8 Scattering Theory I

Total Page:16

File Type:pdf, Size:1020Kb

8 Scattering Theory I 8 Scattering Theory I 8.1 Kinematics Problem: wave packet incident on fixed scattering center V (r) with finite range. Goal: find probability particle is scattered into angle θ; Á far away from scattering center. Solve S.-eqn. with boundary condition that at t = ¡1 the wave function is a wave packet incident on scattering ctr. Decompose packet into component waves eik¢r, then either this wave is scattered or it’s not. If it’s scattered, at large distances we expect a spherical wave. So at large r our soln. should have form of linear combs. of 0 1 ikr B ik¢r e C ¡i!t à (r; t) ' @e + f (θ; Á) A e ; (1) k k r whereh! ¯ =h ¯2k2=2m is the energy of the asymptotic plane wave before scattering or after it has scattered (elastically). Intuitively 1st term in (1) is unscattered part, 2nd term is scattered wave with angular dependence fk. fk called scattering amplitude. 2nd term ikr u = fke =r (2) varies as 1=r, so intensity of scattered wave falls off as juj2 » 1=r2 as it must. To verify this, construct probability current ¡ih¯ j = (ärà ¡ Ãrä): (3) 2m For scattered flux density (replace à by u above), find ¡ih¯ h¯k r j = (u¤ru ¡ uru¤) = jf(θ; Á)j2 (4) scatt 2m m r3 dσ Differential scattering cross section dΩ Def: given incident flux nv particles per unit area and unit time. (n is density and v speed of particles) 1 Particles collected in detector of area A at angles θ; Á from incident direc- tion. A therefore subtends ±Ω = A=r2 steradians. Recall classically dN dσ = (nv) ¢ ¢ ±Ω (5) dt dΩ differential rate of detecting incident subtended = ¢ scattering ¢ (6) particles in A flux density solid angle cross sec. From eq. (4) above, have dN h¯k r hk¯ dσ A = j A = jf(θ; Á)j2A = ¢ ¢ (7) dt scatt m r3 m dΩ r2 so dσ (θ; Á) = jf(θ; Á)j2 (8) dΩ Total scattering cross-section σ Total cross-section defined by integrating over all angles: Z dσ Z σ = dΩ = dΩjf(θ; Á)j2 (9) dΩ Reminder–classical analog & origin of name “cross-section”: Consider n pt. particles/vol. incident on sphere, radius a, flux nv. Particle scatters if its impact parameter is less than a, so net scattered flux is nv ¢ ¼r2, total σ = ¼a2. 2 8.2 Optical theorem A conservation law–relates diminished amplitude of unscattered beam to flux scattered out of beam. Incident flux density in Fourier component eikz of incident beam is hk¯ v = (10) classical m 2 Role of classical density of particles n played by jÃbeamj = 1. From (9) net scattering rate is hk¯ Z nvσ = dΩjf j2 (11) m k so outgoing unscattered beam must be diminished by this amount. “Out- going” means eikz plus forward scattering part of scattered wave, f(0) à = eikz + eikr (12) r For angles close to forward scattering, p x2 r = z2 + x2 ' z + (13) 2z 1 so at large z, 0 1 kx2 ikz B f(0) i C à » e @1 + e 2z A (14) z Now want to compute probability flux in forward direction. Rapidly vary- ing part of (14) is eikz, so rà ' ikÃzˆ (15) 0 10 1 ¤ kx2 kx2 ¤ ¤ B f (0) ¡i CB f(0) i C à rà ' ikà à = ik @1 + e 2z A@1 + e 2z A (16) z z 0 1 kx2 B 2 i C ' ik @1 + Re f(0)e 2z A (17) z 1 Peebles calls this Ãf for forward, but I’m too lazy, so you have to remember I’m always talking about small angles 3 So to lowest order flux density in forward direction is ih¯ j = ¡ (ärà ¡ c:c:) (18) 2m0 1 kx2 hk¯ B 2 i C ' @1 + Re f(0)e 2z A (19) m z The first term is the same as the incident flux density, the second is the reduction of the outgoing flux by forward scattering. If we go out far enough along z, even for small angles the x can get large, so we need to integrate all the scattered flux (2nd term) in the forward direction:2 0 1 0 1 Z 2 B reduction of flux C 1 2 ikx @ A = ¡vcl 2¼xdx Re @f(0)e 2z A (21) by forward scattering 0 z 2 2z see footnote ! = v ¼ Imf(0) ´ v σ (22) cl z k cl since vσ is the definition of the total flux removed from the beam by scattering! So 4¼ σ = k Imf(0) “Optical theorem” (23) Interpretation: Incident plane wave brings in probability current density in z direction. Some of it gets scattered into various directions. Must give rise to decrease in current density behind target (θ = 0) due to destructive interference of incident plane wave and scattered wave in forward direction. So total flux scattered (vσ) related to forward scattering amplitude f(0). 2This is a mathematically very ill-defined procedure, and you shouldn’t believe it until you see we get the same result by phase shift analysis later. But the integration goes as follows: Z 1 Z i1 2 2z 2iz 2xdx eikx =(2z) = du eu = ¡ euji1 (20) ik k 0 0 0 We now want to argue that we can neglect the exponential at its upper limit because it is rapidly oscillating, i.e. we want to be able to set ei1 ! 0. Peebles argues physically: that a real beam will consist of a finite spread of incident directions and cut off the increase in the rate of oscillations as z ! 1. That the oscillations at 1 then average out to zero is guaranteed by the Riemann-Lesbegue lemma3. 4 8.3 Born approximation. Valid for weak scattering or fast particles! Want to solve S.’s eqn for scattering potential V (r) with boundary condi- tion eikr à ! eik¢r + f (24) r for suff. large r. We’re looking first for solutions with h¯2k2 E = “scattering states” (25) 2m i.e., not bound states where the particle is trapped by the target. So S.-eqn. looks like 2mV r2à + k2à = à ´ ²Uà (26) h¯2 Now seek power series expansion of à (in powers of scattering potential): Ã(r) = eik¢r + ²Ã(1) + ²2Ã2 + ::: (27) plugging into (26) gives ²(r2Ã(1) + k2Ã(1)) + ²2(r2Ã(2) + k2Ã(2)) = = ²Ueik¢r + ²2UÃ(1) + ::: (28) as usual equate powers of ²: r2Ã(1) + k2Ã(1) = Ueik¢r (29) r2Ã(2) + k2Ã(2) = UÃ(1); etc. (30) . (31) See that we get sequence of coupled eqns., each coupled to previous one on rhs. This is called Born’s series. If we want to solve to linear order in ², take only (29). Solve by Fourier transform; and define 5 Z (1) ¡ik¢r 3 Ãk = à (r)e d r (32) and the inverse Z d3k Ã(1)(r) = à eik¢r (33) k (2¼)3 So multiply (29) by e¡ik0¢r and integrate lhs by parts4 to get Z 2 02 i(k¡k0)¢r 3 (k ¡ k )Ãk0 = U(r)e d r (35) which yields immediately ik0¢r 1 Z e Z 0 0 Ã(1)(r) = d3k0 d3r0U(r0)ei(k¡k )¢r (36) (2¼)3 k2 ¡ k02 ik0¢(r¡r0) 1 Z 0 Z e = d3r0U(r0)eik¢r d3k0 (37) 3 2 02 (2¼) | k{z ¡ k } I(r ¡ r0) Now we spend some tedious but hopefully useful time showing how to calculate integrals of this type. First evaluate I(r ¡ r0). Use polar coords., polar axis along y ´ r ¡ r0, θ is angle between y and k0: k0 ¢ y = k0y cos θ (38) d3k0 = k02dk0 sin θdθdÁ: (39) So angular part of I is Z 2¼ Z ¼ Z 1 dÁ sin θdθ eik0y cos θ = 2¼ d cos θeik0y cos θ (40) 0 0 ¡1 sin k0y = 4¼ (41) k0y so left with Z 1 k02dk0 sin k0y I = 4¼ 2 (42) 0 k2 ¡ k0 k0y Trick: note integrand is even in k0, write I as Z 0 2¼ 1 k0dk0 eik y because cos part odd in k0, I = 2 (43) i 1 k2 ¡ k0 y therefore doesn’t contribute 4Explicitly, use Z 2 ¡ik0¢r 3 02 (r Ã(r))e d r = ¡k Ãk0 (34) 6 This is an improper integral due to the singularity at k = §k0. However we use physics to regularize: so far we haven’t used condition that we want w. fctn. à at 1 to look like scattered wave. This corresponds in integral scattering formulation to specifying contour for I in complex plane. One possibility is to handle singularities by following contour shown below. Use Cauchy integral formula,5 complete the contour in upper half-plane, shrink the contour to the pole at +k, to get: iky I 0 iky 2¼ e 1 dk 2 e I = ¢ 0 = ¡2¼ (45) i y 2 | k{z¡ k} y ¡ 2¼i (46) This procedure may seem rather arbitrary at 1st sight, but a look at other choices suggests it’s right thing to do. If we take contour above both poles, get zero! If we take contour opposite to figure (above k and below ¡k) or below both poles, get a contribution I / e¡iky. Recall y = jr ¡ r0; if r is in asymptotic region, r À r0, I / e¡ikr, which is ingoing, not outgoing scattered wave. So choice of contour effectively implements boundary condition. Continuing, find Z ikjr¡r0j 1 0 e Ã(1)(r) = ¡ d3r0U(r0)eik¢r (47) 4¼ jr ¡ r0j Finally, look at à in asymptotic region, r À r0: use jr ¡ r0j ' r +r ˆ ¢ r0 (48) ikjr¡r0j e 1 0 j ' eikre¡ikrˆ¢r (49) jr ¡ r0j r define ks ´ krˆ (50) to write µZ ¶ ikr 1 0 e Ã(1)(r) '¡ d3r0U(r0)ei(k¡ks)¢r (51) 4¼ r 5If you don’t like the integral formula, note this choice is equivalent to replacing (29) by r2Ã(1) + (k2 + i²k)Ã(1) = Ueik¢r (44) i.e.
Recommended publications
  • Published Version
    PUBLISHED VERSION G. Aad ... P. Jackson ... L. Lee ... A. Petridis ... N. Soni ... M.J. White ... et al. (ATLAS Collaboration) Measurement of the total cross section from elastic scattering in pp collisions at √s = 7TeV with the ATLAS detector Nuclear Physics B, 2014; 889:486-548 © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license Originally published at: http://doi.org/10.1016/j.nuclphysb.2014.10.019 PERMISSIONS http://creativecommons.org/licenses/by/3.0/ 24 April 2017 http://hdl.handle.net/2440/102041 Available online at www.sciencedirect.com ScienceDirect Nuclear Physics B 889 (2014) 486–548 www.elsevier.com/locate/nuclphysb Measurement of the total cross section√ from elastic scattering in pp collisions at s = 7TeV with the ATLAS detector .ATLAS Collaboration CERN, 1211 Geneva 23, Switzerland Received 25 August 2014; received in revised form 17 October 2014; accepted 21 October 2014 Available online 28 October 2014 Editor: Valerie Gibson Abstract √ A measurement of the total pp cross section at the LHC at s = 7TeVis presented. In a special run with − high-β beam optics, an integrated luminosity of 80 µb 1 was accumulated in order to measure the differ- ential elastic cross section as a function of the Mandelstam momentum transfer variable t. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in 2 2 the |t| range from 0.01 GeV to 0.1GeV to extrapolate to |t| → 0, the total cross section, σtot(pp → X), is measured via the optical theorem to be: σtot(pp → X) = 95.35 ± 0.38 (stat.) ± 1.25 (exp.) ± 0.37 (extr.) mb, where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to |t| → 0.
    [Show full text]
  • Measurement of the Total Cross Section from Elastic Scattering in Pp Collisions at √S = 7 Tev with the ATLAS Detector
    Measurement of the total cross section from elastic scattering in pp collisions at √s = 7 TeV with the ATLAS detector The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation “Measurement of the Total Cross Section from Elastic Scattering in Pp Collisions at √s = 7 TeV with the ATLAS Detector.” Nuclear Physics B 889 (December 2014): 486–548. As Published http://dx.doi.org/10.1016/j.nuclphysb.2014.10.019 Publisher Elsevier Version Final published version Citable link http://hdl.handle.net/1721.1/94503 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/4.0/ Available online at www.sciencedirect.com ScienceDirect Nuclear Physics B 889 (2014) 486–548 www.elsevier.com/locate/nuclphysb Measurement of the total cross section√ from elastic scattering in pp collisions at s = 7TeV with the ATLAS detector .ATLAS Collaboration CERN, 1211 Geneva 23, Switzerland Received 25 August 2014; received in revised form 17 October 2014; accepted 21 October 2014 Available online 28 October 2014 Editor: Valerie Gibson Abstract √ A measurement of the total pp cross section at the LHC at s = 7TeVis presented. In a special run with − high-β beam optics, an integrated luminosity of 80 µb 1 was accumulated in order to measure the differ- ential elastic cross section as a function of the Mandelstam momentum transfer variable t. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in 2 2 the |t| range from 0.01 GeV to 0.1GeV to extrapolate to |t| → 0, the total cross section, σtot(pp → X), is measured via the optical theorem to be: σtot(pp → X) = 95.35 ± 0.38 (stat.) ± 1.25 (exp.) ± 0.37 (extr.) mb, where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to |t| → 0.
    [Show full text]
  • Generalization of the Optical Theorem: Experimental Proof for Radially Polarized Beams
    Krasavin et al. Light: Science & Applications (2018) 7:36 Official journal of the CIOMP 2047-7538 DOI 10.1038/s41377-018-0025-x www.nature.com/lsa ARTICLE Open Access Generalization of the optical theorem: experimental proof for radially polarized beams Alexey V. Krasavin1, Paulina Segovia1,5, Rostyslav Dubrovka2, Nicolas Olivier 1,6, Gregory A. Wurtz1,7, Pavel Ginzburg1,3,4 and Anatoly V. Zayats 1 Abstract The optical theorem, which is a consequence of the energy conservation in scattering processes, directly relates the forward scattering amplitude to the extinction cross-section of the object. Originally derived for planar scalar waves, it neglects the complex structure of the focused beams and the vectorial nature of the electromagnetic field. On the other hand, radially or azimuthally polarized fields and various vortex beams, essential in modern photonic technologies, possess a prominent vectorial field structure. Here, we experimentally demonstrate a complete violation of the commonly used form of the optical theorem for radially polarized beams at both visible and microwave frequencies. We show that a plasmonic particle illuminated by such a beam exhibits strong extinction, while the scattering in the forward direction is zero. The generalized formulation of the optical theorem provides agreement with the observed results. The reported effect is vital for the understanding and design of the interaction of complex vector beams carrying longitudinal field components with subwavelength objects important in imaging, communications, nanoparticle manipulation, and detection, as well as metrology. 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Introduction shown that tightly focused Gaussian beams scattered by a The optical theorem is a fundamental relation that small spherical particle partially violate the optical theo- emerges in both classical and quantum wave scattering rem6,7.
    [Show full text]
  • On the Convergence of Numerical Computations for Both Exact and Approximate Solutions for Electromagnetic Scattering by Nonspherical Dielectric Particles
    Machine Copy for Proofreading, Vol. x, y{z, 2019 On the Convergence of Numerical Computations for Both Exact and Approximate Solutions for Electromagnetic Scattering by Nonspherical Dielectric Particles Ping Yang1, *, Jiachen Ding1, Richard Lee Panetta1, Kuo-Nan Liou2, George W. Kattawar3, and Michael Mishchenko4 (Invited Paper) Abstract|We summarize the size parameter range of the applicability of four light-scattering computational methods for nonspherical dielectric particles. These methods include two exact methods | the extended boundary condition method (EBCM) and the invariant imbedding T-matrix method (II-TM) and two approximate approaches | the physical-geometric optics method (PGOM) and the improved geometric optics method (IGOM). For spheroids, the single-scattering properties computed by EBCM and II-TM agree for size parameters up to 150, and the comparison gives us con¯dence in using II- TM as a benchmark for size parameters up to 150 for other geometries (e.g., hexagonal columns) because the applicability of II-TM with respect to particle shape is generic, as demonstrated in our previous studies involving a complex aggregate. This study demonstrates the convergence of the exact II-TM and approximate PGOM solutions for the complete set of single-scattering properties of a nonspherical shape other than spheroids and circular cylinders with particle sizes of » 48¸ (size parameter » 150), speci¯cally a hexagonal column with a length size parameter of kL = 300 where k = 2¼=¸ and L is the column length. IGOM is also quite accurate except near the exact 180± backscattering direction. This study demonstrates that a synergetic combination of the numerically-exact II-TM and the approximate PGOM can seamlessly cover the entire size parameter range of practical interest.
    [Show full text]
  • New Perspective on the Optical Theorem of Classical
    New Perspective on the Optical Theorem of Classical Electrodynamics Masud Mansuripur College of Optical Sciences, The University of Arizona, Tucson, Arizona 85721 [email protected] Published in the American Journal of Physics 80, 329-333 (April 2012); DOI: 10.1119/1.3677654 Abstract. A general proof of the optical theorem (also known as the optical cross-section theorem) is presented that reveals the intimate connection between the forward scattering amplitude and the absorption-plus-scattering of the incident wave within the scatterer. The oscillating electric charges and currents as well as the electric and magnetic dipoles of the scatterer, driven by an incident plane- wave, extract energy from the incident beam at a certain rate. The same oscillators radiate electro- magnetic energy into the far field, thus giving rise to well-defined scattering amplitudes along various directions. The essence of the proof presented here is that the extinction cross-section of an object can be related to its forward scattering amplitude using the induced oscillations within the object but without an actual knowledge of the mathematical form assumed by these oscillations. 1. Introduction. The optical theorem relates the extinction cross-section of an arbitrary object placed in the path of a monochromatic plane-wave to its forward scattering amplitude, namely, the scattered light amplitude measured in the far field along the propagation direction (and at the frequency of) the incident plane-wave [1,2]. The scatterer could have arbitrary geometric shape and electromagnetic profile – for example, it could be inhomogeneous, anisotropic, dispersive, absorptive, nonlinear, magnetic, etc., with arbitrarily complex constitutive relations governing its electromagnetic response.
    [Show full text]
  • Quantum Field Theory I Chapter 10 10 Scattering Matrix
    Quantum Field Theory I Chapter 10 ETH Zurich, HS12 Prof. N. Beisert 10 Scattering Matrix When we computed some simple scattering processes we did not really know what we were doing. At leading order this did not matter, but at higher orders complications arise. Let us therefore discuss the asymptotic particle states and their scattering matrix in more detail. 10.1 Asymptotic States First we need to understand asymptotic particle states in the interacting theory jp1; p2;:::i: (10.1) In particular, we need to understand how to include them in calculations by expressing them in terms of the interacting field φ(x). Asymptotic particles behave like free particles at least in the absence of other nearby asymptotic particles. For free fields we have seen how to encode the particle modes into two-point correlators, commutators and propagators. Let us therefore investigate these characteristic functions in the interacting model. Two-Point Correlator. Consider first the correlator of two interacting fields ∆+(x − y) := h0jφ(x)φ(y)j0i: (10.2) Due to Poincar´esymmetry, it must take the form Z d4p ∆ (x) = e−ip·x θ(p )ρ(−p2): (10.3) + (2π)4 0 The factor θ(p0) ensures that all excitations of the ground state j0i have positive energy. The function ρ(s) parametrises our ignorance. We do not want tachyonic excitations, hence the function should be supported on positive values of s = m2. We now insert a delta function to express thep correlator in terms of the free two-point correlator ∆+(s; x; y) with mass s (K¨all´en,Lehmann) Z 1 Z 4 ds d p −ip·x 2 ∆+(x) = ρ(s) 4 e θ(p0)2πδ(p + s) 0 2π (2π) Z 1 ds = ρ(s)∆+(s; x): (10.4) 0 2π This identifies ρ(s) as the spectralp function for the field φ(x): It tells us by what amount particle modes of mass s will be excited by the field φ(x).1 1The spectral function describes the spectrum of quantum states only to some extent.
    [Show full text]
  • Scattering and S-Matrix 1/42 J
    SCATTERING AND S-MATRIX 1/42 J. Rosner – Reaction Theory Summer Workshop Indiana University – June 2015 Lecture 1: Review of Lecture 2: S-matrix and Lecture 3: Some simple scattering theory related physics applications S, T , and K matrices 1-,2-channel examples Optical analogs Wave packet scattering Transmission resonances Eikonal approximation Scattering amplitude Bound states Diffractive scattering Partial wave expansion S wave properties Adding resonances Phase shifts Resonances Dalitz plot applications R-matrix Absorption Historical notes Unitarity circle Inelastic cross section Example from electronics For simplicity some of the formalism will be nonrelativistic “In” state i : Free particle in remote past | iin “Out” state j : Free particle in remote future outh | S-matrix takes “in” states to “out” (with wave packets: Goldberger and Watson, Scattering Theory, 1964.) UNITARITY; T AND K MATRICES 2/42 Sji out j i in is unitary: completeness and orthonormality of “in”≡ andh | i “out” states S†S = SS† = ½ Just an expression of probability conservation S has a piece corresponding to no scattering Can write S = ½ +2iT Notation of S. Spanier, BaBar Analysis Document #303, based on S. U. Chung et al. Ann. d. Phys. 4, 404 (1995). Unitarity of S-matrix T T † =2iT †T =2iT T †. ⇒ − 1 1 1 1 (T †)− T − =2i½ or (T − + i½)† = (T − + i½). − 1 1 1 Thus K [T − + i½]− is hermitian; T = K(½ iK)− ≡ − WAVE PACKETS 3/42 i~q ~r 3/2 Normalized plane wave states: χ~q = e · /(2π) 3 3 i(~q q~′) ~r 3 (χ , χ )=(2π)− d ~re − · = δ (~q q~ ) . q~′ ~q − ′ R Expansion of wave packet: ψ (~r, t =0)= d3q χ φ(~q ~p) ~p ~q − where φ is a weight function peaked aroundR 0 3 i~k ~r Fourier transform of φ: G(~r)= d k e · φ(~k) 3 R ψ~p(~r, t =0)= d q χ~q ~p+~p φ(~q ~p)= χ~p G(~r) .
    [Show full text]
  • The Optical Theorem Index of Refraction
    Physics 504, Physics 504, Spring 2010 The Optical Theorem Spring 2010 Electricity Electricity and The optical theorem relates the total cross section to the and Magnetism forward scattering amplitude. Magnetism Shapiro In Quantum Mechanics, this is “conservation” of Shapiro probability. Here — conservation of energy. Optical Optical Theorem and We do this differently from Jackson. Theorem and Index of Index of Refraction Consider scatterer of finite size in an incident plane wave: Refraction The Optical The Optical Last time we mentioned scattering removes power from Theorem i~ki ~x iωt Theorem E~i = E0 ~i e · − beam. Today we treat this more generally, to find Index of Index of Refraction 1 1 i~k ~x iωt Refraction B~ = ~k E~ = ~k ~ E e i· − I the optical theorem: i ω i × i ω i × i 0 I the relationship of the index of refraction and the Assume scattering is linear, time-invariant physics, so forward scattering amplitude. everything e iωt, make implicit. ∝ − scattering amplitude f~(~k,~ki), so eikr E~ (~x)= f~(~k,~k )E s r i 0 1 eikr B~ (~x)= ~k E~ = E ~k f~(~k,~k ). s ω × s ωr 0 × i ~ ~ Linearity assures frequency unchanged and k = k = ki , Physics 504, Physics 504, | | | | Spring 2010 Spring 2010 elastic scattering. Electricity Electricity and 1 ~ ~ ~ ~ and The total fields are E~ = E~i + E~s and B~ = B~ i + B~ s. Magnetism ∆P = ρdρdφRe Ei Bs∗ + Es Bi∗ Magnetism 2µ0 Z h × × iz Consider the power flowing past planes ~k , one way in Shapiro 2 Shapiro ⊥ i 1 E0 front of the scatterer, one way in back.
    [Show full text]
  • Generalized Optical Theorem for Reflection, Transmission, and Extinction of Power for Scalar Fields
    University of Pennsylvania ScholarlyCommons Departmental Papers (BE) Department of Bioengineering September 2004 Generalized optical theorem for reflection, transmission, and extinction of power for scalar fields P. Scott Carney University of Illinois John C. Schotland University of Pennsylvania, [email protected] Emil Wolf University of Rochester Follow this and additional works at: https://repository.upenn.edu/be_papers Recommended Citation Carney, P. S., Schotland, J. C., & Wolf, E. (2004). Generalized optical theorem for reflection, transmission, and extinction of power for scalar fields. Retrieved from https://repository.upenn.edu/be_papers/54 Copyright American Physical Society. Reprinted from Physical Review E, Volume 70, Issue 3, Article 036611, September 2004, 7 pages. Publisher URL: http://dx.doi.org/10.1103/PhysRevE.70.036611 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/be_papers/54 For more information, please contact [email protected]. Generalized optical theorem for reflection, transmission, and extinction of power for scalar fields Abstract We present a derivation of the optical theorem that makes it possible to obtain expressions for the extinguished power in a very general class of problems not previously treated. The results are applied to the analysis of the extinction of power by a scatterer in the presence of a lossless half space. Applications to microscopy and tomography are discussed. Comments Copyright American Physical Society. Reprinted from Physical Review E, Volume 70, Issue 3, Article 036611, September 2004, 7 pages. Publisher URL: http://dx.doi.org/10.1103/PhysRevE.70.036611 This journal article is available at ScholarlyCommons: https://repository.upenn.edu/be_papers/54 PHYSICAL REVIEW E 70, 036611 (2004) Generalized optical theorem for reflection, transmission, and extinction of power for scalar fields P.
    [Show full text]
  • Scattering and Absorption by Individual Spherical Particles
    Lectures 14-15 Light scattering and absorption by atmospheric particulates. Part 2: Scattering and absorption by individual spherical particles. Objectives: 1. Maxwell equations. Wave equation. Dielectrical constants of a medium. 2. Mie-Debye theory. 3. Optical properties of an ensemble of spherical particles. Required Reading: L02: 5.2, 3.3.2 Additional/Advanced Reading: Bohren, G.F., and D.R. Huffmn, Absorption and scattering of light by small particles. John Wiley&Sons, 1983. (Mie theory derivation is given on pp.82-114) 1. Maxwell equations. Wave equation. Dielectrical constants of a medium. r Maxwell equations connect the five basic quantities the electric vector, E , magnetic r r r vector, H , magnetic induction, B , electric displacement, D , and electric current r density, j : (in cgs system) r r 1 ∂D 4π r ∇ × H = + j c ∂t c r r − 1 ∂ B ∇ × E = [14.1] c ∂ t r ∇ • D = 4πρ r ∇ • B = 0 where c is a constant (wave velocity); and ρ is the electric charge density. To allow a unique determination of the electromagnetic field vectors, the Maxwell equations must be supplemented by relations which describe the behavior of substances under the influence of electromagnetic field. They are r r r r r r j = σ E D = ε E B = µ E [14.2] where σ is called the specific conductivity; ε is called the dielectrical constant (or the permittivity), and µ is called the magnetic permeability. 1 Depending on the value of σ, the substances are divided into: conductors: σ ≠ 0 (i.e., σ is NOT negligibly small), (for instance, metals) dielectrics (or insulators): σ = 0 (i.e., σ is negligibly small), (for instance, air, aerosol and cloud particulates) Let consider the propagation of EM waves in a medium which is (a) uniform, so that ε has the same value at all points; (b) isotropic, so that ε is independent of the direction of propagation; (c) non-conducting (dielectric), so that σ = 0 and therefore j =0; (d) free from charge, so that ρ =0.
    [Show full text]
  • Physics 215B: Particles and Fields Winter 2017
    Physics 215B: Particles and Fields Winter 2017 Lecturer: McGreevy These lecture notes live here and are currently growing. Please email corrections to mcgreevy at physics dot ucsd dot edu. Last updated: 2017/03/15, 23:19:56 1 Contents 0.1 Sources....................................3 0.2 Conventions.................................4 6 To infinity and beyond5 6.1 A parable from quantum mechanics on the breaking of scale invariance5 6.2 A simple example of perturbative renormalization in QFT....... 13 6.3 Classical interlude: Mott formula..................... 15 6.4 Electron self-energy in QED........................ 20 6.5 Big picture interlude............................ 25 6.6 Vertex correction in QED......................... 34 6.7 Vacuum polarization............................ 45 7 Consequences of unitarity 54 7.1 Spectral density............................... 54 7.2 Cutting rules and optical theorem..................... 61 7.3 How to study hadrons with perturbative QCD.............. 67 8 A parable on integrating out degrees of freedom 69 9 The Wilsonian perspective on renormalization 78 9.1 Where do field theories come from?.................... 78 9.2 The continuum version of blocking.................... 86 9.3 An extended example: XY model..................... 89 9.4 Which bits of the beta function are universal?.............. 110 10 Gauge theory 116 10.1 Massive vector fields as gauge fields.................... 116 10.2 Festival of gauge invariance........................ 118 10.3 Lattice gauge theory............................ 122 2 0.1 Sources The material in these notes is collected from many places, among which I should mention in particular the following: Peskin and Schroeder, An introduction to quantum field theory (Wiley) Zee, Quantum Field Theory (Princeton, 2d Edition) Banks, Modern Quantum Field Theory: A Concise Introduction (Cambridge) Schwartz, Quantum field theory and the standard model (Cambridge) David Tong's lecture notes Many other bits of wisdom come from the Berkeley QFT courses of Prof.
    [Show full text]
  • Short-Title Catalogue 42 ~ August 2020 Click the Url at the Bottom of Each Item in Order to Retrieve Its Full Description and Images
    Short-title catalogue 42 ~ August 2020 Click the url at the bottom of each item in order to retrieve its full description and images Rare and important books & manuscripts in science and medicine, by Christian Westergaard. Flæsketorvet 68 – 1711 København V – Denmark Mobile: (+45)27628014 www.sophiararebooks.com A MASTER TREATISE ON OPTICS ILLUSTRATED BY RUBENS AGUILON, François d’ Opticorum libri sex philosophis iuxta ac mathematicis utilis. Antwerp: Plantin Press for the widow and sons of Jan Moretus, 1613. $22,500 First edition, and a fine copy, of this great Jesuit treatise on optics, with engraved allegorical frontispiece and exquisite headpieces designed by Peter Paul Rubens. “A master treatise on optics that synthesized the works of Euclid, Ibn al-Haytham (Alhazen), Vitellio, Roger Bacon, Pena, Ramus (Pierre de la Ramée), Risner, and Kepler” (DSB). “A landmark of baroque book illustration, this is one of seven works known to have been illustrated by Rubens” (Becker). http://sophiararebooks.com/4987 FIRST QUANTITATIVE ESTIMATE OF ANTHROPOGENIC GLOBAL WARMING ARRHENIUS, Svante. Ueber den Einfluss des atmosphärischen Kohlensäuregehalts auf die Temperatur der Erdoberfläche. [With:] Ueber die Wärmeabsorption durch Kohlensäure und ihren Ein- fluss auf die Temperatur der Erdoberfläche. [With:] Die vermut- liche Ursache der Klimaschwankungen. Stockholm; Stockholm; Uppsala: Norstedt & Söner; Norstedt & Söner; Almquist & Wik- sell, 1896; 1901; 1906. $4,500 First edition, offprint issues, of Arrhenius’ landmark papers on climate change. Arrhenius was the first to quantify the influence of changes in the concentration of carbon dioxide in the atmosphere on the temperature of the earth’s surface. His first estimate of a man-made global temperature change was published in 1896 in the first offered paper.
    [Show full text]