industry. The preferred method for determination of HF in air is trapping on sodium hydroxide soaked filters followed by analysis using an ion selective electrode. The carbonyls of iron and nickel are highly toxic compared with other compounds of these metals which are found in workroom air. These volatile compounds are, however, only generated under particular conditions, e.g. during 1030 production of nickel metal using the carbonyl process. There has arisen some concern that these compounds may also be produced in environments with elevated temperatures and high concentrations of c arbon monoxide in the presence of iron and nickel metal particles. TABLE 1. TLV's for some volatile inorganic species Volatile hydrides of arsenic, antimony and phosphorus are formed during certain industrial processes. During charging processes in the manufacture of lead batteries nascent hydrogen is generated which reacts with traces of antimony and arsenic in the sulphuric acid solutions to form stibine and arsine. The reaction of phosphides , arsenides and antimonides with atmospheric humidity forming the elemental hydrides may occur both in the metallurgical and metal working industries. Sampling of workroom air in which these parent species are present in combination with particulate forms of the same elements requires methods for the separation and quantitative collection of the different species. The air sampling is accordingly performed by means of various types of filters for particulates or involatile aerosols, while the volatile compounds are collected on adsorbents [3]. Various analytical techniques may be used to detect the analyte species collected on the adsorbent or filter media. After sample preparation with inorganic acids these species will be present in aqueous solutions which are well suited for quantitative measurements by, for example, inductively coupled plasma atomic emission spectrometry or atomic absorption spectrometry either with flame or graphite tube atomization. The presently available sampling procedures do not make possible the separate measurement of the above mentioned carbonyls and hydrides in general occupational settings. In the present study, sampling procedures based on the combination of a membrane filter with a tube containing activated charcoal adsorbent and on a two-filter air sampling cassette have been investigated. Both atomic absorption and atomic emission spectroscopic procedures have been developed for quantification of these species in a variety of occupational environments. EXPERIMENTAL Apparatus A Perkin-Elmer Zeeman 5100 atomic absorption spectrometer equipped with an HGA 600 graphite atomizer, an AS-40 automatic sampler and hollow cathode and electrodeless discharge lamps was used . Pyrolytical graphite coated tubes were applied throughout the study. Atomic emission measurements were performed using a Perkin-Elmer 5500 Inductively Coupled Plasma Atomic emission spectrometer. A peristaltic pump (0.75 mIJmin) introduced the sample solution into a cross-flow nebulizer operated at an argon flow of 1.0 llmin which was controlled by a mass-flow meter . Additional argon was supplied to the quartz torch (131/min). The plasma was maintained at 1.2 kW applied with a frequency of 27.2 MHz. For the determination of the adsorption capacity and breakthrough time for air sampling , a manifold was used in which up to 10 units could be exposed simultaneously to gas mixtures or real workroom atmospheres . Air was sampled using Personal Sampling Pumps with fixed flow-rates of 0.1-2.0 1/mm. Reea ents Commercial adsorbent tubes (SKC , Pittsburg, PA) packed with activated carbon were used. The tubes were composed of two sections , the first containing 100 mg and the second 50 mg. Measurement on adsorption capacity could be made by analysing the material in the two sections separately . Activated Carbon (Fluka) was ground and the 0.6-1.2 mm fraction was boiled with 65% nitric acid for 1 h, five times in succession . Th e carbon was then washed with demineralized water , air-dried and reactivated in air at 450 °C for 30 min. This procedure reduced the concentrations of iron and nickel (see Table 3). Cellulose acetate membrane filters with 0.8-pm pore-size and 37mm diameter were used for the collection of particulate matter from air. The cellulose backing pad which supports the membrane filter in the standard air sampling cassette (Nucleopore) was dipped in a solution containing 2.5% AgN03 by weight and oven dried at 75 C overnight. This double filter system was used to collect particulates and hydrides simultaneously. Procedures for dissolution extraction The cellulose membrane filters were dissolved and the charcoal fractions extracted with nitric acid [4J. The silver nitrate impregnated backing pads were extracted with 2.5 ml 65% HNp3 ANALYTICAL SCIENCES VOL. 7 SUPPLEMENT 1991 1031 at 100° C for 1 h, and the final solution was diluted to 25 ml with demineralized water . The results were corrected for the volume of undissolved material (activated charcoal and cellulose fibers) by preparing standard solutions containing the same amount of charcoal and a backing pad, respectively. RESULTS AND DISCUSSION Collection efficiencies-carbonyls Charcoal-filled collection tubes were exposed to various volumes of gas mixture containing the two metal carbonyls at TLV's concentrations at various flow rates in order to assess adsorption efficiency. Table 2 gives a summary of the adsorption capacity data. TABLE 2. Adsorption capacity
Recommended publications
  • Risto Laitinen/August 4, 2016 International Union of Pure and Applied Chemistry Division VIII Chemical Nomenclature and Structur
    Approved Minutes, Busan 2015 Risto Laitinen/August 4, 2016 International Union of Pure and Applied Chemistry Division VIII Chemical Nomenclature and Structure Representation Approved Minutes of Division Committee Meeting in Busan, Korea, 8–9 August, 2015 1. Welcome, introductory remarks and housekeeping announcements Karl-Heinz Hellwich (KHH) welcomed everybody to the meeting, extending a special welcome to those who were attending the Division Committee meeting for the first time. He described house rules and arrangements during the meeting. KHH also regretfully reported that it has come to his attention that since the Bangor meeting in August 2014, Prof. Derek Horton (Member, Division VIII task groups on Carbohydrate and Flavonoids nomenclature; Associate Member, IUBMB-IUPAC Joint Commission on Biochemical Nomenclature) and Dr. Libuse Goebels, Member of the former Commission on Nomenclature of Organic Chemistry) have passed away. The meeting attendees paid a tribute to their memory by a moment of silence. 2. Attendance and apologies Present: Karl-Heinz Hellwich (president, KHH) , Risto Laitinen (acting secretary, RSL), Richard Hartshorn (past-president, RMH), Michael Beckett (MAB), Alan Hutton (ATH), Gerry P. Moss (GPM), Michelle Rogers (MMR), Jiří Vohlídal (JV), Andrey Yerin (AY) Observers: Leah McEwen (part time, chair of proposed project, LME), Elisabeth Mansfield (task group chair, EM), Johan Scheers (young observer, day 1; JS), Prof. Kazuyuki Tatsumi (past- president of the union, part of day 2) Apologies: Ture Damhus (secretary, TD), Vefa Ahsen, Kirill Degtyarenko, Gernot Eller, Mohammed Abul Hashem, Phil Hodge (PH), Todd Lowary, József Nagy, Ebbe Nordlander (EN), Amélia Pilar Rauter (APR), Hinnerk Rey (HR), John Todd, Lidija Varga-Defterdarović.
    [Show full text]
  • Chemical Intercalation of Zerovalent Metals Into 2D Layered Bi2se3 Nanoribbons † † ‡ † † † § Kristie J
    Article pubs.acs.org/JACS Chemical Intercalation of Zerovalent Metals into 2D Layered Bi2Se3 Nanoribbons † † ‡ † † † § Kristie J. Koski, Colin D. Wessells, Bryan W. Reed, Judy J. Cha, Desheng Kong, and Yi Cui*, , † Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States ‡ Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States § SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, 2575 Sand Hill Road, Menlo Park, California 94025, United States *S Supporting Information ABSTRACT: We have developed a chemical method to intercalate a variety of zerovalent metal atoms into two-dimen- sional (2D) layered Bi2Se3 chalcogenide nanoribbons. We use a chemical reaction, such as a disproportionation redox reaction, to generate dilute zerovalent metal atoms in a refluxing solution, which intercalate into the layered Bi2Se3 structure. The zerovalent nature of the intercalant allows superstoichiometric intercalation of metal atoms such as Ag, Au, Co, Cu, Fe, In, Ni, and Sn. We foresee the impact of this methodology in establishing novel fundamental physical behaviors and in possible energy applications. 1. INTRODUCTION Ni, and Sn. Some interesting effects that could arise with − 7−10 intercalation are superconductivity, such as in Cu Bi2Se3, Intercalation is the insertion of a guest species into a host 6 lattice. Intercalation into layered materials is essential to battery enhanced conductivity, or possibly opening a surface state gap electrodes, electrochromics, detergents, and solid lubricants and in topological insulator Bi2Se3. This method of zerovalent metal is important in exotic fundamental two-dimensional (2D) intercalation may also be extended to other layered materials.
    [Show full text]
  • Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc
    Metal-Metal (MM) Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc Richard H. Duncan Lyngdoh*,a, Henry F. Schaefer III*,b and R. Bruce King*,b a Department of Chemistry, North-Eastern Hill University, Shillong 793022, India B Centre for Computational Quantum Chemistry, University of Georgia, Athens GA 30602 ABSTRACT: This survey of metal-metal (MM) bond distances in binuclear complexes of the first row 3d-block elements reviews experimental and computational research on a wide range of such systems. The metals surveyed are titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc, representing the only comprehensive presentation of such results to date. Factors impacting MM bond lengths that are discussed here include (a) n+ the formal MM bond order, (b) size of the metal ion present in the bimetallic core (M2) , (c) the metal oxidation state, (d) effects of ligand basicity, coordination mode and number, and (e) steric effects of bulky ligands. Correlations between experimental and computational findings are examined wherever possible, often yielding good agreement for MM bond lengths. The formal bond order provides a key basis for assessing experimental and computationally derived MM bond lengths. The effects of change in the metal upon MM bond length ranges in binuclear complexes suggest trends for single, double, triple, and quadruple MM bonds which are related to the available information on metal atomic radii. It emerges that while specific factors for a limited range of complexes are found to have their expected impact in many cases, the assessment of the net effect of these factors is challenging.
    [Show full text]
  • Iron Pentacarbonyl
    Poison Facts: Low Chemicals: Iron Pentacarbonyl Properties of the Chemical Iron carbonyl (pentacarbonyl iron), C5FeO5, is a yellow, oily liquid. It is pyrophoric in air and burns to Fe2O3 (Iron[III] oxide) and decomposes by light to Fe2(CO)9 and CO. It is practically insoluble in water, readily soluble in most organic solvents (ether, acetone, ethyl acetate) and slightly soluble in alcohol. The vapor is heavier than air and may travel along the ground. Distant ignition is possible, and it may explode on heating. It may also spontaneously ignite in contact with air. Iron pentacarbonyl is a strong reducing agent and reacts violently with oxidants. Uses of the Chemical Iron pentacarbonyl is prepared from iron (and iron compounds) and CO. It is used in the manufacture of powdered iron cores for high-frequency coils used in the radio and television industries. It is also used as an anti-knock agent in motor fuels and as a catalyst in organic reactions. Absorption, Distribution, Metabolism and Excretion (ADME) Iron pentacarbonyl can be absorbed into the body by inhalation of the vapor, through the skin or by ingestion. No other pharmacokinetic data is available. Clinical Effects of Acute Exposure • Ocular exposures: Iron pentacarbonyl is a local irritant and may cause irritation and injury to eyes. • Dermal exposures: The chemical may irritate the skin and mucous membranes. It may be absorbed through the skin. • Inhalation exposures: If inhaled, iron pentacarbonyl is a local irritant to the lungs and gastrointestinal tract. Symptoms of acute exposure to high concentrations resemble those of exposures to nickel carbonyl.
    [Show full text]
  • Some Reactions of Tris(Triphenylphosphine )-Dicarbonyliron( 0)
    Indian Journal of Chemistry Vol. 21A, June 1982, pp. 579·582 Some Reactions of Tris(Triphenylphosphine )-dicarbonyliron( 0) S. VANCHEESAN Chemistry Department, Indian Institute of Technology, Madras 600 036 Received 20 October 1981; revised and accepted 15 February 1982 Tris(triphenylphospbine)-dicarbonyliron(O)(I) undergoes substitution reactions with trimethylphosphite, pyri- dine, dimethyl sulphoxide and methylisocyanide. Substitution takes place via dissociation of I to a 1 coordinativel1 unsaturated 16 electron complex, which is a highly reactive unstable intermediate. Both steric and electronic factors playa prominent role in deciding the feasibility of the reaction. Steric factor is expressed in terms of e, the cone angle of the ligand, and electronic factor in terms of Al mode of CO stretching frequency in Ni(CO)aL, where L is the ligand for which the electronic factor is expressed in terms of "CO. Ligands with cone angle e, greater than that of triphenyl- phosphine e.g. t-butylphosphine, do not react. In the reaction of I with molecular hydrogen and bromine, oxidative addition takes place. Diphenylacetylene forms two isomers, whereas carbon disulphide forms a n-complex on reaction with L MONG the d8 iron-phosphine complexes of (PPh3)2]+BF~ in absolute ethanol was allowed to the type fe(CO)6_" (PPh3) •• (where x = 1 to react overnight with triphenylphosphine in the A 3), the complexes with x = 1 and 2 had been presence of lithium metal. The resulting micro- studied to some extent>", Mono- and bis-phosphine crystalline solid was filtered and freed from phos- complexes can be prepared= by the reaction of phos- phine using hot ethanol and filtered.
    [Show full text]
  • Organo-Transition Metal Chemistry Some Studies
    ORGANO-TRANSITION METAL CHEMISTRY SOME STUDIES IN ORGANO-TRANSITION METAL CHEMISTRY By COLIN CRINDROD, B.Sc. A Thesis Submitted to the Faculty of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Master of Science McMaster University October 1966 MASTER OF SCIENCE (1966) MCMASTER UNIVERSITY (Chemistry) Hamilton, Ontario TITLE: Some Studies in Organo-Transition Metal Chemistry AUTHOR: Colin Grindrod, B.Sc. (Manchester University) SUPERVISOR: Dr. P. M. Maitlis NUMBER OF PAGES: iv, 71 SCOPE AND CONTENTS: The work described is an extension of the ligand-transfer reactions of substituted cyclobutadienes and cyclopentadienyls previously carried out by Maitlis et al. Efforts were directed particularly to ligand­ transfer reactions of n-allyl-transition metal complexes. The reactions of organic halides with metal carbonyls were also studied in attempts to isolate new organometallic derivatives. (ii) ACKNOWLEDGEMENTS The author wishes to express his sincere gratitude for the stimulating advice and constant encouragement provided by Dr. P. M. Maitlis, under whose guidance this work was carried out. Thanks are also extended to Imperial Oil Co. Ltd. for providing the financial support which made this study possible. (iii) CONTENTS Page INTRODUCTION Historical................................... 1 Cyclobutadiene-transition metal oompeeees... 7 Ligand-transfer reactions................... 10 Allyl-transition metal complexes............ 13 Reactions of metal carbonyls with organic halides.... ..................... 25 DISCUSSION
    [Show full text]
  • Toward a List of Molecules As Potential Biosignature Gases for the Search for Life on Exoplanets and Applications to Terrestrial Biochemistry
    Toward a List of Molecules as Potential Biosignature Gases for the Search for Life on Exoplanets and Applications to Terrestrial Biochemistry The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Seager, S.; Bains, W. and Petkowski, J.J. “Toward a List of Molecules as Potential Biosignature Gases for the Search for Life on Exoplanets and Applications to Terrestrial Biochemistry.” Astrobiology 16, no. 6 (June 2016): 465–485 ©2016 Mary Ann Liebert, Inc As Published http://dx.doi.org/10.1089/ast.2015.1404 Publisher Mary Ann Liebert, Inc. Version Final published version Citable link http://hdl.handle.net/1721.1/109943 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. ASTROBIOLOGY Volume 16, Number 6, 2016 ª Mary Ann Liebert, Inc. DOI: 10.1089/ast.2015.1404 Toward a List of Molecules as Potential Biosignature Gases for the Search for Life on Exoplanets and Applications to Terrestrial Biochemistry S. Seager,1,2 W. Bains,1,3 and J.J. Petkowski1 Abstract Thousands of exoplanets are known to orbit nearby stars. Plans for the next generation of space-based and ground-based telescopes are fueling the anticipation that a precious few habitable planets can be identified in the coming decade. Even more highly anticipated is the chance to find signs of life on these habitable planets by way of biosignature gases. But which gases should we search for? Although a few biosignature gases are prominent in Earth’s atmospheric spectrum (O2,CH4,N2O), others have been considered as being produced at or able to accumulate to higher levels on exo-Earths (e.g., dimethyl sulfide and CH3Cl).
    [Show full text]
  • Metal Carbonyls
    MODULE 1: METAL CARBONYLS Key words: Carbon monoxide; transition metal complexes; ligand substitution reactions; mononuclear carbonyls; dinuclear carbonyls; polynuclear carbonyls; catalytic activity; Monsanto process; Collman’s reagent; effective atomic number; 18-electron rule V. D. Bhatt / Selected topics in coordination chemistry / 2 MODULE 1: METAL CARBONYLS LECTURE #1 1. INTRODUCTION: Justus von Liebig attempted initial experiments on reaction of carbon monoxide with metals in 1834. However, it was demonstrated later that the compound he claimed to be potassium carbonyl was not a metal carbonyl at all. After the synthesis of [PtCl2(CO)2] and [PtCl2(CO)]2 reported by Schutzenberger (1868) followed by [Ni(CO)4] reported by Mond et al (1890), Hieber prepared numerous compounds containing metal and carbon monoxide. Compounds having at least one bond between carbon and metal are known as organometallic compounds. Metal carbonyls are the transition metal complexes of carbon monoxide containing metal-carbon bond. Lone pair of electrons are available on both carbon and oxygen atoms of carbon monoxide ligand. However, as the carbon atoms donate electrons to the metal, these complexes are named as carbonyls. A variety of such complexes such as mono nuclear, poly nuclear, homoleptic and mixed ligand are known. These compounds are widely studied due to industrial importance, catalytic properties and structural interest. V. D. Bhatt / Selected topics in coordination chemistry / 3 Carbon monoxide is one of the most important π- acceptor ligand. Because of its π- acidity, carbon monoxide can stabilize zero formal oxidation state of metals in carbonyl complexes. 2. SYNTHESIS OF METAL CARBONYLS Following are some of the general methods of preparation of metal carbonyls.
    [Show full text]
  • Guide for the Selection of Personal Protective Equipment for Emergency First Responders
    U.S. Department of Justice Office of Justice Programs National Institute of Justice National Institute of Justice Law Enforcement and Corrections Standards and Testing Program Guide for the Selection of Personal Protective Equipment for Emergency First Responders NIJ Guide 102–00 Volume I November 2002 U.S. Department of Justice Office of Justice Programs 810 Seventh Street N.W. Washington, DC 20531 John Ashcroft Attorney General Deborah J. Daniels Assistant Attorney General Sarah V. Hart Director, National Institute of Justice For grant and funding information, contact: Department of Justice Response Center 800–421–6770 Office of Justice Programs National Institute of Justice World Wide Web Site World Wide Web Site http://www.ojp.usdoj.gov http://www.ojp.usdoj.gov/nij U.S. Department of Justice Office of Justice Programs National Institute of Justice Guide for the Selection of Personal Protective Equipment for Emergency First Responders NIJ Guide 102-00, Volume I Dr. Alim A. Fatah1 John A. Barrett2 Richard D. Arcilesi, Jr.2 Charlotte H. Lattin2 Charles G. Janney2 Edward A. Blackman2 Coordination by: Office of Law Enforcement Standards National Institute of Standards and Technology Gaithersburg, MD 20899–8102 Prepared for: National Institute of Justice Office of Science and Technology Washington, DC 20531 November 2002 This document was prepared under CBIAC contract number SPO-900-94-D-0002 and Interagency Agreement M92361 between NIST and the Department of Defense Technical Information Center (DTIC). NCJ 191518 1National Institute of Standards and Technology, Office of Law Enforcement Standards. 2Battelle Memorial Institute. National Institute of Justice Sarah V. Hart Director This guide was prepared for the National Institute of Justice, U.S.
    [Show full text]
  • National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances Report Run Date: 09/26/2021 04:22:31 PM 1
    2008 Current Fiscal Year Report: National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances Report Run Date: 09/26/2021 04:22:31 PM 1. Department or Agency 2. Fiscal Year Environmental Protection Agency 2008 3b. GSA 3. Committee or Subcommittee Committee No. National Advisory Committee for Acute Exposure Guideline Levels 2073 for Hazardous Substances 4. Is this New During Fiscal 5. Current 6. Expected Renewal 7. Expected Term Year? Charter Date Date No 11/02/2007 11/02/2009 8a. Was Terminated During 8b. Specific Termination 8c. Actual Term FiscalYear? Authority Date No 9. Agency Recommendation for Next10a. Legislation Req to 10b. Legislation FiscalYear Terminate? Pending? Continue 11. Establishment Authority Agency Authority 12. Specific Establishment 13. Effective 14. Commitee 14c. Authority Date Type Presidential? AGEN 09/28/1995 Continuing No 15. Description of Committee Scientific Technical Program Advisory Board 16a. Total Number of Reports 16 16b. Report Date Report Title 10/01/2007 Final Acute Exposure Guideline Levels for Chlorine Dioxide 10/01/2007 Final Acute Exposure Guideline Levels for Chlorine Trifluoride 10/01/2007 Final Acute Exposure Guideline Levels for Cyclohexylamine 10/01/2007 Final Acute Exposure Guideline Levels for Ethylenediamine 10/01/2007 Final Acute Exposure Guideline Levels for Hydrofluoroether-7100 10/01/2007 Final Acute Exposure Guideline Levels for Tetranitromethane 04/01/2008 Final Acute Exposure Guideline Levels for Allylamine 04/01/2008 Final Acute Exposure Guideline Levels
    [Show full text]
  • HIGH HAZARD GAS Review Date: 09/23/2019
    University of Pittsburgh EH&S Guideline Number: 04-021 Safety Manual Subject: Effective Date: 04/19/2017 Page 1 of 9 HIGH HAZARD GAS Review Date: 09/23/2019 STORAGE AND USE OF HIGH HAZARD GAS 1. Definition of High Hazard (HH) Gases For these guidelines, any gas meeting one or more of the following definitions based on International Fire Code (IFC) and National Fire Protection Association (NFPA) standards: 1.1. Flammable gas – a material that is a gas at 68ºF (20ºC) or less at an absolute pressure of 14.7 psi (101.325 kPa) when in a mixture of 13% or less by volume with air, or that has a flammable range at an absolute pressure of 14.7 psi (101.325 kPa) with air of at least 12%, regardless of the lower limit 1.2. Pyrophoric gas – a gas with an autoignition temperature in air at or below 130ºF (54.4ºC) 1.3. Health Hazard 3 (HH3) gas – material that, under emergency conditions and according to the standards, can cause serious or permanent injury 1.4. Health Hazard 4 (HH4) gas – material that, under emergency conditions and according to the standards, can be lethal The storage and usage of a gas or gases meeting any of the above definitions must follow all applicable IFC and NFPA guidelines and the requirements outlined in this document. Consult EH&S for specific guidance on gas mixtures containing corrosive, flammable or poisonous gas components (ex. 1% carbon monoxide/nitrogen, 5% hydrogen sulfide/helium). 2. Notification Requirements Prior to Obtaining High Hazard Gases 2.1.
    [Show full text]
  • List of Lists
    United States Office of Solid Waste EPA 550-B-10-001 Environmental Protection and Emergency Response May 2010 Agency www.epa.gov/emergencies LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals For Accidental Release Prevention Office of Emergency Management This page intentionally left blank. TABLE OF CONTENTS Page Introduction................................................................................................................................................ i List of Lists – Conslidated List of Chemicals (by CAS #) Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act ................................................. 1 Appendix A: Alphabetical Listing of Consolidated List ..................................................................... A-1 Appendix B: Radionuclides Listed Under CERCLA .......................................................................... B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes................................................ C-1 This page intentionally left blank. LIST OF LISTS Consolidated List of Chemicals
    [Show full text]