Zeta Function Methods and Quantum Fluctuations ‡ Emilio Elizalde Instituto de Ciencias del Espacio (CSIC) Institut d’Estudis Espacials de Catalunya (IEEC/CSIC) Campus UAB, Facultat de Ci`encies, Torre C5-Parell-2a planta E-08193 Bellaterra (Barcelona) Spain E-mail:
[email protected] http://www.ieec.fcr.es/english/recerca/ftc/eli/eli.htm Abstract. A review of some recent advances in zeta function techniques is given, in problems of pure mathematical nature but also as applied to the computation of quantum vacuum fluctuations in different field theories, and specially with a view to cosmological applications. arXiv:0712.1346v1 [hep-th] 9 Dec 2007 Talk given at the Conference “Quantum Theory and Symmetries - 5”, Valladolid (Spain), July 22 - ‡ 28, 2007 2 1. Introduction Zeta function regularization methods are optimally suited for the calculation of the contribution of fluctuations of the vacuum energy, of the quantum fields pervading the universe, to the cosmological constant. Order of magnitude calculations of the absolute contributions of all fields are known to lead to a value which is off by over hundred and twenty orders, as compared with the results obtained from observational fits, what is known as the new cc problem. This is difficult to solve and many authors still stick to the old problem to try to prove that basically its value is zero with some perturbations thereof leading to the (small) observed result (Burgess et al., Padmanabhan, etc.) We have also addressed this issue recently in a somewhat similar way, by considering the additional contributions to the cosmological constant that may come from the possibly non-trivial topology of space and from specific boundary conditions imposed on braneworld and other seemingly reasonable models that are being considered in the literature (mainly with other purposes too).