Collins SSS15 New Copy

Total Page:16

File Type:pdf, Size:1020Kb

Collins SSS15 New Copy THE INTERNAL DYNAMICS OF DWARF SPHEROIDAL GALAXIES: AN OBSERVATIONAL POINT OF VIEW MICHELLE COLLINS - HUBBLE FELLOW @ YALE INTRODUCING THE DWARF SPHEROIDALS OF THE MILKY WAY! 25 +8/9ish ~36/7ish! Bechtol+ 2015; Koposov+ 2015 (predicted by E. Tollerud+2008!) Image from SkyMapper collaboration Triangulum II - Laevens+2015 Hydra II - Martin+2015 Pegasus III - Kim+2015 EXPLAINING THE ‘ISH’ Not all new candidates will be galaxies Zone of Need (chemo)dynamics! CONFUSION Globular clusters Dwarf galaxies MV rhalf (pc) DWARF GALAXIES LIVE IN DARK MATTER HALOS 1st measurement of Draco velocity dispersion from 3 stars in 1983: -1 σv>6.5 kms , M/L≈31 Msun/Lsun Today: -1 σv= 9.1+/-1.2 kms , M/L≈34 Msun/Lsun Draco as viewed by SDSS, composite created by Robert Lupton C stars in Draco, Aaronson 1983 ‘IDEAL' LABORATORIES FOR STUDYING DARK MATTER Milky Way M31 ) sun (M half M Lhalf (Lsun) Collins+(2015) HMMM….. Concerns about the ultra-faints Hercules - MV=-6.6 Plus CVn II & LeoV Willman 1 - MV=-2 (Sand+12) Willman+2011 Sand+09, Roderick+15 PROBLEM FOR MASS MODELING • How to interpret ‘mean’ velocity dispersions • Makes applying normal models tricky (not in dynamical equilibrium) • May not be best objects for indirect dark matter detection experiments BUT COULD ALSO TELL US SOMETHING Cusped and cored galaxies disrupt differently More circular orbit Cusped Cored From hydro sims: expect brighter systems to be cored, fainter to be cusped More radial orbit Peñarrubia+10, Brooks+14, Errani+15 CATAGORISING STRIPPED POPULATION WILL BE INFORMATIVE! Which dSphs are undergoing tidal interactions/ disruption? Are their orbits ‘special’? How does that compare to predictions from simulations? INTRODUCING THE DWARF SPHEROIDALS OF ANDROMEDA! First M31 dwarfs - And I-III (and non-dwarf IV) van den Bergh 1972 Cas III Per I And VII POSS I/II SDSS M31 PAndAS And XXVIII, PS1 Lac I And VI, XXIX van den bergh+72, Armandroff+98,99 M33 Karantchentsev+99,Zucker+04,05, Majewski+,Martin+06,09,13ab,,Ibata+07, Irwin+08,McConnachie+08,Richardon+10 SPECTROSCOPY PAndAS SPLASH SPLASHing PAndAS M31 M33 Collins+(2013,2015), Tollerud+(2012, 2013), Ho+(2012, 2014), Martin+(2014) ALSO DARK MATTER DOMINATED Milky Way M31 ) sun (M half M Lhalf (Lsun) Collins+(2015) R. Michael Rich, DEIMOS 2014B U052B Tip of the red giant branch And XIX Figure 1: Left: Circular velocities (Vc) for dSphs vs. half light radius. Rotation curves from subhalos of different masses within the Aquarius simulations that span the mass range of those predicted by ⇤CDM are overplotted. While 10 subhalos 1 with masses 40 kms− (red curve) are expected around Milky Way sized systems, few are observed in the real Universe ≥ that have high enough Vc (and hence, masses) within their half-light radii to be consistent with this curve. Also a number of 1 systems (including And XIX) have circular velocities that fall below the 10 kms− curve (cyan), which is a lower mass limit beneath which subhalos should not form stars. Some process must have lowered their mass over time, such as tidal stripping. Right: Color magnitude diagram for all stars within 1 half light radius of And XIX. Red lines show magnitude limits to which spectra of S:N of 8, 5 and 3 can be taken within 1 hour. Higher S:N will be possible for our longer 2 hour exposures, allowing ALSO SOME UNUSUALaccurate metallicities to be measured for the brightestOBJECTS… stars. Bate et al. 2013 Stream Figure 2: Number density map of all stars bright enough to observe with DEIMOS in And XIX and the nearby stream (both labeled). Our proposed targeting strategy to map out both features is shown with black rectangles, which represent the DEIMOS field of view. And XIX And XXI 3 And XXV Collins+14 ANDROMEDA XXI 5 • Luminosity ~ 4x10 Lsun • Half-light radii ~ 1kpc • Velocities for ~100 stars Collins+in prep 1ST STEP: VELOCITY DISPERSION PROFILE A Milky Way example 15 10 5 1 rhalf 2 rhalf 500 1000 1500 Velocity dispersion (km/s) Velocity Radius (pc) Walker et al. 2007 AND XXI And XXI ~ 20 stars/bin 1 rhalf More And 21 stars Velocity dispersion (km/s) dispersion Velocity Radius (pc) What’s going Collins et al. in prep on here..? WHAT ABOUT ITS VELOCITY PROFILE? Not in dynamical equilibrium? ‘Wobble’ (km/s) systemic V dispersion (km/s) dispersion radius (arcmin) Collins et al. in prep TIDAL INTERACTION WITH M31? 135 kpc And XXI Or a merger? And II - Amorisco+14 Could explain ‘weird’ kinematics? R. Michael Rich, DEIMOS 2014B U052B Tip of the red giant branch And XIX Figure 1: Left: Circular velocities (Vc) for dSphs vs. half light radius. Rotation curves from subhalos of different masses within the Aquarius simulations that span the mass range of those predicted by ⇤CDM are overplotted. While 10 subhalos 1 with masses 40 kms− (red curve) are expected around Milky Way sized systems, few are observed in the real Universe ≥ that have high enough Vc (and hence, masses) within their half-light radii to be consistent with this curve. Also a number of 1 systems (including And XIX) have circular velocities that fall below the 10 kms− curve (cyan), which is a lower mass limit beneath which subhalos should not form stars. Some process must have lowered their mass over time, such as tidal stripping. A HOST OF DYNAMICALLYRight: Color magnitude diagram for all stars within 1 half light radius of And XIX. Red lines show magnitude limits to which spectra of S:N of 8, 5 and 3 can be taken within 1 hour. Higher S:N will be possible for our longer 2 hour exposures, allowing INTERESTING SYSTEMSaccurate metallicities to be measured for the brightest stars. AndBate et al. 2013XIX And XXI Stream Velocity dispersion (km/s) dispersion Velocity Figure 2: Number density map of all stars bright enough to observe with DEIMOS in And XIX and the nearby stream (both labeled). Our proposed targeting strategy to map out both features is shown with black rectangles, which represent the Radius (pc) DEIMOS field of view. Willman I Hercules 3 SUMMARY • Understanding dynamics not as simple as we’d hoped Messy, complicated dark matter laboratories… • Disrupting objects have interesting things to tell us Unusual orbits? Dark matter halo properties? • More (chemo)dynamics for stars = more information = better understanding MERGER? And II Mv~-12, rh~1000pc, DM31~110 kpc Velocity dispersion (km/s) dispersion Velocity Amorisco et al. 2014 And XXI Mv~-10, rh~1000pc, DM31~130 kpc.
Recommended publications
  • Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-Lat A
    The Astrophysical Journal, 834:110 (15pp), 2017 January 10 doi:10.3847/1538-4357/834/2/110 © 2017. The American Astronomical Society. All rights reserved. SEARCHING FOR DARK MATTER ANNIHILATION IN RECENTLY DISCOVERED MILKY WAY SATELLITES WITH FERMI-LAT A. Albert1, B. Anderson2,3, K. Bechtol4, A. Drlica-Wagner5, M. Meyer2,3, M. Sánchez-Conde2,3, L. Strigari6, M. Wood1, T. M. C. Abbott7, F. B. Abdalla8,9, A. Benoit-Lévy10,8,11, G. M. Bernstein12, R. A. Bernstein13, E. Bertin10,11, D. Brooks8, D. L. Burke14,15, A. Carnero Rosell16,17, M. Carrasco Kind18,19, J. Carretero20,21, M. Crocce20, C. E. Cunha14,C.B.D’Andrea22,23, L. N. da Costa16,17, S. Desai24,25, H. T. Diehl5, J. P. Dietrich24,25, P. Doel8, T. F. Eifler12,26, A. E. Evrard27,28, A. Fausti Neto16, D. A. Finley5, B. Flaugher5, P. Fosalba20, J. Frieman5,29, D. W. Gerdes28, D. A. Goldstein30,31, D. Gruen14,15, R. A. Gruendl18,19, K. Honscheid32,33, D. J. James7, S. Kent5, K. Kuehn34, N. Kuropatkin5, O. Lahav8,T.S.Li6, M. A. G. Maia16,17, M. March12, J. L. Marshall6, P. Martini32,35, C. J. Miller27,28, R. Miquel21,36, E. Neilsen5, B. Nord5, R. Ogando16,17, A. A. Plazas26, K. Reil15, A. K. Romer37, E. S. Rykoff14,15, E. Sanchez38, B. Santiago16,39, M. Schubnell28, I. Sevilla-Noarbe18,38, R. C. Smith7, M. Soares-Santos5, F. Sobreira16, E. Suchyta12, M. E. C. Swanson19, G. Tarle28, V. Vikram40, A. R. Walker7, and R. H. Wechsler14,15,41 (The Fermi-LAT and DES Collaborations) 1 Los Alamos National Laboratory, Los Alamos, NM 87545, USA; [email protected], [email protected] 2 Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden; [email protected] 3 The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, SE-106 91 Stockholm, Sweden 4 Dept.
    [Show full text]
  • 14734 (Stsci Edit Number: 18, Created: Wednesday, August 30, 2017 2:19:23 PM EST) - Overview
    Proposal 14734 (STScI Edit Number: 18, Created: Wednesday, August 30, 2017 2:19:23 PM EST) - Overview 14734 - Milky Way Cosmology: Laying the Foundation for Full 6-D Dynamical Mapping of the Nearby Universe Cycle: 24, Proposal Category: GO (Treasury, JWST Initative) (Availability Mode: SUPPORTED) INVESTIGATORS Name Institution E-Mail Dr. Nitya Kallivayalil (PI) (Contact) The University of Virginia [email protected] Prof. Andrew Wetzel (CoI) (Contact) University of California - Davis [email protected] Dr. Joshua D. Simon (CoI) Carnegie Institution of Washington [email protected] Dr. Tobias Fritz (CoI) The University of Virginia [email protected] Dr. Erik Tollerud (CoI) Space Telescope Science Institute [email protected] Dr. Alis Deason (CoI) (ESA Member) Durham Univ. [email protected] Dr. Sangmo Tony Sohn (CoI) Space Telescope Science Institute [email protected] Dr. Roeland P. van der Marel (CoI) Space Telescope Science Institute [email protected] Dr. Gurtina Besla (CoI) University of Arizona [email protected] Prof. Marla C. Geha (CoI) Yale University [email protected] Dr. Steven R. Majewski (CoI) The University of Virginia [email protected] Dr. Evan Kirby (CoI) California Institute of Technology [email protected] Prof. Puragra Guhathakurta (CoI) University of California - Santa Cruz [email protected] Dr. Thomas M. Brown (CoI) Space Telescope Science Institute [email protected] Dr. Jay Anderson (CoI) Space Telescope Science Institute [email protected] VISITS 1 Proposal 14734 (STScI Edit Number: 18,
    [Show full text]
  • Gaia RR Lyrae Stars in Nearby Ultra-Faint Dwarf Satellite Galaxies
    Draft version January 7, 2020 Typeset using LATEX twocolumn style in AASTeX62 Gaia RR Lyrae Stars in Nearby Ultra-Faint Dwarf Satellite Galaxies A. Katherina Vivas,1 Clara Mart´ınez-Vazquez´ ,1 and Alistair R. Walker1 1Cerro Tololo Inter-American Observatory, NSF's National Optical-Infrared Astronomy Research Laboratory, Casilla 603, La Serena, Chile Submitted to ApJSS ABSTRACT We search for RR Lyrae stars in 27 nearby (< 100 kpc) ultra-faint dwarf satellite galaxies using the Gaia DR2 catalog of RR Lyrae stars. Based on proper motions, magnitudes and location on the sky, we associate 47 Gaia RR Lyrae stars to 14 different satellites. Distances based on RR Lyrae stars are provided for those galaxies. We have identified RR Lyrae stars for the first time in the Tucana II dwarf galaxy, and find additional members in Ursa Major II, Coma Berenices, Hydrus I, Bootes I and Bootes III. In addition we have identified candidate extra-tidal RR Lyrae stars in six galaxies which suggest they may be undergoing tidal disruption. We found 10 galaxies have no RR Lyrae stars neither in Gaia nor in the literature. However, given the known completeness of Gaia DR2 we cannot conclude these galaxies indeed lack variable stars of this type. Keywords: galaxies: dwarf | galaxies: stellar content | Local Group | stars: variables: RR Lyrae stars 1. INTRODUCTION horizontal branch (HB), which makes the task of mea- Ultra-Faint dwarfs (UFDs) are the most common suring an accurate distance to the UFDs very difficult. type among the satellite galaxies of the Milky Way. The main sequence turnoff is not generally available These tiny galaxies are valuable for our understanding from the discovery (survey) photometry if the galaxy of galaxy formation since they are the smallest dark- is more than ∼ 50 kpc distant, and in addition, the con- matter dominated systems known.
    [Show full text]
  • Arxiv:1508.03622V2 [Astro-Ph.GA] 6 Nov 2015 – 2 –
    Eight Ultra-faint Galaxy Candidates Discovered in Year Two of the Dark Energy Survey 1; 2;3; 4;5 6;7 6;7 8;4;5 A. Drlica-Wagner ∗, K. Bechtol y, E. S. Rykoff , E. Luque , A. Queiroz , Y.-Y. Mao , R. H. Wechsler8;4;5, J. D. Simon9, B. Santiago6;7, B. Yanny1, E. Balbinot10;7, S. Dodelson1;11, A. Fausti Neto7, D. J. James12, T. S. Li13, M. A. G. Maia7;14, J. L. Marshall13, A. Pieres6;7, K. Stringer13, A. R. Walker12, T. M. C. Abbott12, F. B. Abdalla15;16, S. Allam1, A. Benoit-L´evy15, G. M. Bernstein17, E. Bertin18;19, D. Brooks15, E. Buckley-Geer1, D. L. Burke4;5, A. Carnero Rosell7;14, M. Carrasco Kind20;21, J. Carretero22;23, M. Crocce22, L. N. da Costa7;14, S. Desai24;25, H. T. Diehl1, J. P. Dietrich24;25, P. Doel15, T. F. Eifler17;26, A. E. Evrard27;28, D. A. Finley1, B. Flaugher1, P. Fosalba22, J. Frieman1;11, E. Gaztanaga22, D. W. Gerdes28, D. Gruen29;30, R. A. Gruendl20;21, G. Gutierrez1, K. Honscheid31;32, K. Kuehn33, N. Kuropatkin1, O. Lahav15, P. Martini31;34, R. Miquel35;23, B. Nord1, R. Ogando7;14, A. A. Plazas26, K. Reil5, A. Roodman4;5, M. Sako17, E. Sanchez36, V. Scarpine1, M. Schubnell28, I. Sevilla-Noarbe36;20, R. C. Smith12, M. Soares-Santos1, F. Sobreira1;7, E. Suchyta31;32, M. E. C. Swanson21, G. Tarle28, D. Tucker1, V. Vikram37, W. Wester1, Y. Zhang28, J. Zuntz38 (The DES Collaboration) arXiv:1508.03622v2 [astro-ph.GA] 6 Nov 2015 { 2 { *[email protected] [email protected] 1Fermi National Accelerator Laboratory, P.
    [Show full text]
  • The Velocity Anisotropy of the Milky Way Satellite System
    MNRAS 000,1–16 (2019) Preprint 6 August 2019 Compiled using MNRAS LATEX style file v3.0 The velocity anisotropy of the Milky Way satellite system Alexander H. Riley,1? Azadeh Fattahi,2 Andrew B. Pace,1y Louis E. Strigari,1 Carlos S. Frenk,2 Facundo A. Gómez,3;4 Robert J. J. Grand,5;6;7 Federico Marinacci,8 Julio F. Navarro,9 Rüdiger Pakmor,7 Christine M. Simpson,10;11 and Simon D. M. White7 1Department of Physics and Astronomy, Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA 2Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK 3Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile 4Departamento de Física y Astronomía, Universidad de La Serena, Av. Juan Cisternas 1200 N, La Serena, Chile 5Heidelberger Institut für Theoretische Studien, Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany 6Zentrum für Astronomie der Universität Heidelberg, Astronomisches Recheninstitut, Mönchhofstr. 12-14, 69120 Heidelberg, Germany 7Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748, Garching, Germany 8Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 9Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1, Canada 10Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA 11Department of Astronomy & Astrophysics, University of Chicago, Chicago, IL 60637, USA Accepted 2019 April 4. Received 2019 March 24; in original form 2018 October 24 ABSTRACT We analyse the orbital kinematics of the Milky Way (MW) satellite system utilizing the latest systemic proper motions for 38 satellites based on data from Gaia Data Release 2.
    [Show full text]
  • Pos(ICRC2019)509 Factors and Incorporate the − J Factor in a Combined Analysis
    Prospect for dark matter annihilation signatures from gamma-ray observation of dwarf galaxies by LHAASO PoS(ICRC2019)509 Xiao-Jun Bi∗ Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China E-mail: [email protected] Su-Jie Lin Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China E-mail: [email protected] Peng-Fei Yin Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China E-mail: [email protected] The Large High Altitude Air Shower Observatory (LHAASO) is a next generation observatory for high energy gamma-rays and cosmic rays with a wide field of view, which is sensitive to gamma-rays from 300 GeV to 1 PeV. LHAASO is an ideal experiment to explore the gamma-ray signatures induced by annihilation of heavy dark matter (DM) particles in dwarf spheroidal satel- lite galaxies (dSphs). In this study, we investigate the LHAASO sensitivity to the DM annihilation at DM masses above 1TeV. We consider nineteen dSphs with large J−factors and incorporate the statistical uncertainties of the J−factor in a combined analysis. Comparing with current limits, we find that LHAASO is sensitive to the annihilation signatures for DM masses from several TeV up to 100 TeV. 36th International Cosmic Ray Conference -ICRC2019- July 24th - August 1st, 2019 Madison, WI, U.S.A. ∗Speaker. ⃝c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
    [Show full text]
  • Dark Matter Gets a Little Darker
    Spotlights Dark Matter Gets Such a weakly interacting massive HAWC is not a system of lenses and mirrors a Little Darker particle (WIMP) could account for the but a collection of ultrapure water tanks In the 1970s, astronomers realized that majority of dark matter (with comparatively wired up with ultrasensitive light detectors. galaxies are filled with dark matter: little dark matter in the form of chunkier Whenever a very-high-energy particle matter that doesn’t emit, absorb, or block things like black holes and very dim stars). from space collides with an air molecule light (like stars, gas, or dust) but still But if a WIMP can pass clean through overhead, a spray of subatomic particles exerts a gravitational force, as measured the earth, then it can also pass clean rains downward and generates a faint flash by the orbital speeds of stars and other through the specialized machines that of blue light in HAWC’s water tanks. It just objects circling around the centers of earthlings build to detect it. Nonetheless, so happens that—in theory, at least— galaxies. For a typical galaxy like our own a number of dark matter detectors have WIMPs that collide with one another or Milky Way, there is about ten times more been built, running for years on end and decay should produce very-high-energy dark matter than all the “regular” forms accumulating enough non-detections to gamma rays capable of triggering of matter combined. rule out various categories of WIMPs and this event. Four decades of intensive scrutiny other dark matter candidates.
    [Show full text]
  • Neutron-Capture Elements in Dwarf Galaxies III
    Neutron-capture elements in dwarf galaxies III. A homogenized analysis of 13 dwarf spheroidal and ultra-faint galaxies Reichert, M.; Hansen, C. J.; Hanke, M.; Skuladottir, A.; Arcones, A.; Grebel, E. K. Published in: Astronomy & Astrophysics DOI: 10.1051/0004-6361/201936930 Publication date: 2020 Document version Publisher's PDF, also known as Version of record Document license: CC BY-NC Citation for published version (APA): Reichert, M., Hansen, C. J., Hanke, M., Skuladottir, A., Arcones, A., & Grebel, E. K. (2020). Neutron-capture elements in dwarf galaxies III. A homogenized analysis of 13 dwarf spheroidal and ultra-faint galaxies. Astronomy & Astrophysics, 641, [A127]. https://doi.org/10.1051/0004-6361/201936930 Download date: 09. Oct. 2021 A&A 641, A127 (2020) Astronomy https://doi.org/10.1051/0004-6361/201936930 & c ESO 2020 Astrophysics Neutron-capture elements in dwarf galaxies III. A homogenized analysis of 13 dwarf spheroidal and ultra-faint galaxies?,?? M. Reichert1, C. J. Hansen2,3, M. Hanke4, Á. Skúladóttir2,5,6 , A. Arcones1,7, and E. K. Grebel4 1 Technische Universität Darmstadt, Institut für Kernphysik, Schlossgartenstr. 2, 64289 Darmstadt, Germany e-mail: [email protected] 2 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany e-mail: [email protected] 3 Copenhagen University, Dark Cosmology Centre, The Niels Bohr Institute, Vibenshuset, Lyngbyvej 2, 2100 Copenhagen, Denmark 4 Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, 69120 Heidelberg, Germany 5 Dipartimento di Fisica e Astronomia, Universitá degli Studi di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy 6 INAF/Osservatorio Astrofisico di Arcetri, Largo E.
    [Show full text]
  • Universidad De Chile Facultad De Ciencias Físicas Y Matemáticas Departamento De Astronomía
    UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE ASTRONOMÍA A COMPREHENSIVE PHOTOMETRIC STUDY OF THE MILKY WAY’S OUTER HALO SATELLITES TESIS PARA OPTAR AL GRADO DE DOCTOR EN CIENCIAS, MENCIÓN ASTRONOMÍA SEBASTIÁN ANDRÉS MARCHI LASCH PROFESOR GUÍA: RICARDO MUÑOZ VIDAL MIEMBROS DE LA COMISIÓN: JULIO CHANAMÉ DOMÍNGUEZ JAMES JENKINS PAULINA LIRA TEILLERY Este trabajo ha sido parcialmente financiado por CONICYT, DAS SANTIAGO DE CHILE 2020 RESUMEN DE LA MEMORIA PARA OPTAR AL TÍTULO DE DOCTOR EN CIENCIAS, MENCIÓN ASTRONOMÍA POR: SEBASTIÁN ANDRÉS MARCHI LASCH FECHA: 2020 PROF. GUÍA: RICARDO MUÑOZ VIDAL UN ESTUDIO FOTOMÉTRICO EXHAUSTIVO DE LOS OBJETOS SATÉLITES DEL HALO EXTERNO DE LA VÍA LÁCTEA. Una de las interrogantes más importantes en la astronomía Galáctica es entender los procesos responsables de la formación y evolución de la Vía Láctea. La mayor parte de la información para estudiar las etapas tempranas de formación Galáctica está contenida en el halo y sus subestructuras, dominadas por poblaciones estelares antiguas. En esta tesis, realizo un estudio fotométrico completo de los satélites del halo externo de la Vía Láctea. Ellos se agrupan en cúmulos globulares, galaxias enanas esferoidales y galaxias enanas ultra-débiles. Para esto, usé un set de datos que al mismo tiempo es profundo, de campo amplio y altamente homogéneo, a diferencia de los existentes en la literatura. En la primera parte de esta tesis, presento evidencia de una correlación entre el índice de Sérsic y el radio efectivo, seguida por una
    [Show full text]
  • Reconciling Dwarf Galaxies with LCDM Cosmology
    dark matter in baryonicstars simulation Reconciling Dwarf Galaxies with LCDM Cosmology Andrew Wetzel Moore Prize Fellow Carnegie Fellow in Theoretical Astrophysics with the F R E collaboration Feedback In Realistic Environments http://www.astrophoto.com/M82.htm cosmological structure formation dwarf galaxies Massfluctuations (or length scale) Andrew Wetzel Caltech - Carnegie The Astrophysical Journal Letters, 802:L18 (6pp), 2015 April 1 Laevens et al. MW-like galaxy: 100 billion stars Magellanic Clouds: 1 billion stars Fornax:Figure 1. Left:10 the combinedmillion PS1-LBC CMDstars of all sources within the central 2rh region of Lae 2/Tri II. The single epoch PS1 photometry was used at the bright end (iP1,0 < 19; squares), with LBC photometry supplementing the faint end (iP1,0 > 19; largeTriangulum dots). The orange dashed line indicatesII: 500 the separation stars between the LBC and PS1 data. The red box highlights the clear main sequence of the stellar system, the blue box indicates two possible HB stars, and the green box identifies likely blue stragglers. Right: spatial distribution of all sources corresponding to the CMD on the left. Large dots correspond to the stars falling within the red CMD box in the left panel and show a clear overdensity. The two blue stars indicate the possible HB stars, whereas the red ellipse corresponds to the region within the favored two half- mass–radius of the system, as inferred below. In this paper, magnitudes are dereddened using the Schlegel searching for (2′,4′, or 8′) and a negative Gaussian with a et al. (1998) maps, adopting the extinction coefficients of much larger kernel (14′, 28′, or 56′), to account for the slowly Schlafly & Finkbeiner (2011).
    [Show full text]
  • Process Enhanced Metal-Poor Halo Stars in Now-Destroyed Ultra-Faint Dwarf Galaxies
    The Origin of r -process Enhanced Metal-poor Halo Stars In Now-destroyed Ultra-faint Dwarf Galaxies The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Brauer, Kaley et al. “The Origin of r -process Enhanced Metal- poor Halo Stars In Now-destroyed Ultra-faint Dwarf Galaxies.” Astrophysical Journal, 87, 2 (February 2019): 247 © 2019 The Author(s) As Published 10.3847/1538-4357/AAFAFB Publisher American Astronomical Society Version Final published version Citable link https://hdl.handle.net/1721.1/128693 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astrophysical Journal, 871:247 (12pp), 2019 February 1 https://doi.org/10.3847/1538-4357/aafafb © 2019. The American Astronomical Society. All rights reserved. The Origin of r-process Enhanced Metal-poor Halo Stars In Now-destroyed Ultra-faint Dwarf Galaxies Kaley Brauer1,2 , Alexander P. Ji3,2,9 , Anna Frebel1,2 , Gregory A. Dooley4 , Facundo A. Gómez5,6, and Brian W. O’Shea7,8,2 1 Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA [email protected] 2 Joint Institute for Nuclear Astrophysics—Center for Evolution of the Elements, USA 3 Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101, USA 4 Google, 111 8th Ave., New York, NY 10011, USA 5 Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile 6 Departamento de Física y Astronomía, Universidad de La Serena, Av.
    [Show full text]
  • Alexander P. Ji E-Mail: [email protected] Twitter: @Alexanderpji Website: Github
    Alexander P. Ji E-mail: [email protected] Twitter: @alexanderpji Website: www.alexji.com Github: www.github.com/alexji RESEARCH INTERESTS: NEAR-FIELD COSMOLOGY The first stars and galaxies: metal-free stars, first galaxy relics, reionization The origin of the elements, especially the rapid neutron-capture process Milky Way halo substructure and the nature of dark matter EDUCATION AND APPOINTMENTS Assistant Professor, University of Chicago, Astronomy & Astrophysics Jul 2021 { now Senior Member, University of Chicago, Kavli Institute for Cosmological Physics Jul 2021 { now Carnegie Fellow, Observatories of the Carnegie Institution for Science Aug 2020 { Jun 2021 Hubble Fellow, Observatories of the Carnegie Institution for Science Aug 2017 { Jul 2020 Ph. D. Physics, Massachusetts Institute of Technology Jun 2017 Advised by Anna Frebel, Astrophysics division M.S. Statistics, Stanford University Jun 2012 Focus on Applied Statistics and Machine Learning B. S. Physics, Stanford University Jun 2011 Minor in Computer Science HONORS, AWARDS, AND GRANTS Carnegie Fellowship 2020-2021 Hubble Fellowship 2017-2020 Thacher Research Award in Astronomy Jun 2020 Carnegie Institution P 2 Grant Apr 2019 APS DAP Cecilia Payne-Gaposchkin Thesis Award Finalist Apr 2019 Martin Deutsch Award for Excellence in Experimental Physics, MIT Sep 2016 Young Scientist at 66th Lindau Nobel Laureate Meeting, Germany Jun 2016 Best Poster Prize, Nuclei in the Cosmos XIV, Japan Jun 2016 Henry Kendall Teaching Award, MIT Sep 2014 Whiteman Fellow, MIT Sep 2012 - Aug 2013 Outstanding
    [Show full text]