Unit 3 Network Security and Authentication

Total Page:16

File Type:pdf, Size:1020Kb

Unit 3 Network Security and Authentication Information Security UNIT 3 NETWORK SECURITY AND AUTHENTICATION Structure 3.0 Introduction 3.1 Objectives 3.2 Meaning of Network Security 3.3 Threats to Network Security 3.4 Comparison with Computer security 3.5 Security Issues for Small and Medium Sized Businesses 3.6 Tools for network Security 3.7 Elements of Network Security 3.8 Secure Network Devices 3.9 Significance of Network Layout in Network Security 3.10 Summary 3.11 Solutions/Answer 3.12 References/Further Readings 3.0INTRODUCTION The previous two units discussed about the fundamentals of information as well as network security issues which lead to different kinds of problem: attacks, theft of essential information and software vulnerabilities. In this unit, we shall learn about how to build a secure network. We shall also learn about the various parameters which must be considered for network security. There can be various security issues involved in small and medium sized businesses which require utmost attention for creating the secure network. Then we shall be covering different kind of tools available for network security, critical elements of network security like Firewall, password mechanisms, encryption, authentication & integrity etc. Lastly, we shall study about some secure network devices like secure modems. Let's first study the basics of network and network security. 3.1OBJECTIVES After going through this unit, you should be able to: • understand the scope of network security; • understand the various kind of threats to any network; • understand Denial of Service attack and its counter measures; • compare Network security with Computer security; • understand the challenges to any business environment regarding the network; • understand different security issues involved with small and medium sized businesses; • understand the application of network security tools; • understand firewall and its types; • understand the password aging and password policy enforcement?; • understand the basics of secure network devices; and 42 Information Security • understand the importance of network layout in network security; and 3.2 WHAT IS NETWORK SECURITY Let us first revisit the concept of network. A computer network is simply a system of interconnected computers. That is used every day to conduct transactions and communications among businesses, government agencies and individuals. The networks consist of "nodes", which are "client" terminals (individual user PCs), and one or more "servers" and/or "host" computers. They are linked by communication systems, some of which might be private, such as within a company and others which might be open to public access. The obvious example of a network system that is open to public access is the Internet, but many private networks also utilize publicly- accessible communications. Today, most companies© host computers which can be accessed by their employees whether in their offices over a private communications network, or from their homes or hotel rooms while on the road through normal telephone lines. Hence, security plays a crucial role in that. Now, let us understand the concept of Network Security. Network security comprises the measures a company takes to protect its computer system and it is a prime concern for every company which uses computers. Compromised network security means a hacker or competitor may gain access to critical or sensitive data, possibly resulting in data loss, or even complete destruction of the system. Network security involves all activities that organizations, enterprises, and institutions undertake to protect the value and ongoing usability of assets and the integrity and continuity of operations. An effective network security strategy requires identifying threats, risks and vulnerabilities and then choosing the most effective set of tools to combat them. 3.3THREATS TO NETWORK SECURITY There are various threats identified for network security. Let us discuss few of them in brief: Viruses: Computer programs written by devious programmers and designed to replicate themselves and infect computers when triggered by a specific event. Viruses reproduce themselves by attaching themselves to other files that the user does not realize are infected. Viruses spread today mainly through E-mail attachments. The attachment may be a file that is a legitimate file but the virus may be attached as a macro program in the file. An example is a Microsoft word file. These files can contain macro programs which can be run by Microsoft Word. A virus may infect these files as a macro and when they get on the next user©s computer, they can infect other files. These virus programs normally take advantage of a security vulnerability of the running application. Viruses can directly affect executable files or Dynamic Link Library (DLL) files that the operating systems and applications use to run. Usually the virus will spread before it will do anything that may alert the user of its presence. Unauthorized Access 43 ªUnauthorized access©º is a very high-level term that can refer to a number of different Network Security and sorts of attacks. The goal of these attacks is to access some resource that your machine Authentication should not provide the attacker. Trojan Horse Programs Trojan horse software is the software that appears to have some useful function, but some hidden purpose awaits inside. This purpose may be to send sensitive information from inside your organization to the author of the software. To prevent Trojan horse programs from infiltrating your organization is to implement the countermeasures. Allowing only approved software with proper testing to be run in the organization will minimize the threat of these programs. The organizational security policy can help ensure that all members of the organization operate in compliance with this countermeasure. Data interception: It involves eavesdropping on communications or altering data packets being transmitted. Social engineering: Social engineering is concerned with obtaining confidential network security information through no technical means, such as posing as a technical support person and asking for people©s passwords. DoS (Denial-of-Service) Attacks DoS (Denial-of-Service) attacks are probably the nastiest, and most difficult to address. These are the nastiest, because they©re very easy to launch, difficult (sometimes impossible) to track, and it isn©t easy to refuse the requests of the attacker, without also refusing legitimate requests for service. The premise of a DoS attack is simple: send more requests to the machine than it can handle. 3.4 COMPARISON WITH COMPUTER SECURITY When the term computer security is used, it specifically refers to the security of one computer, although the overall security of each individual computer is required for network security. When the term network security is used, it refers to the security of the network in general. This includes such issues as password security, network sniffing, intrusion detection, firewalls, network structure and so forth. Securing network infrastructure is like securing possible entry points of attacks on a country by deploying appropriate defense. Computer security is more like providing means to protect a single PC against outside intrusion. The former is better and practical to protect the civilians from getting exposed to the attacks. The preventive measures attempt to secure the access to individual computers--the network itself-- thereby protecting the computers and other shared resources such as printers, network- attached storage connected by the network. Attacks could be stopped at their entry points before they spread. As opposed to this, in computer security the measures taken are focused on securing individual computer hosts. A computer host whose security is compromised is likely to infect other hosts connected to a potentially unsecured network. A computer host©s security is vulnerable to users with higher access privileges to those hosts. 3.5 SECURITY ISSUES FOR SMALL AND MEDIUM- SIZED BUSINESSES 44 Information Security Small and medium-sized businesses use the Internet and networked applications to reach new customers and serve their existing ones more effectively. At the same time, new security threats and legislation puts increased pressure on business networks to be reliable and secure. Business Challenges According to recent studies, security is the biggest challenge facing small and medium-sized businesses. Ever-changing security threats from both inside and outside the business network can wreak havoc on business operations, affecting profitability and customer satisfaction. Small and medium-sized businesses must also comply with new regulations and laws created to protect consumer privacy and secure electronic information. Security issues for small and medium ± sized businesses are classified into 5 basic categories: Worms and Viruses As per research, Computer worms and viruses remain the most common security threat, with 75 percent of small and medium businesses affected by it.. Worms and viruses can have a devastating effect on business continuity and the bottom line. Smarter, more destructive strains are spreading faster than ever, infecting an entire office in seconds. Cleaning the infected computers takes much longer. The catastrophic results are lost orders, corrupted databases and angry customers. As businesses struggle to update their computers with the latest operating system patches and antivirus software, new viruses can penetrate their defenses any day
Recommended publications
  • The Spyware Used in Intimate Partner Violence
    The Spyware Used in Intimate Partner Violence Rahul Chatterjee∗, Periwinkle Doerflery, Hadas Orgadz, Sam Havronx, Jackeline Palmer{, Diana Freed∗, Karen Levyx, Nicola Dell∗, Damon McCoyy, Thomas Ristenpart∗ ∗ Cornell Tech y New York University z Technion x Cornell University { Hunter College Abstract—Survivors of intimate partner violence increasingly are decidedly depressing. We therefore also discuss a variety report that abusers install spyware on devices to track their of directions for future work. location, monitor communications, and cause emotional and physical harm. To date there has been only cursory investigation Finding IPS spyware. We hypothesize that most abusers find into the spyware used in such intimate partner surveillance (IPS). spyware by searching the web or application stores (mainly, We provide the first in-depth study of the IPS spyware ecosystem. Google Play Store or Apple’s App Store). We therefore We design, implement, and evaluate a measurement pipeline that combines web and app store crawling with machine learning to started by performing a semi-manual crawl of Google search find and label apps that are potentially dangerous in IPS contexts. results. We searched for a small set of terms (e.g., “track my Ultimately we identify several hundred such IPS-relevant apps. girlfriend’s phone without them knowing”). In addition to the While we find dozens of overt spyware tools, the majority are results, we collected Google’s suggestions for similar searches “dual-use” apps — they have a legitimate purpose (e.g., child to seed further searches. The cumulative results (over 27,000+ safety or anti-theft), but are easily and effectively repurposed returned URLs) reveal a wide variety of resources aimed at for spying on a partner.
    [Show full text]
  • Hacking & Social Engineering
    Hacking & Social Engineering Steve Smith, President Innovative Network Solutions, Inc. Presentation Contents Hacking Crisis What is Hacking/Who is a Hacker History of Hacking Why do Hackers hack? Types of Hacking Statistics Infrastructure Trends What should you do after being hacked Proactive Steps Social Engineering Objective What is Social Engineering What are they looking for? Tactics Protecting yourself INS Approach Infrastructure Assessment Network Traffic Assessment Social Engineering Assessment Conclusion Security is Everyone’s Responsibility – See Something, Say Something! Hacking Crisis Internet has grown very fast and security has lagged behind It can be hard to trace a perpetrator of cyber attacks because most are able to camouflage their identities Large scale failures on the internet can have a catastrophic impact on: the economy which relies heavily on electronic transactions human life, when hospitals or government agencies, such as first responders are targeted What is Hacking? The Process of attempting to gain or successfully gaining, unauthorized access to computer resources Who is a Hacker? In the computer security context, a hacker is someone who seeks and exploits weaknesses in a computer system or computer network. History of Hacking Began as early as 1903: Magician and inventor Nevil Maskelyne disrupts John Ambrose Fleming's public demonstration of Guglielmo Marconi's purportedly secure wireless telegraphy technology, sending insulting Morse code messages through the auditorium's projector The term “Hacker” originated in the 1960’s at MIT A network known as ARPANET was founded by the Department of Defense as a means to link government offices. In time, ARPANET evolved into what is today known as the Internet.
    [Show full text]
  • Mcafee Potentially Unwanted Programs (PUP) Policy March, 2018
    POLICY McAfee Potentially Unwanted Programs (PUP) Policy March, 2018 McAfee recognizes that legitimate technologies such as commercial, shareware, freeware, or open source products may provide a value or benefit to a user. However, if these technologies also pose a risk to the user or their system, then users should consent to the behaviors exhibited by the software, understand the risks, and have adequate control over the technology. McAfee refers to technologies with these characteristics as “potentially unwanted program(s),” or “PUP(s).” The McAfee® PUP detection policy is based on the process includes assessing the risks to privacy, security, premise that users should understand what is being performance, and stability associated with the following: installed on their systems and be notified when a ■ Distribution: how users obtain the software including technology poses a risk to their system or privacy. advertisements, interstitials, landing-pages, linking, PUP detection and removal is intended to provide and bundling notification to our users when a software program or technology lacks sufficient notification or control over ■ Installation: whether the user can make an informed the software or fails to adequately gain user consent to decision about the software installation or add- the risks posed by the technology. McAfee Labs is the ons and can adequately back out of any undesired McAfee team responsible for researching and analyzing installations technologies for PUP characteristics. ■ Run-Time Behaviors: the behaviors exhibited by the technology including advertisements, deception, and McAfee Labs evaluates technologies to assess any impacts to privacy and security risks exhibited by the technology against the degree of user notification and control over the technology.
    [Show full text]
  • Secure Network Design
    NUREG/CR-7117 SAND2010-8222P Secure Network Design Office of Nuclear Regulatory Research AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS NRC Reference Material Non-NRC Reference Material As of November 1999, you may electronically access Documents available from public and special technical NUREG-series publications and other NRC records at libraries include all open literature items, such as NRC’s Public Electronic Reading Room at books, journal articles, and transactions, Federal http://www.nrc.gov/reading-rm.html. Publicly released Register notices, Federal and State legislation, and records include, to name a few, NUREG-series congressional reports. Such documents as theses, publications; Federal Register notices; applicant, dissertations, foreign reports and translations, and licensee, and vendor documents and correspondence; non-NRC conference proceedings may be purchased NRC correspondence and internal memoranda; from their sponsoring organization. bulletins and information notices; inspection and investigative reports; licensee event reports; and Copies of industry codes and standards used in a Commission papers and their attachments. substantive manner in the NRC regulatory process are maintained at— NRC publications in the NUREG series, NRC The NRC Technical Library regulations, and Title 10, Energy, in the Code of Two White Flint North Federal Regulations may also be purchased from one 11545 Rockville Pike of these two sources. Rockville, MD 20852–2738 1. The Superintendent of Documents U.S. Government Printing Office These standards are available in the library for Mail Stop SSOP reference use by the public. Codes and standards are Washington, DC 20402–0001 usually copyrighted and may be purchased from the Internet: bookstore.gpo.gov originating organization or, if they are American Telephone: 202-512-1800 National Standards, from— Fax: 202-512-2250 American National Standards Institute 2.
    [Show full text]
  • Secure by Design, Secure by Default: Requirements and Guidance
    Biometrics and Surveillance Camera Commissioner Secure by Design, Secure by Default Video Surveillance Products Introduction This guidance is for any organisation manufacturing Video Surveillance Systems (VSS), or manufacturing or assembling components intended to be utilised as part of a VSS. It is intended to layout the Biometrics and Surveillance Camera Commissioners (BSCC) minimum requirements to ensure such systems are designed and manufactured in a manner that assures they are Secure by Design. It also contains certain component requirements that will ensure a configuration that is Secure by Default when the component is shipped, thereby making it more likely that the system will be installed and left in a secure state. This guidance forms part of a wider suite of documentation being developed as part of the SCC Strategy, in support of the SCC Code of Practice. Background and Context The nature of the Internet means that connected devices can be subjected to a cyber attack from anywhere in the world. Widespread attacks on connected products is a current and real threat, and a number of highly publicised attacks have already occurred. The Mirai malware targeted devices such as internet-enabled cameras (IP cameras). Mirai was successful because it exploited the use of common default credentials (such as a username and password being set by the manufacturer as ‘admin’) and poor security configuration of devices. Ultimately, this facilitated attacks on a range of commercial and social media services and included an outage of streaming services such as Netflix. An evolution of Mirai, called Reaper, has also been discovered. Reaper used publicly and easily available exploits that remained unfixed (patched) and highlighted the problem around non patching of known security vulnerabilities, allowing attackers to utilise them to cause harm.
    [Show full text]
  • Trojans and Malware on the Internet an Update
    Attitude Adjustment: Trojans and Malware on the Internet An Update Sarah Gordon and David Chess IBM Thomas J. Watson Research Center Yorktown Heights, NY Abstract This paper continues our examination of Trojan horses on the Internet; their prevalence, technical structure and impact. It explores the type and scope of threats encountered on the Internet - throughout history until today. It examines user attitudes and considers ways in which those attitudes can actively affect your organization’s vulnerability to Trojanizations of various types. It discusses the status of hostile active content on the Internet, including threats from Java and ActiveX, and re-examines the impact of these types of threats to Internet users in the real world. Observations related to the role of the antivirus industry in solving the problem are considered. Throughout the paper, technical and policy based strategies for minimizing the risk of damage from various types of Trojan horses on the Internet are presented This paper represents an update and summary of our research from Where There's Smoke There's Mirrors: The Truth About Trojan Horses on the Internet, presented at the Eighth International Virus Bulletin Conference in Munich Germany, October 1998, and Attitude Adjustment: Trojans and Malware on the Internet, presented at the European Institute for Computer Antivirus Research in Aalborg, Denmark, March 1999. Significant portions of those works are included here in original form. Descriptors: fidonet, internet, password stealing trojan, trojanized system, trojanized application, user behavior, java, activex, security policy, trojan horse, computer virus Attitude Adjustment: Trojans and Malware on the Internet Trojans On the Internet… Ever since the city of Troy was sacked by way of the apparently innocuous but ultimately deadly Trojan horse, the term has been used to talk about something that appears to be beneficial, but which hides an attack within.
    [Show full text]
  • 8 Ways to Protect Your Network Against Ransomware
    8 ways to protect your network against ransomware Steps to prevent ransomware attacks and save your money The ransomware threat Sometimes old becomes new again. Such is the case with ransomware attacks, which have become popular once more. First released in 1989, ransomware infects a system and “locks out” the user from accessing the device or files on it. Only when the victim agrees to pay a ransom, usually in the form of bitcoins, can the system be unlocked and accessed again. The following e-book provides eight ways you can protect your network against ransomware attacks and avoid giving your money to cybercriminals. Ransom amounts vary, but are often in the $200-$400 range.1 1. Educate your employees User education and awareness are critical when it comes to defeating ransomware. Treat suspicious emails with caution. Look at the domain name that sent the email. Check for spelling mistakes, review the signature and the legitimacy of the request. Hover over links to check where they lead to. 2. Use a multi-layered approach to network security Protection from ransomware and other forms of malware doesn’t begin and end at the gateway. Extending security through the use of anti-virus, anti-spyware, intrusion prevention and other technologies on devices at the network perimeter is critical. Adopt a layered approach to stop ransomware by avoiding a single point of failure in your security architecture. 2 3. Back up your files regularly Another safeguard against having to pay ransom is a robust backup and recovery strategy. Depending on how quickly the compromise is detected, how widely it has spread and the level of data loss that is acceptable, recovery from a backup could be a good option.
    [Show full text]
  • Secure Network Foundation 1.1 Design Guide for Single Site Deployments
    Secure Network Foundation 1.1 Design Guide for Single Site Deployments This document provides a simple vision for a smart and secure business where everyday communications are made easier, faster, and more efficient. Cisco partners and resellers can help small-to-medium size businesses leverage the full value of their data networks by deploying reliable secure routers and switches from Cisco Systems that are easily provisioned and managed via the use of simple graphical user interface (GUI) tools. The validated design guidance provided in this document and the validated implementation guidance covered in the Secure Network Foundation Implementation Guide for Single Site Deployments (EDCS-517888) provide a verified reference, ensuring that the individual components that the system is composed of work well together. Note The design described in this document is based on a simplified and cost-effective approach to establishing a secure network foundation as the initial phase of a network evolution. The redundancy in LAN and WAN design is a mandatory attribute of a resilient network. A resilient network is recommended for any network that transports mission-critical traffic. This aspect of LAN and WAN design will be documented in a subsequent release of the validated design. In the meantime, contact your Cisco representative if you have any questions. Contents Overview 1 Solution Components 2 Secure Network Foundation 3 Local Area Network Design 3 Virtual Local Area Networks (VLANs) 4 802.1Q Trunking 4 Spanning Tree 4 Smartports Roles 5 Wide Area Network Design 6 Corporate Headquarters: Cisco Systems, Inc., 170 West Tasman Drive, San Jose, CA 95134-1706 USA Copyright © 2004 Cisco Systems, Inc.
    [Show full text]
  • Study on Computer Trojan Horse Virus and Its Prevention ZHU Zhenfang
    International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661, Volume-2, Issue-8, August 2015 Study on Computer Trojan Horse Virus and Its Prevention ZHU Zhenfang to steal or viciously revise files, spy system information, steal various commands and passwords, and even format users’ Abstract— In recent years, the fast development of computer hardware. In addition, Trojan horse virus usually records network technology, has become an integral part of human’s life, keyboard operation by means of keyboard record, and then work and study. But with the popularity of the Internet, obtains the account and password of E-bank. Attackers can computer viruses, Trojans and other new terms have become some well-known network vocabularies. Studies have shown directly steal users’ wealth by obtaining accounts and that most users of computer are more or less suffered from passwords. On the other hand, Trojan horse can also cause the computer virus. So people must attach great importance to the native machine be affected by other vicious virus. network security problem. The paper studied Trojan virus. Paper first introduced the concept, characteristics and PREVENTION OF HORSE VIRUS categories of the Trojan virus and its harm, and then focused on the way and means of the Trojan’s spread. It introduced the According to the above introduction, we know that Trojan virus loading and hiding technology, too. Its last part Trojan horse virus is very dangerous. If we neglect the focused on the prevention measures, it put forward reasonable prevention, our computer may be easily attacked. For the suggestions to users, and paper also put forward prevention prevention of Trojan intrusion, Trojan intrusion should be advice to improve network security.
    [Show full text]
  • Pdf 2000 Check(Auth ) B [Fer03] Niels Ferguson, Bruce Schneier, „Practical Cryptography“, John Wiley & Sons, 2003 [Gar03] Jason Garman, “Kerberos
    Chair for Network Architectures and Services Overview Institute of Informatics TU München – Prof. Carle Part I: Introduction Network Security Part I: Introduction PartPart II: II: The The Secure Secure Channel Channel Part III: Authentication and Key Establishment Protocols Chapter 3 Part III: Authentication and Key Establishment Protocols KeyKey Distribution Distribution Centers Centers (KDC) (KDC) PublicPublic Key Key Infrastructures Infrastructures (PKI) (PKI) Cryptographic Protocols BuildingBuilding Blocks Blocks of of key key exchange exchange protocols protocols for Encryption, Authentication and Key Establishment Network Security, WS 2009/10, Chapter 3 2 Cryptographic Protocols Applications of Cryptographic Protocols Definition: Key establishment A cryptographic protocol is defined as a series of steps and message Authentication Data origin authentication exchanges between multiple entities in order to achieve a specific Entity authentication treated in security objective. Authenticated key establishment this course Properties of a protocol (in general): Data integrity Confidentiality Everyone involved in the protocol must know the protocol and all of the steps to follow in advance. Secret sharing Everyone involved in the protocol must agree to follow it. Key escrow (ensuring that only an authorized entity can recover keys) The protocol must be unambiguous, that is every step is well defined and Zero-Knowledge proofs (proof of knowledge of an information without revealing the there is no chance of misunderstanding. information) The protocol must be complete, i.e. there is a specified action for every Blind signatures (useful for privacy-preserving time-stamping services) possible situation. Secure elections Electronic money Additional property of a cryptographic protocol: It should not be possible to do or learn more than what is specified in the protocol.
    [Show full text]
  • (Malicious Software) Installed on Your Computer Without Your Consent to Monitor Or Control Your Computer Use
    Spyware is a type of malware (malicious software) installed on your computer without your consent to monitor or control your computer use. Clues that spyware is on a computer may include a barrage of pop-ups, a browser that takes you to sites you don't want, unexpected toolbars or icons on your computer screen, keys that don't work, random error messages, and sluggish performance when opening programs or saving files. In some cases, there may be no symptoms at all. While the term spyware suggests that software that secretly monitors the user's computing, the functions of spyware extend well beyond simple monitoring. Spyware programs can: Collect information stored on the computer or attached network drives, Collect various types of personal information, such as Internet surfing habits, sites that have been visited Collect user names and passwords stored on your computer as well as those entered from the keyboard. Interfere with user control of the computer Install additional software on the computer Redirect Web browser activity. Change computer settings, resulting in slow connection speeds, different home pages, and/or loss of Internet or functionality of other programs. The best defense against spyware and other unwanted software is not to download it in the first place. Here are a few helpful tips that can protect you from downloading software you don't want: Update your operating system and Web browser software, and set your browser security high enough to detect unauthorized downloads. Use anti-virus and anti-spyware, as well as a firewall software, and update them all regularly.
    [Show full text]
  • Controlling Security Risk and Fraud in Payment Systems
    Controlling Security Risk and Fraud in Payment Systems By Richard J. Sullivan n late 2013, a breach of the cashier system at a major retailer ex- posed information on 40 million debit and credit cards. That Ifraudsters can use the payment card numbers harvested in this breach to create fraudulent payments underscores one of many security weaknesses that can lead to payment fraud. The direct cost of fraud on automated clearinghouse (ACH), debit card, and credit card payments reached $6.1 billion in 2012. Investments and ongoing expenses for preventing, detecting, monitoring, and responding to payment fraud add considerably to direct costs. Fraud and security weaknesses in pay- ments can have an indirect cost as well if they cause concerned con- sumers and businesses to choose less efficient forms of payment. More broadly, the public’s loss of confidence in payments has had significant negative economic consequences in the past. A constant stream of news reports on data breaches, phishing attacks, spoofed websites, payment card skimmers, fraudulent ATM withdrawals, computer malware, and infiltrated retail point-of-sale systems should concern policymakers be- cause it indicates weak payment security and undermines confidence in payments. Richard J. Sullivan is a senior economist at the Federal Reserve Bank of Kansas City. Emily Cuddy and Joshua Hanson, research associates at the bank, helped prepare this article. This article is on the bank’s website at www.KansasCityFed.org. 47 48 FEDERAL RESERVE BANK OF KANSAS CITY Payment participants—end-users who make payments, financial institutions and nonbanks that provide payment services, and networks and service providers that process payments—all have considerable in- centive to secure payments and deter fraud.
    [Show full text]