Strategies for the Synthesis of Glycosylated Small Molecule

Total Page:16

File Type:pdf, Size:1020Kb

Strategies for the Synthesis of Glycosylated Small Molecule University of Connecticut Masthead Logo OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 4-11-2019 Strategies for the Synthesis of Glycosylated Small Molecule Libraries and New Bioactive Compounds Zachary Cannone University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Cannone, Zachary, "Strategies for the Synthesis of Glycosylated Small Molecule Libraries and New Bioactive Compounds" (2019). Doctoral Dissertations. 2089. https://opencommons.uconn.edu/dissertations/2089 Strategies for the Synthesis of Glycosylated Small Molecule Libraries and New Bioactive Compounds Zachary Cannone Ph.D., University of Connecticut, 2019 Abstract: The synthesis of glycosylated small molecule compound libraries remains a difficult challenge in the field of organic chemistry. Leading techniques are hindered by the requirement of optimization based on substrate, and the generation of non-classical glycoside products. The development of a platform which takes advanced glycoside intermediates and utilizes reactive handles on the aglycone for rapid diversification to final products has been completed in this research. Use of amino sugars, derived from known antibiotics, as the carbohydrate component of final compounds was intended to exploit known binding interactions with biomacromolecules. Final compounds indeed showed ability to inhibit bacterial protein synthesis in vitro and limit growth in culture, suggesting binding interactions were retained. Development of new generations of therapeutics based on current classes of antibiotics remains a primary means of new drug discovery. The aminoglycoside family of antibiotics is no exception to this, as current members of this class show promise of improved pharmacological properties with diversification to their structures. Studies have been conducted but have not addressed novel alkylation patterns on the amino sugar component of these compounds. In this work we have shown the development of a synthetic methodology to access mono-, di-, and mixed- alkyl kanosamine sugars. Elaboration to glycosides and subsequent diversification efforts have led to the finding of novel bacterial protein synthesis inhibitors. New catalytic methodologies can lead to powerful synthetic transformations which would be inaccessible or of great difficulty otherwise. In particular, asymmetric hydrogenation reactions, while simple in terms of chemical transformation, yield enantiomerically pure compounds which are of great importance to drug discovery efforts. In this work, the use of prochiral starting materials and an Iridium based catalytic system using bidentate chiral phosphine ligands has been shown to yield a wide range of 2-substituted 1,4-benzodioxanes with excellent enantioselectivities. Compound bearing this chemical motif are known to be privileged structures in medicinal chemistry and have great potential for further development to lead compounds. Strategies for the Synthesis of Glycosylated Small Molecule Libraries and New Bioactive Compounds Zachary Cannone B.S., University of Connecticut, Storrs, CT 06269 A dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Connecticut [2019] i Copyright by Zachary Cannone [2019] ii APPROVAL PAGE Doctor of Philosophy Dissertation Strategies for the Synthesis of Glycosylated Small Molecule Libraries and New Bioactive Compounds Presented by Zachary Cannone, B.S. Major Advisor ___________________________________________________________________ Mark W. Peczuh Associate Advisor ___________________________________________________________________ Nicholas Leadbeater Associate Advisor ___________________________________________________________________ Dennis Wright University of Connecticut [2019] iii Acknowledgements First and foremost, I would like to thank my family for their love and support during the course of my graduate career, and throughout my life. Particular appreciation is given to my parents, whose unbounding love have kept me driven, motivated, and focused. The work presented in this thesis would not have come to fruition without their instilling a desire to pursue higher education and bettering myself. For that, I dedicate this work to them. A very special thank you is extended to my advisor, mentor, and sage, professor Mark W. Peczuh. The wisdom and patience he has displayed in the course of our time together has guided me to become not just a better scientist, but a better person. I will forever be grateful for the advice and support he has extended, and hope to continue to view him as a mentor as I embark on my post graduate career. I would like to thank the chemical development team at Boehringer Ingelheim for my time their as an intern. My mentors, Eugene Chong, and Bo Qu displayed great patience and a true desire to teach the techniques and skills required in an industrial setting. I look at this work as rounding off my graduate training as a chemist, and as an enlightening period in my life. Lastly, a very sincere thank you to my best friends, sons, and muses; King Guaps Donald Hulio Esperanzo Poops, First of his name, Duke of Enfield, Ruler of Kingdom 778A and Prince Oliver Sebastian Bojangles Poops, First of his name, Duke of Willington, and rightful heir to the throne of Kingdom 778A *With the submission and acceptance of this dissertation, by virtue of the authority vested in me by the University of Connecticut as an alumnus (B.S. 2013, Ph.D. 2019), I hereby confer the degree of honorary co-PhD to the aforementioned Guaps and Oliver, and do declare they are entitled to all rights, honors, privileges, titles, and responsibilities bestowed by such degree. iv Table of contents 1. Post Glycosylation Diversification 1-2 1.1. Introduction to antibiotics 3-7 1.2. Classes of antibiotics 7-9 1.3. Carbohydrate library synthesis 9-15 1.4. Fluorescent probes used in drug discovery 15-20 1.5. Project design 20-22 1.6. Results and discussion 22-41 1.7. Conclusion 41 1.8. Experimental 42-56 1.9. References 57-62 2. A Versatile Method for the Preparation of Alkylated Kanosamine Sugars 63-4 2.1. Introduction to amines 65 2.2. synthetic utility of amines 65-69 2.3. Aminoglycosides 69-72 2.4. Mechanism of action 72-73 2.5. Resistance mechanisms and diversification efforts 73-79 2.6. Project design 79 2.7. Results and discussion 79-92 2.8. Conclusion 92 2.9. Experimental 93-146 2.10. References 147-150 v 3. Iridium Catalyzed Hydrogenations to Access 2-substituted 1,4-benzodioxanes 151-2 3.1. Introduction to catalysis 153 3.2. Developments of hydrogenation reactions 153-155 3.3. Homogeneous catalysis 155-158 3.4. 2-substituted 1,4-benzodioxanes 158-164 3.5. Project design 164-165 3.6. Results and discussion 165-180 3.7. Conclusion 180 3.8. Experimental 181-204 3.9. References 205-208 vi List of schemes 1.1. Glycorandomization of vancomycin aglycone 12 1.2. Neo glycorandomization 13 1.3. “Building block” strategy for macrolide total synthesis 14 1.4. Post Glycosylation Diversification (PGD) 21 1.5. Synthesis of thioglycoside donor from erythromycin 23 1.6. Glycosylation to PGD intermediates 26 1.7. Synthesis of hydroxymethyl acceptor 34 1.8. Synthesis of modified aglycone mesityl derivatives 35 1.9. Synthesis of erythromycin-BODIPY probe 38 1.10. Initially proposed lincosamide probe and E2 elimination product 39 1.11. Synthesis of lincosamide-BODIPY probe 40 2.1. Azithromycin semisynthesis from erythromycin 66 2.2. Alkylation with alkyl halides 68 2.3. Aryl amines via Buckwald-Hartwig coupling 69 2.4. Techniques for the mono alkylation of amines 70 2.5. Synthesis of dimethyl kanosamine through key triflate intermediate 80 2.6. Acid catalyzed diacetonide cleavage 83 2.7. Mono deprotection of dimethyl diacetonide substrate 83 2.8. One pot mixed alkylation to dialkyl peracetyl kanosamine 85 2.9. Synthesis of neamine glycosyl acceptor and dimethyl kanosamine thioglycoside donor 86 2.10. Kanosamine lactol to anomeric bromide glycosyl donor 90 vii 2.11. Palladium coupling diversifications on kanosamine PGD intermediates 91 2.12. Cylcoaddition diversifications of kanosamine PGD intermediate 91 3.1. Hydrogenation of molecular oxygen 154 3.2. Hydrogenation of carbon dioxide 154 3.3. Hydrogenation of molecular nitrogen 155 3.4. General transformation from prochiral starting material 165 3.5. Synthesis of 2-bromo 1,4-benzodioxine starting material 166 viii List of tables 1.1. Proof of concept alkyl and macrolide glycosylations 24 1.2. Desosamine PGD cycloaddition derivatives 27 1.3. Desosamine PGD aminoethyl derivatives 28 1.4. Desosamine PGD palladium coupling meta derivatives 30 1.5. MIC data for meta PGD derivatives 31 1.6. Desosmaine PGD palladium coupling para derivatives 32 1.7. MIC data for para PGD derivatives 33 1.8. MIC data for modified aglycone mesityl derivatives 36 2.1. C-4 modified kanamycin derivatives and their MIC activity 76 2.2. Conformationally constrained kanamycin derivatives and their MIC activity 77 2.3. Kanosamine modified kanamycin derivatives and their MIC activity 78 2.4. Mono and di alkylations of diacetonide substrate 81 2.5. Mixed alkylations of diacetonide substrate 83 2.6. Glycosylations of dimethyl kanosamine anomeric bromide 90 3.1. Rhodium catalyzed asymmetric hydrogenation route to 1,4-benzodioxanes 163 3.2. Iridium catalyzed asymmetric hydrogenation route to 1,4-benzodioxanes 164 3.3. Ligand screen on 2-cycloproply test substrate 167 3.4. Screen
Recommended publications
  • Chemoenzymatic Synthesis of Glycosylated Macrolactam Analogues of the Macrolide Antibiotic YC-17
    FULL PAPERS DOI:10.1002/adsc.201500250 Chemoenzymatic Synthesis of Glycosylated Macrolactam Analogues of the Macrolide Antibiotic YC-17 Pramod B. Shinde,a,e Hong-Se Oh,b Hyemin Choi,c Kris Rathwell,a Yeon Hee Ban,a Eun Ji Kim,a Inho Yang,a Dong Gun Lee,c David H. Sherman,d Han-Young Kang,b,*and YeoJoon Yoona,* a Department of Chemistry andNano Science,Ewha Womans University,Seoul 120-750, Republic of Korea Fax: (+82)-2-3277-3419;phone:(+ 82)-2-3277-4446;e-mail:[email protected] b Department of Chemistry,Chungbuk National University,Cheongju 361-763, Republic of Korea Fax: (+82)-43-267-2279;phone:(+ 82)-43-261-2305;e-mail:[email protected] c School of Life Sciences,BK21Plus KNU Creative BioResearch Group,College of Natural Sciences,Kyungpook National University,Daehak-ro 80, Buk-gu, Daegu 702-701,Republic of Korea d Department of Medicinal Chemistry,Life Science Institute,DepartmentofChemistry,and Department of Microbiology &Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA e Present address:Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University (formerly University of Pune), Pune 411-007, India Received:March 12, 2015; Revised:June 15, 2015;Published online:August 19, 2015 Supporting information for this article is availableonthe WWW under http://dx.doi.org/10.1002/adsc.201500250. Abstract: YC-17 is a12-membered ring macrolide sugars for subsequent glycosylation. Some YC-17 antibiotic producedfrom Streptomyces venezuelae macrolactam analogues were active against erythro- ATCC 15439
    [Show full text]
  • An Effort to Address Antibiotic Resistance
    Desmethyl Analogs of Telithromycin: An Effort to Address Antibiotic Resistance A Dissertation Submitted to the Temple University Graduate Board in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy By Venkata Velvadapu August, 2011 Examining Committee Members: Dr. Rodrigo B. Andrade, Research Advisor, Chemistry Dr. Franklin A. Davis, Committee Chair, Chemistry Dr. William M. Wuest, Committee Member, Chemistry Dr. Kevin C. Cannon, External Committee Member, Chemistry i © by Venkata Velvadapu 2011 All Rights Reserved ii ABSTRACT The development of antibiotic resistance has been an inevitable problem leading to an increased demand for novel antibacterial drugs. To address this need, we initiated a structure-based drug design program wherein desmethyl analogues (i.e., CH 3H) of the 3rd -generation macrolide antibiotic telithromycin were prepared via chemical synthesis. Our approach will determine the biological functions of the methyl groups present at the C-4, C-8 and C-10 position of the ketolide. These structural modifications were proposed based on the structural data interpreted by Steitz and co-workers after obtaining crystal structures of macrolides erythromycin and telithromycin bound to the 50S ribosomal subunits of H.marismortui. Steitz argued that in bacteria, A2058G mutations confer resistance due to a steric clash of the amino group of guanine 2058 with the C-4 methyl group. In turn, we hypothesize that our desmethyl analogs are predicted to address antibiotic resistance arising from this mutation by relieving the steric clash. To readily access the analogs, we proposed to synthesize, 4,8,10-tridesmethyl telithromycin, 4,10-didesmethyl telithromycin, 4,8-didesmethyl telithromycin and 4- desmethyl telithromycin as four targeted desmethyl analogs of telithromycin.
    [Show full text]
  • Nature Nurtures the Design of New Semi-Synthetic Macrolide Antibiotics
    The Journal of Antibiotics (2017) 70, 527–533 OPEN Official journal of the Japan Antibiotics Research Association www.nature.com/ja REVIEW ARTICLE Nature nurtures the design of new semi-synthetic macrolide antibiotics Prabhavathi Fernandes, Evan Martens and David Pereira Erythromycin and its analogs are used to treat respiratory tract and other infections. The broad use of these antibiotics during the last 5 decades has led to resistance that can range from 20% to over 70% in certain parts of the world. Efforts to find macrolides that were active against macrolide-resistant strains led to the development of erythromycin analogs with alkyl-aryl side chains that mimicked the sugar side chain of 16-membered macrolides, such as tylosin. Further modifications were made to improve the potency of these molecules by removal of the cladinose sugar to obtain a smaller molecule, a modification that was learned from an older macrolide, pikromycin. A keto group was introduced after removal of the cladinose sugar to make the new ketolide subclass. Only one ketolide, telithromycin, received marketing authorization but because of severe adverse events, it is no longer widely used. Failure to identify the structure-relationship responsible for this clinical toxicity led to discontinuation of many ketolides that were in development. One that did complete clinical development, cethromycin, did not meet clinical efficacy criteria and therefore did not receive marketing approval. Work on developing new macrolides was re-initiated after showing that inhibition of nicotinic acetylcholine receptors by the imidazolyl-pyridine moiety on the side chain of telithromycin was likely responsible for the severe adverse events.
    [Show full text]
  • Synthesis and Biological Investigation of New 400-Malonyl Tethered Derivatives of Erythromycin and Clarithromycin Daniel Sherman,A Liqun Xiong,B Alexander S
    Bioorganic & Medicinal Chemistry Letters 16 (2006) 1506–1509 Synthesis and biological investigation of new 400-malonyl tethered derivatives of erythromycin and clarithromycin Daniel Sherman,a Liqun Xiong,b Alexander S. Mankinb and Artem Melmana,* aDepartment of Organic Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel bCenter for Pharmaceutical Biotechnology, University of Illinois, Chicago, IL 60607, USA Received 25 August 2005; accepted 12 December 2005 Available online 4 January 2006 Abstract—A new approach to 400-substituted derivatives of erythromycin and clarithromycin was developed by converting them into corresponding 400-malonic monoesters. Subsequent carbodiimide coupling with alcohols and amines provided new macrolide deriv- atives that are capable of binding to 50S ribosomal subunits and inhibiting protein synthesis in cell-free system. Ó 2005 Elsevier Ltd. All rights reserved. Erythromycin 1a and other macrolide antibiotics X 1 OR (Scheme 1) have been used for the treatment of a variety R 2 of bacterial infections for the past 50 years. Low toxicity R HO NMe2 O 2' and cost as well as low incidence of side effects resulted 3 O R4 O in extensive use of erythromycin both for treatment of O R3 infections and prophylactic purposes.1 The active use 1a R=H, R1=R2=OH, R3=H, R4= cladinose, X= C=O of the drug resulted in a wide spread of macrolide resis- 1b R=Me, R1=R2=OH, R3=H, R4= cladinose, X= C=O tance in a number of pathogenic strains. As an example, 1 2 3 4 1c R=H, R =R =OH, R =H, R = cladinose, X= N(Me)CH2 in Asia the majority (up to 80% in Hong Kong) of Strep- 1 2 3 4 tococcus pneumoniae strains carry resistance to macro- 1d R=H, R =R =OH, R =H, R = cladinose, 2 X= C=NOCH2OCH2CH2OMe lide antibiotics.
    [Show full text]
  • Simultaneous Determination of Various Macrolides by Liquid Chromatography/Mass Spectrometry Youn-Hwan Hwang, Jong-Hwan Lim, Byung-Kwon Park and Hyo-In Yun*
    J. Vet. Sci. (2002), 3(2), 103-108 J O U R N A L O F Veterinary Science Simultaneous Determination of Various Macrolides by Liquid Chromatography/Mass Spectrometry Youn-Hwan Hwang, Jong-Hwan Lim, Byung-Kwon Park and Hyo-In Yun* Division of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chungnam National University Received J a n . 4, 2002 / Accept ed Ap r . 29, 2002 ABSTRACT7) poultry, those are 0.125 g/kg for erythromycin and 0.1 g/kg for tylosin. In order to monitor macrolide residues, simple, Macrolides are frequently use d in veterinary confirmatory and simultaneous analytical methods are m edicine as therape utic and preve ntive agents for required. various diseases. It is difficult to determine m acrolides Microbiological assays were widely used for determination sim ultaneously w ith conventional m ethods due to of macrolide antibiotics [3, 4]. Unfortunately, these methods their sim ilar structures. A sim ultaneous analysis for could not be used for simultaneous analysis due to lacks of erythrom ycin, roxithrom ycin, tiam ulin and tylosin their specificities. Gas chromatography-mass spectrometry w ith LC/MS has bee n develope d. Se paration w as (GC-MS) supplies good sensitivity and selectivity [5], but pe rform ed on C18 reversed phase colum n. Mobile direct analysis for macrolides antibiotics is difficult because phase w as gradiently flow e d w ith 10 m M am m onium of their thermal labile property and low volatility. acetate and m ethanol. The m ass spectrome ter w as Liquid chromatographic methods have been reported for run in the positive m ode and sele ctive ion monitoring the determination of macrolide antibiotics: UV absorption m ode.
    [Show full text]
  • New Catalysts for Amine Alkylation Reactions Promoted by Hydrogen Borrowing
    New catalysts for amine alkylation reactions promoted by hydrogen borrowing Roberta Lanaro Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Chemistry June 2015 The candidate confirms that the work submitted is his/her own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. The right of Roberta Lanaro to be identified as Author of this work has been asserted by her in accordance with the Copyright, Designs and Patents Act 1988. © 2015 The University of Leeds and Roberta Lanaro ii Acknowledgements First, I would like to thank Steve for his invaluable guidance, for all the ideas and advice throughout the entire project and for his support over the past three and a half years. I must also thank my co-supervisors: Paddy McGowan and John Blacker for their ideas and advice, particularly in the organometallic and kinetic fields. I would like to thank my industrial supervisor, Lianne Frodsham, for her support and help throughout the project and for her supervision during my CASE placement in AstraZeneca. I would like to thank the University of Leeds, Kocienski Bequest and AstraZeneca for funding. I must thank the technical staff in the University of Leeds, particularly Ian Blakeley and Tanja Marinko-Covell for the elemental analyses and Helena Shepherd and Chris Pask who recorded all the X-ray crystal structures of my complexes.
    [Show full text]
  • Azalides from Azithromycin to New Azalide Derivatives Stjepan Mutak
    J. Antibiot. 60(2): 85–122, 2007 THE JOURNAL OF REVIEW ARTICLE ANTIBIOTICS Azalides from Azithromycin to New Azalide Derivatives Stjepan Mutak Received: August 22, 2006 / Accepted: January 22, 2007 © Japan Antibiotics Research Association Abstract Azalides are semi-synthetic macrolides, in which a nitrogen atom is introduced into a macrolactone ring via a Beckmann rearrangement. Starting from erythromycin, oximes, depending on the reaction conditions lactams, or bicyclic-imino-ethers were formed, which were further reduced to aminolactones. The cyclic amine 9a- became the precursor for novel, significantly more active derivatives, especially for 9-dihydro-9-deoxo-9a-methyl-9a-aza-9a- homoerythromycin A with the generic name azithromycin. It showed a broad spectrum of antibacterial activity covering all significant bacteria causing respiratory tract infections. The greatest advantages of azithromycin are its unusual pharmacokinetics (high tissue distribution), metabolic stability and high tolerability. These properties have led in recent years to the widespread use of the azalide scaffold for the synthesis of new compounds with advantageous pharmacokinetics. The azalide scaffold possesses an amino and several hydroxyl groups, which could be substituted or transformed to obtain new compounds. Different derivatives were obtained by substitution on the nitrogen but a large variety of derivatives, such as ethers, esters and carbamates, were made by reactions with various hydroxyl groups. Substitutions on both nitrogen and hydroxyl or two hydroxyl groups yielded new, bridged compounds. The 4Љ- hydroxy group was oxidized to 4-oxo-, which was transformed via the oxime to 4-amino, or via epoxide to 4Љ-methylamino compounds. Cleavage of the cladinose sugar and further transformations gave 3-acyl or 3-oxo compounds, which were less active than 14-membered acylides or ketolides.
    [Show full text]
  • Frontiers at the Interface of Homogeneous and Heterogeneous Catalysis
    FRONTIERS AT THE INTERFACE OF HOMOGENEOUS AND HETEROGENEOUS CATALYSIS Meeting of the Catalysis Science Program Chemical Sciences, Geosciences and Biosciences Division Office of Basic Energy Sciences U.S. Department of Energy Westin Annapolis Annapolis, Maryland June 30 – July 2, 2013 This document was produced under contract number DE-AC05-060R23100 between the U.S. Department of Energy and Oak Ridge Associated Universities. FOREWORD The 2013 Catalysis Science Program Meeting is sponsored by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences (BES), U.S. Department of Energy. It is being held on June 30 through July 2, 2013, at the Westin Annapolis Hotel, Annapolis, Maryland. The purposes of this meeting are to discuss the recent advances in the chemical, physical, and biological bases of catalysis science, to foster exchange of ideas and cooperation among participants, and to discuss the new challenges and opportunities recently emerging in energy technologies. Catalysis activities within BES emphasize fundamental research aimed at initially understanding and finally controlling the chemical conversion of natural and artificial feedstocks. The long-term goal of this research is to discover fundamental principles and produce ever more insightful approaches to predict structure-reactivity behavior. Such knowledge, integrated with advances in chemical and materials synthesis, in situ and operando analytical instrumentation, and chemical kinetics and quantum chemistry methods, will allow the control of chemical reactions along desired pathways. Ultimately, this new knowledge should impact the efficiency of conversion of natural resources into fuels, chemicals, materials, or other forms of energy, while minimizing the impact to the environment. This year’s meeting is focused on three topical areas: (i) the interface of homogeneous and heterogeneous catalysis, (ii) catalysis for biomass or solar energy conversion, and (iii) molecular catalysis, with an emphasis on organic synthesis.
    [Show full text]
  • Catalytic (De)Hydrogenation Promoted by Non-Precious Metals –
    Chem Soc Rev View Article Online REVIEW ARTICLE View Journal | View Issue Catalytic (de)hydrogenation promoted by non-precious metals – Co, Fe and Mn: recent Cite this: Chem. Soc. Rev., 2018, 47,1459 advances in an emerging field† Georgy A. Filonenko, *ab Robbert van Putten, ab Emiel J. M. Hensen a and Evgeny A. Pidko *bc Catalytic hydrogenation and dehydrogenation reactions form the core of the modern chemical industry. This vast class of reactions is found in any part of chemical synthesis starting from the milligram-scale exploratory organic chemistry to the multi-ton base chemicals production. Noble metal catalysis has Received 4th September 2017 long been the key driving force in enabling these transformations with carbonyl substrates and their DOI: 10.1039/c7cs00334j nitrogen-containing counterparts. This review is aimed at introducing the reader to the remarkable progress made in the last three years in the development of base metal catalysts for hydrogenations and rsc.li/chem-soc-rev dehydrogenative transformations. Creative Commons Attribution-NonCommercial 3.0 Unported Licence. 1. Introduction hydrogen is added, abstracted or shuffled between organic compounds in reactions that are almost universally catalytic. Interconversions of organic substrates involving hydrogen transfer Efficient catalysis can promote both addition of hydrogen in a constitute a broad class of industrially relevant chemical reactions. reductive process and hydrogen abstraction in the oxidative Either in molecular form or in the form of protons and hydrides, process. Moreover, multistep reactions involving oxidative, reductive and bond-forming events are also possible given that This article is licensed under a a Inorganic Materials Chemistry Group, Schuit Institute of Catalysis, Eindhoven the right catalyst and conditions are ensured.
    [Show full text]
  • Determination of Roxithromycin by Liquid Chromatography/Mass Spectrometry After Multiple-Dose Oral Administration in Broilers
    J. Vet. Sci. (2003), 4(1), 35-39 J O U R N A L O F Veterinary Science Determination of Roxithromycin by Liquid Chromatography/Mass Spectrometry after Multiple-Dose Oral Administration in Broilers Jong-hwan Lim, Byung-kwon Park and Hyo-in Yun* Division of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon, Korea Received J anuary 30, 2003 / Accepted March 28, 2003 Abstract6) in human and veterinary medicine [8]. Several methods have been reported for determination of A highly se nsitive and specific m ethod for the roxithromycin in biological fluids. Microbiological assays in de term ination of roxithrom ycin in broiler tissues by plasma, urine and milk have been reported [4]. However, LC/MS w as de veloped and validated. A dichloro- microbiological assays have several disadvantages in terms m ethane extract of the sam ple w as se parated on C18 of the limit of quantitation, specificity and rapidity. Some reversed-phase colum n w ith acetonitrile-50 m M am - methods based on the reversed-phase HPLC have been m onium acetate (80:20, v/v) as the m obile phase and developed for the qunatitation of roxithtomycin or other analyzed by LC/MS via atm ospheric pressure ioni- macrolides. UV absorption [2, 11, 14], fluorescence and elec- zation/e lectrospray ionization inte rface . The lim it of trochemical detection [3, 5, 13, 15] methods have been used, de tection and lim it of quantitation w ere 1 ng/g and 5 but these methods achieved only relatively high detection ng/g.
    [Show full text]
  • A Biomimetic Electrocatalytic System for the Atom-Economical Chemoselective Synthesis of Secondary Amines Martine Largeron, Maurice-Bernard Fleury
    A Biomimetic Electrocatalytic System for the Atom-Economical Chemoselective Synthesis of Secondary Amines Martine Largeron, Maurice-Bernard Fleury To cite this version: Martine Largeron, Maurice-Bernard Fleury. A Biomimetic Electrocatalytic System for the Atom- Economical Chemoselective Synthesis of Secondary Amines. Organic Letters, American Chemical Society, 2009, 11 (4), pp.883-886. 10.1021/ol802885b. hal-02384938 HAL Id: hal-02384938 https://hal.archives-ouvertes.fr/hal-02384938 Submitted on 27 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Biomimetic Electrocatalytic System for the Atom-Economical Chemoselective Synthesis of Secondary Amines Martine Largeron* and Maurice-Bernard Fleury UMR 8638 Synthèse et Structure de Molécules d’Intérêt Pharmacologique, CNRS- Université Paris Descartes, 4 avenue de l’observatoire, 75270 Paris cedex 06, France [email protected] Received Date (will be automatically inserted after manuscript is accepted) ABSTRACT OH O R1 HN Ar NH2 + NH2 R2 O 1ox e d o (4 mol %) NH3 n a OH O R1 R1 H2N cathode N R2 N R2 Ar MeOH, rt Ar 1red H HO A facile one-pot oxidation-imine formation-reduction route to secondary amines can be achieved electrolytically from primary amines.
    [Show full text]
  • The Crystal Structure of Two Macrolide Glycosyltransferases Provides a Blueprint for Host Cell Antibiotic Immunity
    Corrections BIOCHEMISTRY. For the article ‘‘The crystal structure of two GENETICS. For the article ‘‘Deletion of the orphan nuclear recep- macrolide glycosyltransferases provides a blueprint for host cell tor COUP-TFII in uterus leads to placental deficiency,’’ by antibiotic immunity,’’ by David N. Bolam, Shirley Roberts, Mark Fabrice G. Petit, Soazik P. Jamin, Isao Kurihara, Richard R. R. Proctor, Johan P. Turkenburg, Eleanor J. Dodson, Carlos Behringer, Francesco J. DeMayo, Ming-Jer Tsai, and Sophia Y. Martinez-Fleites, Min Yang, Benjamin G. Davis, Gideon J. Tsai, which appeared in issue 15, April 10, 2007, of Proc Natl Davies, and Harry J. Gilbert, which appeared in issue 13, March Acad Sci USA (104:6293–6298; first published April 2, 2007; 27, 2007, of Proc Natl Acad Sci USA (104:5336–5341; first 10.1073͞pnas.0702039104), the authors note that the e-mail published March 21, 2007; 10.1073͞pnas.0607897104), the au- address for corresponding author Fabrice G. Petit appeared thors note that, in addition to writing the paper, Benjamin G. incorrectly. The correct address is [email protected]. The Davis should be credited with designing the research and online version has been corrected. analyzing the data. The corrected author contributions footnote ͞ ͞ ͞ ͞ appears below. www.pnas.org cgi doi 10.1073 pnas.0703353104 Author contributions: D.N.B., S.R., and M.R.P. contributed equally to this work; D.N.B., M.R.P., B.G.D., G.J.D., and H.J.G. PHYSIOLOGY. For the article ‘‘Night eating and obesity in the designed research; D.N.B., S.R., and M.R.P.
    [Show full text]