Filovirus (FV)

Total Page:16

File Type:pdf, Size:1020Kb

Filovirus (FV) Summary Filovirus is transmitted to Summaryhumans or monkeys through wild animals and by direct contact Lorem ipsum dolor sit amet, of infected bodily fluids from consectetur adipiscing elit, sed human to human. Hemorrhagic do eiusmod tempor incididunt ut fever, organ failure and internal/ labore et dolore magna aliqua. external bleeding are the clinical Ut enim ad minim veniam, quis signs in humans and nonhuman nostrud exercitation ullamco primates. The most common laboris nisi ut aliquip ex ea method for screening for filovirus commodo consequat. in nonhuman primate colonies is by MFIA or ELISA using serum for detection of infected antibodies. RESEARCH MODELS AND SERVICES Filovirus (FV) Classification when two outbreaks of Ebola occurred in northern Zaire Single-stranded, negative-sense RNA, enveloped and southern Sudan. Five species of Ebolavirus have been identified to date: Zaire, Sudan, Bundibugyo, Taï Forest Family (formerly Ivory Coast), and Reston, Virginia, USA. In 1989, Filoviridae filovirus was introduced into a NHP colony in Reston from Affected Species animals originating from the Philippines. Ebola-Reston is the only known filovirus that does not cause severe disease in Nonhuman primates (NHPs) (chimpanzee, monkey, humans; however, it can still be fatal in monkeys. macaque, orangutan, and baboon) and humans The virus is transmitted to people from wild animals and Frequency spreads in the human population through human-to- The risk of NHPs in commercial primate colonies becoming human transmission. The exact transmission mode from infected with filovirus is extremely low. However, filoviruses the natural virus reservoir to a host (nonhuman primate) are zoonotic and transmissible to humans from infected is unknown. However, animal-to-person and person-to- NHPs, and therefore require routine screening during person transmission occurs via direct contact of infected quarantine while importing animals. bodily fluids or contaminated materials. Two laboratory Transmission experiments have demonstrated the viruses have limited Members of the filovirus family are Marburgvirus and infectivity through small-particle aerosols. Airborne spread Ebolavirus, named after their sites of outbreak. The first among humans has not been clearly demonstrated. filovirus outbreak with Marburgvirus occurred in 1967 in Germany and Yugoslavia, when laboratory technicians handling tissues from African green monkeys developed hemorrhagic fever. Ebolavirus was first identified in 1976 EVERY STEP OF THE WAY www.criver.com Clinical Signs References Filovirus can cause severe hemorrhagic fever in both https://www.cdc.gov/vhf/virus-families/filoviridae.html humans and nonhuman primates. The time frame from http://www.who.int/mediacentre/factsheets/fs103/en/ infection to onset of symptoms is 2 to 21 days. Initial Serologic Cross-Reactivity of Human IgM and IgG symptoms in humans are sudden onset of fever, fatigue, Antibodies to Five Species of Ebola Virus, Adam MacNeil, muscle pain, headache, and sore throat. This is followed by Zachary Reed, Pierre E. Rollin, Viral Special Pathogens vomiting, diarrhea, rash, symptoms of impaired kidney and Branch, The Centers for Disease Control and Prevention, liver function, and in some cases, both internal and external Atlanta, Georgia, United States of America. bleeding. Laboratory findings include low white blood cell and platelet counts and elevated liver enzymes. Preliminary report: isolation of Ebola virus from monkeys imported to USA, Jahrling PB, Geisbert TW, Dalgard DW, Diagnosis Johnson ED, Ksiazek TG, Hall WC, Peters CJ, Lancet. Filovirus causes an acute, serious illness which is often 1990 Mar 3;335(8688):502-5. fatal in both humans and NHPs. The historic mortality rate Ebola virus disease and the veterinary perspective, in human ranges from 25% to 90%. There is currently Ann Clin Microbiol Antimicrob. Semra Gumusova, no licensed vaccine for filovirus, although several are in Mustafa Sunbul, and Hakan Leblebicioglu, PMCID: development due to recent human outbreaks in Africa in PMC4450609, 2015; 14: 30, Published online year 2015-16. Multiple assays are used to confirm filovirus 2015 May 28. doi: 10.1186/s12941-015-0089-x. infections: antibody or antigen capture ELISA, serum neutralization, RT-PCR, EM, and in vitro virus isolation. Early medical intervention is critical in improving chances of survival. Test results should be scrutinized, taking into consideration filovirus disease prevalence in the local general population. Interference with Research Due to the high mortality rate of filovirus-infected animals, its interference with NHP studies is not a factor. Prevention and Treatment In the event of an outbreak, infected NHPs and humans should be isolated, and follow the viral hemorrhagic fever isolation precautions initiated per CDC guidelines. [email protected] • www.criver.com © 2018, Charles River Laboratories International, Inc..
Recommended publications
  • A Multicenter, Multi-Outbreak, Randomized, Controlled Safety And
    2018 Ebola MCM RCT Protocol Page 1 of 92 IND#: 125530 CONFIDENTIAL 4 October 2019, version 7.0 A Multicenter, Multi-Outbreak, Randomized, Controlled Safety and Efficacy Study of Investigational Therapeutics for the Treatment of Patients with Ebola Virus Disease Short Title: 2018 Ebola MCM RCT Protocol Sponsored by: Office of Clinical Research Policy and Regulatory Operations (OCRPRO) National Institute of Allergy and Infectious Diseases 5601 Fishers Lane Bethesda, MD 20892 NIH Protocol Number: 19-I-0003 Protocol IND #: 125530 ClinicalTrials.gov Number: NCT03719586 Date: 4 October 2019 Version: 7.0 CONFIDENTIAL This document is confidential. No part of it may be transmitted, reproduced, published, or used by other persons without prior written authorization from the study sponsor and principal investigator. 2018 Ebola MCM RCT Protocol Page 2 of 92 IND#: 125530 CONFIDENTIAL 4 October 2019, version 7.0 KEY ROLES DRC Principal Investigator: Jean-Jacques Muyembe-Tamfum, MD, PhD Director-General, DRC National Institute for Biomedical Research Professor of Microbiology, Kinshasa University Medical School Kinshasa Gombe Democratic Republic of the Congo Phone: +243 898949289 Email: [email protected] Other International Investigators: see Appendix E Statistical Lead: Lori Dodd, PhD Biostatistics Research Branch, DCR, NIAID 5601 Fishers Lane, Room 4C31 Rockville, MD 20852 Phone: 240-669-5247 Email: [email protected] U.S. Principal Investigator: Richard T. Davey, Jr., MD Clinical Research Section, LIR, NIAID, NIH Building 10, Room 4-1479, Bethesda,
    [Show full text]
  • 2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A.
    [Show full text]
  • Rabbit Anti-Marburgvirus (MARV) VLP Pab ELISA Data
    4 Research Court, Suite 300 Rockville, MD 20850 877-411-2041 [email protected] Rabbit anti-Marburgvirus (MARV) VLP pAb ELISA Data: Catalog #: 04-0005 IgG IgG + IgG + Lot #: MMIG201001IBT Dilution MMARV ZEBOV 1:X Antigen Antigen Immunogen: MARV (Musoke strain) Virus-like Particles (VLPs) containing glycoprotein (GP) 1000 3.30 2.66 Nucleoprotein (NP), and viral protein (VP40). 3162 3.07 1.80 10000 2.68 0.89 Description: Protein A purified rabbit polyclonal 31623 1.87 0.37 antibody reactive to MARV VLP raised in New 100000 0.99 0.14 Zealand white rabbits. 316228 0.43 0.05 1000000 0.17 0.02 Supplied: 0.5 mg of antibody is supplied in PBS at a concentration of 5.75 mg/mL. 0.01% Sodium azide has been added. -Antigen is coated on ELISA plates overnight. -Add 200µl blocking buffer then wash wells with Clonality: Polyclonal PBST. -Antiserum is diluted semi-log. Relevance: the filovirus Marburgvirus is a -Incubate antibody for 2 hour. Category A (NIAID) and HHS select agent. -Wash unbound antibodies and add HRP- Recommended Dilutions: conjugated anti-rabbit IgG. -Wash plates and add substrate to develop color for ELISA: Assay-dependent dilution. 20 minutes. WB: Assay-dependent dilution -Read absorbance at 650nm. Amount of color is directly proportional to amount of antibodies. Storage: 2-3 weeks +4oC, -20◦C long term Western Blot Cross Reactivity: Historical data showed some cross-reactivity with Ebola Virus (EBOV) and -Antiserum recognizes Marburg musoke Sudan Virus (SUDV) VLP’s, most likely due to glycoprotein, nucleoprotein, and VP40 antibodies against Baculovirus proteins since the VLP’s were expressed in SF9-Baculovirus system.
    [Show full text]
  • Presentation
    COMPLETE HEMORRHAGIC FEVER VIRUS INACTIVATION DURING LYSIS IN THE FILMARRAY BIOTHREAT-E ASSAY DEMONSTRATES THE BIOSAFETY OF THIS TEST. Olivier Ferraris (3), Françoise Gay-Andrieu (1), Marie Moroso (2), Fanny Jarjaval (3), Mark Miller (1), Christophe N. Peyrefitte (3) (1) bioMérieux, Marcy l’Etoile, France, (2) Fondation Mérieux, France (3) Unité de Virologie, Institut de recherche biomédicale des armées, Brétigny sur Orge, France Background : Viral hemorrhagic fevers (VHFs) are a group of illnesses caused by mainly five families of viruses namely Arenaviridae, Filoviridae , Bunyaviridae (Orthonairovirus genus ), Flaviviruses and Paramyxovirus (Henipavirus genus). The filovirus species known to cause disease in humans, Ebola virus (Zaire Ebolavirus), Sudan virus (Sudan Ebolavirus), Tai Forest virus (Tai Forest Ebolavirus), Bundibugyo virus (Bundibugyo Ebolavirus), and Marburg virus are restricted to Central Africa for 35 years, and spread to Guinea, Liberia, Sierra Leone in early 2014. Lassa fever is responsible for disease outbreaks across West Africa and in Southern Africa in 2008, with the identification of novel world arenavirus (Lujo virus). Henipavirus spread South Asia to Australia. CCHFv spread asia to south europa. They are transmitted from host reservoir by direct contacts or through vectors such as ticks bits. Working with VHF viruses, need a Biosafety Level 4 (BSL-4) laboratory, however during epidemics such observed with Ebola virus in 2014, the need to diagnose rapidly the patients raised the necessity to develop local laboratories These viruses represents a threat to healthcare workers and researches who manage infected diagnostic samples in laboratories. Aim : 1 Inactivation step An FilmArray Bio Thereat-E assay for detection of Hemorrhagic fever viruse Interfering substance HF virus + FA Lysis Buffer such as Ebola virus was developed to respond to Hemorrhagic fever virus 106 Ebola virus Whole blood + outbreak.
    [Show full text]
  • To Ebola Reston
    WHO/HSE/EPR/2009.2 WHO experts consultation on Ebola Reston pathogenicity in humans Geneva, Switzerland 1 April 2009 EPIDEMIC AND PANDEMIC ALERT AND RESPONSE WHO experts consultation on Ebola Reston pathogenicity in humans Geneva, Switzerland 1 April 2009 © World Health Organization 2009 All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distin- guished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either express or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. This publication contains the collective views of an international group of experts and does not necessarily represent the decisions or the policies of the World Health Organization.
    [Show full text]
  • How Severe and Prevalent Are Ebola and Marburg Viruses?
    Nyakarahuka et al. BMC Infectious Diseases (2016) 16:708 DOI 10.1186/s12879-016-2045-6 RESEARCHARTICLE Open Access How severe and prevalent are Ebola and Marburg viruses? A systematic review and meta-analysis of the case fatality rates and seroprevalence Luke Nyakarahuka1,2,5* , Clovice Kankya2, Randi Krontveit3, Benjamin Mayer4, Frank N. Mwiine2, Julius Lutwama5 and Eystein Skjerve1 Abstract Background: Ebola and Marburg virus diseases are said to occur at a low prevalence, but are very severe diseases with high lethalities. The fatality rates reported in different outbreaks ranged from 24–100%. In addition, sero-surveys conducted have shown different seropositivity for both Ebola and Marburg viruses. We aimed to use a meta-analysis approach to estimate the case fatality and seroprevalence rates of these filoviruses, providing vital information for epidemic response and preparedness in countries affected by these diseases. Methods: Published literature was retrieved through a search of databases. Articles were included if they reported number of deaths, cases, and seropositivity. We further cross-referenced with ministries of health, WHO and CDC databases. The effect size was proportion represented by case fatality rate (CFR) and seroprevalence. Analysis was done using the metaprop command in STATA. Results: The weighted average CFR of Ebola virus disease was estimated to be 65.0% [95% CI (54.0–76.0%), I2 = 97.98%] whereas that of Marburg virus disease was 53.8% (26.5–80.0%, I2 = 88.6%). The overall seroprevalence of Ebola virus was 8.0% (5.0%–11.0%, I2 = 98.7%), whereas that for Marburg virus was 1.2% (0.5–2.0%, I2 = 94.8%).
    [Show full text]
  • A Look Into Bunyavirales Genomes: Functions of Non-Structural (NS) Proteins
    viruses Review A Look into Bunyavirales Genomes: Functions of Non-Structural (NS) Proteins Shanna S. Leventhal, Drew Wilson, Heinz Feldmann and David W. Hawman * Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; [email protected] (S.S.L.); [email protected] (D.W.); [email protected] (H.F.) * Correspondence: [email protected]; Tel.: +1-406-802-6120 Abstract: In 2016, the Bunyavirales order was established by the International Committee on Taxon- omy of Viruses (ICTV) to incorporate the increasing number of related viruses across 13 viral families. While diverse, four of the families (Peribunyaviridae, Nairoviridae, Hantaviridae, and Phenuiviridae) contain known human pathogens and share a similar tri-segmented, negative-sense RNA genomic organization. In addition to the nucleoprotein and envelope glycoproteins encoded by the small and medium segments, respectively, many of the viruses in these families also encode for non-structural (NS) NSs and NSm proteins. The NSs of Phenuiviridae is the most extensively studied as a host interferon antagonist, functioning through a variety of mechanisms seen throughout the other three families. In addition, functions impacting cellular apoptosis, chromatin organization, and transcrip- tional activities, to name a few, are possessed by NSs across the families. Peribunyaviridae, Nairoviridae, and Phenuiviridae also encode an NSm, although less extensively studied than NSs, that has roles in antagonizing immune responses, promoting viral assembly and infectivity, and even maintenance of infection in host mosquito vectors. Overall, the similar and divergent roles of NS proteins of these Citation: Leventhal, S.S.; Wilson, D.; human pathogenic Bunyavirales are of particular interest in understanding disease progression, viral Feldmann, H.; Hawman, D.W.
    [Show full text]
  • And Filoviruses Asit K
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Veterinary and Biomedical Science Veterinary and Biomedical Sciences, Department of 2016 Overview of Rhabdo- and Filoviruses Asit K. Pattnaik University of Nebraska-Lincoln, [email protected] Michael A. Whitt University of Tennessee Health Science Center, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/vetscipapers Part of the Biochemistry, Biophysics, and Structural Biology Commons, Cell and Developmental Biology Commons, Immunology and Infectious Disease Commons, Medical Sciences Commons, Veterinary Microbiology and Immunobiology Commons, and the Veterinary Pathology and Pathobiology Commons Pattnaik, Asit K. and Whitt, Michael A., "Overview of Rhabdo- and Filoviruses" (2016). Papers in Veterinary and Biomedical Science. 229. http://digitalcommons.unl.edu/vetscipapers/229 This Article is brought to you for free and open access by the Veterinary and Biomedical Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Veterinary and Biomedical Science by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Biology and Pathogenesis of Rhabdo- and Filoviruses (2016), edited by Asit K Pattnaik and Michael A Whitt. Copyright © 2016 World Scientific Publishing Co Pte Ltd. Used by permission. digitalcommons.unl.edu CHAPTER 1 Overview of Rhabdo- and Filoviruses Asit K. Pattnaik1 and Michael A. Whitt2 1 School of Veterinary Medicine and Biomedical Sciences and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583 2 Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 The authors contributed equally to this work. Emails: [email protected] ; [email protected] Summary Enveloped viruses with a negative-sense, single-stranded monopartite RNA genome have been classified into the orderMononegavirales .
    [Show full text]
  • Development of an Antibody Cocktail for Treatment of Sudan Virus Infection
    Development of an antibody cocktail for treatment of Sudan virus infection Andrew S. Herberta,b, Jeffery W. Froudea,1, Ramon A. Ortiza, Ana I. Kuehnea, Danielle E. Doroskya, Russell R. Bakkena, Samantha E. Zaka,b, Nicole M. Josleyna,b, Konstantin Musiychukc, R. Mark Jonesc, Brian Greenc, Stephen J. Streatfieldc, Anna Z. Wecd,2, Natasha Bohorovae, Ognian Bohorove, Do H. Kime, Michael H. Paulye, Jesus Velascoe, Kevin J. Whaleye, Spencer W. Stoniera,b,3, Zachary A. Bornholdte, Kartik Chandrand, Larry Zeitline, Darryl Sampeyf, Vidadi Yusibovc,4, and John M. Dyea,5 aVirology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702; bThe Geneva Foundation, Tacoma, WA 98402; cFraunhofer USA Center for Molecular Biotechnology, Newark, DE 19711; dDepartment of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; eMapp Biopharmaceutical, Inc., San Diego, CA 92121; and fBioFactura, Inc., Frederick, MD 21701 Edited by Y. Kawaoka, University of Wisconsin–Madison/University of Tokyo, Madison, WI, and approved December 30, 2019 (received for review August 28, 2019) Antibody-based therapies are a promising treatment option for antibody-based immunotherapies. Subsequently, several indepen- managing ebolavirus infections. Several Ebola virus (EBOV)-specific dent groups reported the postexposure efficacy of monoclonal and, more recently, pan-ebolavirus antibody cocktails have been antibody (mAb)-based immunotherapies against EVD in ma- described. Here, we report the development and assessment of a caques when administered as mixtures of two or more mAbs (14–17). Sudan virus (SUDV)-specific antibody cocktail. We produced a panel These landmark studies demonstrated that combination mAb- of SUDV glycoprotein (GP)-specific human chimeric monoclonal based immunotherapies are a viable treatment option for EVD antibodies (mAbs) using both plant and mammalian expression and spurred therapeutic antibody development for filoviruses.
    [Show full text]
  • Virus Pathogen Resource (Vipr) March 2019 New Features in Vipr
    Virus Pathogen Resource (ViPR) March 2019 New Features in ViPR New Genome Annotation Tool New RNA Structure Data VIGOR4, a new genome annotation tool is In collaboration with the NIAID-funded Loading Virus Pathogen Database and AnalysisAbout Resource Us Community (ViPR)... Announcements Links Resources Support now available on the Zika virus portal. VIGOR4 Orfeome project, we have released new RNA News & Events (Viral Genome ORF Reader) is developed by structure data for MERS-CoV on the ViPR • June 9-13, 2019: Positive Strand J. Craig Venter Institute. VIGOR 4 predicts site. This new dataset is generated as part RNA Viruses, Killarney, Ireland. Oral protein sequences encoded in a viral of the effort to identify, characterize and presentation. genomes by sequences similarity searching then determine the role of uncharacterized against curated viral protein databases. viral genesSearch that may function to auto- Analyze• July 21-25, 2019: Annual Conference Save to Workbench regulate virus replication efficiency and host In the next few releases, we will enhance the Search our comprehensive database for: Analyzeon Intelligent data online: Systems for Molecular Use your workbench to: responses. The structure data is predicted Biology, Basel, Switzerland. current VIGOR4 implementation and make it Sequences & strains Sequence Alignment Store and share data available for other virus familes. using SHAPE chemical reactivity data (PMID: 22475022Immune). epitopes • AugustPhylogenetic 4-9, T2019:ree 24th International Combine working sets 3D protein
    [Show full text]
  • Understanding Ebola
    Understanding Ebola With the arrival of Ebola in the United States, it's very easy to develop fears that the outbreak that has occurred in Africa will suddenly take shape in your state and local community. It's important to remember that unless you come in direct contact with someone who is infected with the disease, you and your family will remain safe. State and government agencies have been making preparations to address isolated cases of infection and stop the spread of the disease as soon as it has been positively identified. Every day, the Centers of Disease Control and Prevention (CDC) is monitoring developments, testing for suspected cases and safeguarding our lives with updates on events and the distribution of educational resources. Learning more about Ebola and understanding how it's contracted and spread will help you put aside irrational concerns and control any fears you might have about Ebola severely impacting your life. Use the resources below to help keep yourself calm and focused during this unfortunate time. Ebola Hemorrhagic Fever Ebola hemorrhagic fever (Ebola HF) is one of numerous Viral Hemorrhagic Fevers. It is a severe, often fatal disease in humans and nonhuman primates (such as monkeys, gorillas, and chimpanzees). Ebola HF is caused by infection with a virus of the family Filoviridae, genus Ebolavirus. When infection occurs, symptoms usually begin abruptly. The first Ebolavirus species was discovered in 1976 in what is now the Democratic Republic of the Congo near the Ebola River. Since then, outbreaks have appeared sporadically. There are five identified subspecies of Ebolavirus.
    [Show full text]
  • A Bioinformatic Analysis of the Mononegavirales
    A BIOINFORMATIC ANALYSIS OF THE MONONEGAVIRALES TRANSCRIPTION/REPLICATION COMPLEX THROUGH THE DEVELOPMENT OF THE DISSIC PIPELINE by Sean Bruce Cleveland A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Microbiology MONTANA STATE UNIVERSITY Bozeman, Montana April, 2013 ©COPYRIGHT by Sean Bruce Cleveland 2013 All Rights Reserved ii APPROVAL of a dissertation submitted by Sean Bruce Cleveland This dissertation has been read by each member of the dissertation committee and has been found to be satisfactory regarding content, English usage, format, citation, bibliographic style, and consistency and is ready for submission to The Graduate School. Marcella A. McClure Approved for the Department of Microbiology Mark Jutila Approved for The Graduate School Dr. Ronald W. Larsen iii STATEMENT OF PERMISSION TO USE In presenting this dissertation in partial fulfillment of the requirements for a doctoral degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. I further agree that copying of this dissertation is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for extensive copying or reproduction of this dissertation should be referred to ProQuest Information and Learning, 300 North Zeeb Road, Ann Arbor, Michigan 48106, to whom I have granted “the exclusive right to reproduce and distribute my dissertation in and from microform along with the non- exclusive right to reproduce and distribute my abstract in any format in whole or in part.” Sean Bruce Cleveland April 2013 iv DEDICATION I dedicate this dissertation to my fiancé Jessica and my mother Shelby for their undying support and understanding all these years.
    [Show full text]