life Article The Responses of the Black Fungus Cryomyces Antarcticus to High Doses of Accelerated Helium Ions Radiation within Martian Regolith Simulants and Their Relevance for Mars Claudia Pacelli 1,2 , Alessia Cassaro 2,* , Lorenzo Aureli 2, Ralf Moeller 3,4 , Akira Fujimori 5 and Silvano Onofri 2 1 Italian Space Agency, Via del Politecnico snc, 00133 Rome, Italy;
[email protected] 2 Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy;
[email protected] (L.A.);
[email protected] (S.O.) 3 German Aerospace Center, Institute of Aerospace Medicine, Radiation Biology Department, Space Microbiology Research Group, DLR, Linder Höhe, D-51147 Köln, Germany;
[email protected] or
[email protected] 4 Department of Natural Science, University of Applied Sciences Bonn-Rhein-Sieg (BRSU), von-Liebig-Straße 20, D-53359 Rheinbach, Germany 5 Molecular and Cellular Radiation Biology Group, Department of Basic Medical Sciences for Radiation Damages, NIRS/QST, Chiba 263-8555, Japan;
[email protected] * Correspondence:
[email protected]; Tel.: +39-0761357138 Received: 26 June 2020; Accepted: 28 July 2020; Published: 31 July 2020 Abstract: One of the primary current astrobiological goals is to understand the limits of microbial resistance to extraterrestrial conditions. Much attention is paid to ionizing radiation, since it can prevent the preservation and spread of life outside the Earth. The aim of this research was to study the impact of accelerated He ions (150 MeV/n, up to 1 kGy) as a component of the galactic cosmic rays on the black fungus C.