Enzymatic Lactone-Carbene C#H Insertion to Build Contiguous Chiral Centers Andrew Z

Total Page:16

File Type:pdf, Size:1020Kb

Enzymatic Lactone-Carbene C#H Insertion to Build Contiguous Chiral Centers Andrew Z Subscriber access provided by Caltech Library Letter Enzymatic Lactone-Carbene C#H Insertion to Build Contiguous Chiral Centers Andrew Z. Zhou, Kai Chen, and Frances H. Arnold ACS Catal., Just Accepted Manuscript • DOI: 10.1021/acscatal.0c01349 • Publication Date (Web): 21 Apr 2020 Downloaded from pubs.acs.org on April 21, 2020 Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts. is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties. Page 1 of 8 ACS Catalysis 1 2 3 4 5 6 7 Enzymatic Lactone-Carbene C‒H Insertion to Build Contiguous 8 Chiral Centers 9 10 Andrew Z. Zhou, Kai Chen,* Frances H. Arnold* 11 12 a Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, CA 91125, USA. 13 KEYWORDS: Cytochrome P450, directed evolution, carbene transfer, C‒H functionalization, lactone 14 15 16 ABSTRACT: We report a biocatalytic platform of engineered cytochrome P411 enzymes (P450s with axial serine ligation) to carry 17 out efficient lactone-carbene insertion into primary and secondary α-amino C‒H bonds. Directed evolution of a P450 variant, P411- 18 C10, yielded a lineage of enzyme variants capable of forming chiral lactone derivatives with high catalytic efficiency (up to 4000 19 TTN) and in a stereo-divergent manner. For carbene insertion into secondary C‒H bonds, a single mutation was discovered to invert 20 the two contiguous chiral centers and lead to the opposite enantiomers of the same major diastereomers. This work demonstrates the 21 utility of engineered enzymes for asymmetric catalysis and highlights the remarkable tunability of these genetically-encoded 22 biocatalysts for accessing desired selectivities. 23 24 25 Direct functionalization of carbon‒hydrogen bonds represents a Rather than using the well-studied donor-acceptor carbenes, we 26 powerful and efficient strategy for installing new chemical focused on lactone-based carbenes, which are difficult to use 27 moieties in organic compounds.1 In particular, enantioselective with rhodium catalysts due to challenges with β-H elimination 28 C(sp3)‒H alkylation via carbene insertion into C‒H bonds and stereocontrol.14 Despite limited examples of C‒H insertion 29 provides a platform for C(sp3)‒C(sp3) bond formation to build with cyclic carbenes,15 we previously revealed that lactone- 30 diverse molecular skeletons and for late-stage modification of based carbenes can be transferred to different functionalities 31 complex molecules.2 Transition-metal catalysts based on with high efficiency and stereoselectivity using engineered 32 rhodium,3 iridium,4 cobalt,5 copper,6 and other metals7 have hemeprotein catalysts.16,17 Those studies demonstrated the 33 been shown to catalyze carbene insertion into C‒H bonds. In enzymes’ ability to stabilize the lactone-carbene intermediates, 34 most reported methods, carbenes bearing one electron-donating circumvent undesired β-H migration, and facilitate carbene aryl/alkenyl group and one electron-withdrawing group transfer with exquisite stereocontrol, thus laying the foundation 35 (‘donor-acceptor carbenes’) have been demonstrated to be for the current study. 36 superior for intermolecular C‒H insertions, with control over 37 reactivity and selectivity in these catalytic systems.8 Dirhodium We initiated this investigation of C‒H functionalization with α- 38 catalysts, for example, have achieved site-selective diazo-γ-lactone (LAD) and 4,N,N-trimethylaniline (1a) as 39 functionalization of various types of C‒H bonds through the substrates (Figure 2).18 The expected carbene-transfer reaction 40 manipulation of ligand scaffolds.9 Other carbenes, however, leads to the formation of a β-amino lactone product, 2a, through such as acceptor-only carbenes, are less explored for C‒H 41 carbene insertion into an α-amino C‒H bond with a chiral center insertion reactions;4b,6a,7c acceptor-only carbenes with an 42 generated at the α-position. Such β-amino lactone products are additional alkyl substituent at the α-position are even more 43 analogs of sesquiterpene-lactone amino derivatives, which challenging to use in these systems due to competitive β- 44 possess desirable pharmaceutical properties.19 Screening hydride migration upon the formation of the metallo-carbene 45 various hemeproteins, including P450 variants, P411s, and species.10 46 cytochromes c in the form of whole Escherichia coli (E. coli) 47 cell catalysts identified a P411 variant, P411-C10, capable of 48 Recently, we reported that a cytochrome P450, which uses an the desired C‒H insertion transformation (Figure 1). P411- 49 iron-heme cofactor for its native oxygenase activity, can be C10, a promiscuous enzyme for different carbene-transfer engineered to transfer carbene moieties to C‒H bonds using chemistries including internal cyclopropene formation,20 50 diazo compounds bearing a single electron-withdrawing catalyzed the C‒H insertion reaction using a cyclic carbene with 51 substituent (Figure 1).11,12 Engineered P450 enzymes modest efficiency (105 TTN) and stereoselectivity (47% ee). 52 substituted with serine as the heme-ligating residue (‘P411s’)13 53 were established as an efficient platform for stereoselective 54 C‒C bond assembly with a chiral center formed at the β- 55 position. We thus anticipated that the P411 enzymes could be 56 evolved further to adopt branched carbenes for C‒H insertion, 57 which would enable them to build a chiral center at α-position 58 or even contiguous chiral centers at both the α and β-positions. 59 60 ACS Paragon Plus Environment ACS Catalysis Page 2 of 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Figure 1. Enzymatic carbene insertion into C‒H bonds. 22 To enhance enzyme activity and selectivity by directed 23 Figure 2. Directed evolution of P411-C10 for lactone-carbene evolution, we targeted active-site residues for site-saturation insertion into α-amino C‒H bonds. Reactions were performed in 24 mutagenesis and screening (Figure 2). Loop residues in the quadruplicate under the following conditions: 10 mM 4,N,N- 25 enzyme’s active site were tested first, and beneficial mutations trimethyl aniline (1a), 10 mM LAD, E. coli harboring P411-C10 26 T327V and Q437L together increased total turnovers 9-fold. variants (OD600 = 15 to 60), D-glucose (25 mM), M9-N 27 However, enantioselectivity decreased to 40% ee after three buffer/EtOH (19:1), anaerobic, 24 h. Product formation was 28 rounds of evolution. As substrate 1a is symmetric, we quantified by high-performance liquid chromatography (HPLC), 29 hypothesized it might bind with different orientations relative TTNs were determined based on protein concentration, and to the carbene intermediate, which would lead to the diminished enantioselectivity was measured using chiral HPLC. The heme- 30 domain structure of P411-E10 variant, an enzyme previously 31 stereoselectivity. To address this, we next targeted amino acids previously shown to dramatically affect stereoselectivity in evolved for C‒H amination with high sequence identity to P411- 32 C10, (pdb: 5UCW) was used to guide site-saturation mutagenesis; either native or non-native functions of this P450, such as sites 33 mutation sites are highlighted. See Tables S1, S2 in SI for details. 87, 264, 268, and 328.13b-d,21 Screening a site-saturation library 34 at site 87 for increased enantioselectivity resulted in discovery 35 As different variants in the enzyme lineage (L1 to L10) showed of a proline mutation giving 56% ee, albeit with decreased TTN. different levels of activity or selectivity for the C‒H insertion 36 Residue 264 is the closest residue to the iron center, which may reaction, we selected representative variants (L6 to L10) with 37 also influence binding of substrate or the orientation of the which to evaluate the transformation of various N,N-dialkyl 38 carbene intermediate. The A264S mutation improved both aniline derivatives, as shown in Figure 3. Substituents on the 39 activity and enantioselectivity. Revisiting site 327 identified phenyl ring, including methyl, methoxyl or halide, are all 40 another proline mutation, which boosted the ee to 75%. The compatible with the biocatalytic system, giving TTNs ranging 41 three mutations A87P, A264S, and V327P may have improved from 410 to 2920. Variants L9 and L10 showed consistently 42 enantioselectivity by providing a more restricted binding mode opposite stereo-preference for diverse substrates (e.g., for 2d for substrate 1a in the enzyme.
Recommended publications
  • Insertion Reactions • Oxidative Addition and Substitution Allow Us to Assemble 1E and 2E Ligands on the Metal, Respectively
    Insertion Reactions • Oxidative addition and substitution allow us to assemble 1e and 2e ligands on the metal, respectively. • With insertion, and its reverse reaction, elimination, we can now combine and transform these ligands within the coordination sphere, and ultimately expel these transformed ligands to form free organic compounds. • There are two main types of insertion 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (,)(1,1) atom 2) 1,2 insertion in which the metal and the X ligand end up bound to adjacent (1,2) atoms of an L‐type ligand. 1 • The type of insertion observed in any given case depends on the nature of the 2e inserting ligand. • For example: CO gives only 1,1 insertion ethylene gives only 1,2 insertion, in which the M and the X end up on adjacent atoms of what was the 2e X‐type ligand. In general, η1 ligands tend to give 1,1 insertion and η2 ligands give 1,2 insertion • SO2 is the only common ligan d tha t can give bthboth types of itiinsertion; as a ligan d, SO2 can be η1 (S) or η2 (S, O). • In principle, insertion reactions are reversible, but just as we saw for oxidative addition and reductive elimination previously, for many ligands only one of the two possible directions is observed in practice, probably because this direction is strongly favored thermodynamically. 2 •A2e vacant site is generated by 1,1 and 1,2 insertion reactions. • Thissite can be occupidied byanextlternal 2e ligan d and the itiinsertion prodtduct tdtrapped.
    [Show full text]
  • Insertion Reactions of Isocyanides Into the Metal-C(Sp3) Bonds of Ylide Complexes
    Journal of Organometallic Chemistry 894 (2019) 61e66 Contents lists available at ScienceDirect Journal of Organometallic Chemistry journal homepage: www.elsevier.com/locate/jorganchem Insertion reactions of isocyanides into the Metal-C(sp3) bonds of ylide complexes ** * María-Teresa Chicote a, , Isabel Saura-Llamas a, , María-Francisca García-Yuste a, Delia Bautista b, Jose Vicente a a Grupo de Química Organometalica, Departamento de Química Inorganica, Facultad de Química, Universidad de Murcia, Spain b ACTI, Universidad de Murcia, E-30100, Murcia, Spain article info abstract Article history: The synthesis of the previously reported complexes [Pd{(C,CeCHCO2R)2PPh2}(m-Cl)]2 (R ¼ Me (1), Et (2)) Received 10 January 2019 has been considerably improved by reacting the phosphonium salts [Ph2P(CH2CO2R)2]Cl with Pd(OAc)2. Received in revised form t Complexes 1 and 2 react with isocyanides R'NC (R’ ¼ C6H4Me2-2,6 (Xy), C6H4I-2 and Bu) to give com- 29 April 2019 plexes of the type [Pd{C,C-{C(CO R) ¼ C(NHR0)}(CHCO R)}PPh }Cl(CNR0)], resulting from the insertion of Accepted 5 May 2019 2 2 2 the unsaturated molecule in one of their PdeC bonds and the hydrogen transfer from the methine CH to Available online 11 May 2019 the iminobenzoyl nitrogen. These are the first insertion reactions observed in the PdeC bond of a P-ylide complex. The crystal structure of the complex [Pd{C,C-{C(CO Me)¼C(NHXy)}(CHCO Me)}PPh }Cl(CNXy)] Keywords: 2 2 2 Palladacycles (3) is reported. © Insertion reactions 2019 Elsevier B.V. All rights reserved.
    [Show full text]
  • Recent Advances on Mechanistic Studies on C–H Activation
    Open Chem., 2018; 16: 1001–1058 Review Article Open Access Daniel Gallego*, Edwin A. Baquero Recent Advances on Mechanistic Studies on C–H Activation Catalyzed by Base Metals https:// doi.org/10.1515/chem-2018-0102 received March 26, 2018; accepted June 3, 2018. 1Introduction Abstract: During the last ten years, base metals have Application in organic synthesis of transition metal- become very attractive to the organometallic and catalytic catalyzed cross coupling reactions has been positioned community on activation of C-H bonds for their catalytic as one of the most important breakthroughs during the functionalization. In contrast to the statement that new millennia. The seminal works based on Pd–catalysts base metals differ on their mode of action most of the in the 70’s by Heck, Noyori and Suzuki set a new frontier manuscripts mistakenly rely on well-studied mechanisms between homogeneous catalysis and synthetic organic for precious metals while proposing plausible chemistry [1-5]. Late transition metals, mostly the precious mechanisms. Consequently, few literature examples metals, stand as the most versatile catalytic systems for a are found where a thorough mechanistic investigation variety of functionalization reactions demonstrating their have been conducted with strong support either by robustness in several applications in organic synthesis [6- theoretical calculations or experimentation. Therefore, 12]. Owing to the common interest in the catalysts mode we consider of highly scientific interest reviewing the of action by many research groups, nowadays we have a last advances on mechanistic studies on Fe, Co and Mn wide understanding of the mechanistic aspects of precious on C-H functionalization in order to get a deep insight on metal-catalyzed reactions.
    [Show full text]
  • Abstract(Doctor)
    別紙4-1(課程博士(英文)) Date of Submission(month day,year): March 27, 2020 Department Applied Chemistry and Life Student ID Number D 169403 SEIJI IWASA Science Supervisors KAZUTAKA SHIBATOMI Applicant’s name PHAN THI THANH NGA Abstract(Doctor) Catalytic Intramolecular Carbene Transfer Reactions into σ and π Bonds Title of Thesis (σ 及びπ結合への触媒的分子内カルベン移動反応) Approx. 800 words A carbene known as an most active intermediate is complexed with a transition metal, which afford the corresponding metal-carbene complex and catalytically insert into σ and π bonds of organic compound. Even though there are many reports on the carbene transfer process to develop a new approach for the synthesis of medicine and other bioactive compounds, the regio-, stereo- and chemoselective approaches are still limited and remained as a main subject in the filed of synthetic organic chemistry. For these background, I developed an efficient catalytic intramolecular carbene transfer reactions by using originally developed ruthenium catalyst into σ and π bonds and successfully applied for the synthesis of γ-lactam ring fused aromatics (oxindoles), γ-lactone ring fused cyclopropanes, and γ-lactam ring fused seven member rings via Buchner reaction. Although ruthenium complex is a newcomer in the field of catalytic carbene transfer reaction, it has emerged as a useful transition metal for the carbenoid chemistry of diazo compounds, besides copper and rhodium. And recently, we have developed a Ru(II)-Pheox complex, which is efficient for carbene transfer reactions, in particular, asymmetric cyclopropanation, N-H insertion, C-H insertion and Si-H insertion reactions. Therefore, driven by my interests in the catalytic asymmetric carbene transfer reaction and the efficiency displayed by the Ru(II)-Pheox catalyst, I started to explore the asymmetric cyclopropanation, C-H insertion, Buchner reactions of various diazo compounds, which are potentially building blocks and expectant to be applied in pharmaceutical and medicinal fields .
    [Show full text]
  • Carbene Rearrangements: Intramolecular Interaction of a Triple Bond with a Carbene Center
    An Abstract OF THE THESIS OF Jose C. Danino for the degree of Doctor of Philosophy in Chemistry presented on _Dcc, Title: Carbene RearrangementE) Intramolecular Interaction of a Triple Bond with aCarbene Center Redacted for Privacy Abstract approved: Dr. Vetere. Freeman The tosylhydrazones of2-heptanone, 4,4-dimethy1-2- heptanone, 6-heptyn-2-one and 4,4-dimethy1-6-heptyn-2- one were synthesizedand decomposed under a varietyof reaction conditions:' drylithium and sodium salt pyrolyses, sodium methoxide thermolysesin diglyme and photolyses of the lithium salt intetrahydrofuran. The saturated ana- logues 2-heptanone tosylhydrazoneand its 4,4-dimethyl isomer afforded the alkenesarising from 6-hydrogeninser- product distribution in the tion. It was determined that differ- dry salt pyrolyses of2-heptanone tosylhydrazone was ent for the lithiumand the sodium salts. However, the product distribution of thedry sodium salt was verysimilar diglyme to product distributionobtained on thermolysis in explained by a with sodium methoxide. This difference was reaction of lithium bromide(present as an impurity inall compound to the lithium salts)with the intermediate diazo afford an organolithiumintermediate that behaves in a some- what different fashionthan the free carbene.The unsaturated analogues were found to produce a cyclic product in addition to the expected acyclic alkenes arising from 3-hydrogen insertion. By comparison of the acyclic alkene distri- bution obtained in the saturated analogues with those in the unsaturated analogues, it was concluded that at leastsome cyclization was occurring via addition of the diazo moiety to the triple bond. It was determined that the organo- lithium intermediateresulting from lithium bromide cat- alyzed decomposition of the diazo compound was incapable of cyclization.
    [Show full text]
  • C)Ffkx.Ali%& Copy
    . ~ Submitted to the Encyclopedia of Catalysis; http: //www.enccat.com/ July 2000 4 * BNL-67609 Isotope Methods in Homogeneous Catalysis R. Morris Bullock and Bruce R. Bender Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000 and Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92110 The use of isotope labels has had a Iimdamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and “followed” where they go or don’t go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough – what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most carefid studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerfid. Direct substitution of D for H (e.g., D2 vs. H2, or D+vs. H’_)and measurement of the rate of a catalytic reaction provides a determination of the kinetic deuterium isotope effect on the overall reaction.
    [Show full text]
  • Towards the Synthesis of Isocoronene
    Department of Chemistry Towards the Synthesis of Isocoronene Iain William Currie This thesis is presented for the Degree of Doctor of Philosophy of Curtin University April 2018 Declaration To the best of my knowledge and belief this thesis contains no material previously published by any other person except where due acknowledgement has been made. This thesis contains no material which has been accepted for the award of any other degree or diploma in any other university. Signature: Date: i Abstract The concept of aromaticity and its implications are fundamentally important to a wide range of applied sciences involving organic molecules. Aromaticity arises from the delocalisation of electrons through a cyclic conjugated system known as a conjugated circuit. Monocyclic aromatic compounds possess a single conjugated circuit while polycyclic aromatic hydrocarbons (PAHs) may have numerous potential conjugated circuits. The aromaticity of PAHs is complicated by the presence of multiple conjugated circuits which may have varying contribution to the overall properties depending on several factors such as geometry and topology. Isocoronene 105 is one example of a PAH classified as a non-benzenoid corannulene. Isocoronene is unique among corannulenes since the conjugated circuits are restricted to the peripheral and central rings only. Isocoronene has been used as a model compound for computational studies into aromaticity and may provide the first example of a superaromatic molecule. The synthesis of novel aromatic structures such as isocoronene is essential in providing unambiguous empirical data which can be used to verify and develop computational methods. In addition, the development of new synthetic methodologies towards PAHs is important in the field of organic electronics.
    [Show full text]
  • Decomposition of Ruthenium Olefin Metathesis Catalyst
    catalysts Review Decomposition of Ruthenium OlefinOlefin Metathesis CatalystMetathesis Catalyst Magdalena Jawiczuk 1,, Anna Anna Marczyk Marczyk 1,21,2 andand Bartosz Bartosz Trzaskowski Trzaskowski 1,* 1,* 1 1 CentreCentre of of New New Technologies, Technologies, University University of of Warsaw, Warsaw, Banacha Banacha 2c, 2c, 02-097 02-097 Warsaw, Warsaw, Poland; [email protected]@cent.uw.edu.pl (M.J.); (M.J.); [email protected] [email protected] (A.M.) (A.M.) 2 Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland 2 Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland * Correspondence: [email protected] * Correspondence: [email protected] Received: 28 28 June 2020; Accepted: 02 2 AugustAugust 2020;2020; Published:Published: 5date August 2020 Abstract: RutheniumRuthenium olefin olefin metathesis metathesis catalysts catalysts are are one one of of the most commonly used class of catalysts. There There are are multiple multiple reviews reviews on on their their us useses in in various branches of chemistry and other sciences but a detailed review of their decomposition is missing, despite a large number of recent and important advances advances in in this this field. field. In In particular, particular, in in the the last last five five years years several several new new mechanism mechanism of decomposition,of decomposition, both both olefin-driven olefin-driven as well as well as induc as induceded by external by external agents, agents, have have been been suggested suggested and usedand usedto explain to explain differences differences in the decomposition in the decomposition rates and rates the metathesis and the metathesis activities activitiesof both standard, of both N-heterocyclicstandard, N-heterocyclic carbene-based carbene-based systems and systems the recently and the developed recently developed cyclic alkyl cyclic amino alkyl carbene- amino containingcarbene-containing complexes.
    [Show full text]
  • Insertion Reactions • Oxidative Addition and Substitution Allow Us to Assemble 1E and 2E Ligands on the Metal, Respectively
    Insertion Reactions • Oxidative addition and substitution allow us to assemble 1e and 2e ligands on the metal, respectively. • With insertion, and its reverse reaction, elimination, we can now combine and transform these ligands within the coordination sphere, and ultimately expel these transformed ligands to form free organic compounds. • There are two main types of insertion 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (,)(1,1) atom 2) 1,2 insertion in which the metal and the X ligand end up bound to adjacent (1,2) atoms of an L‐type ligand. • The type of insertion observed in any given case depends on the nature of the 2e inserting ligand. • For example: CO gives only 1,1 insertion ethylene gives only 1,2 insertion, in which the M and the X end up on adjacent atoms of what was the 2e X‐type ligand. In general, η1 ligands tend to give 1,1 insertion and η2 ligands give 1,2 insertion • SO2 is the only common ligan d tha t can give bthboth types of itiinsertion; as a ligan d, SO2 can be η1 (S) or η2 (S, O). • In principle, insertion reactions are reversible, but just as we saw for oxidative addition and reductive elimination previously, for many ligands only one of the two possible directions is observed in practice, probably because this direction is strongly favored thermodynamically. •A2e vacant site is generated by 1,1 and 1,2 insertion reactions. • Thissite can be occupidied byanextlternal 2e ligan d and the itiinsertion prodtduct tdtrapped.
    [Show full text]
  • The Olefin Insertion Reaction
    Thorn, Hoffmann Olefin Insertion Reaction 2079 (15) A. C. Skapski and P. G. H. Troughton. J. Chem. SOC.A, 2772 (1969). suggested by K. D. Jordan and J. Simons, J. Chem. Phys., 85,1601 (1976) (16) A. Modinos and P. Woodward, J. Chem. SOC., Dalton Trans., 1516 for Be*-. (1975). (24) M. Matsumoto, H. Yoshioka, K. Nakatsu, T. Yoshida, and S. Otsuka, J. Am. (17) K. P. Wagner, R. W. Hess, P. M. Treichel. and J. C. Caiabrese, lnorg. Chem., Chem. SOC., 96, 3322 (1974); S. Otsuka, T. Yoshida, M. Matsumoto, and 14, 1121 (1975). K. Nakatsu, ibid., 98,5850 (1976); A. lmmirzi and A. Musco, J. Chem. Soc., (18) N. J. Taylor, P. C. Chieh, and A. J. Carty, J. Chem. Soc., Chem. Commun., Chem. Commun., 400 (1974): A. Immlrzl. A. Musco, P. Zambeili, and G. 448 (1975). Carturan, lnorg. Chim. Acta, 12, L13 (1975). (19) M. P. Brown, R. J. Puddephatt, M. Rashidi, L. J. Manojlovic-Muir. K. W. Muir, (25) M. Elian and R. Hoffmann, lnorg. Chem., 14, 1058 (1975). T. Solomun, and K. R. Seddon, lnorg. Chim. Acta, 23, L33 (1977). For some (26) M. Green, A. Laguna, J. L. Spencer, and F. G. A. Stone, J. Chem. SOC., structures of related Pd(i) complexes see J. R. Boehm, D. J. Doonan, and Dalton Trans., 1010 (1977). A. L. Balch, J. Am. Chem. Soc., 98, 4845 (1976), and M. P. Brown, R. J. (27) D. M. Blake and L. M. Leung. lnorg. Chem., 11,2879 (1972). Puddephatt, M. Rashidi, and K. R. Seddon, J. Chem. SOC., Dalton Trans., (28) A suggestion was made that the molecules synthesized in ref 3 might 951 (1977).
    [Show full text]
  • Solventless Migratory-Insertion Reactions of Substituted Cyclopentadienyl Iron Complexes Induced by Electron Donor Ligands
    Bull. Chem. Soc. Ethiop. 2009 , 23(3), 399-407. ISSN 1011-3924 Printed in Ethiopia 2009 Chemical Society of Ethiopia SOLVENTLESS MIGRATORY-INSERTION REACTIONS OF SUBSTITUTED CYCLOPENTADIENYL IRON COMPLEXES INDUCED BY ELECTRON DONOR LIGANDS Apollinaire Munyaneza 1, Olalere G. Adeyemi 1, 2 and Neil J. Coville 1* 1Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa 2Department of Chemical Sciences, College of Natural Sciences, Redeemer’s University, Km 46, Lagos/Ibadan Expressway, Redemption City, Nigeria (Received February 24, 2009; revised July 2, 2009) ABSTRABSTRACT.ACT. Reaction between solid (C 5H5)Fe(CO) 2CH 3 and a range of solid phosphine ligands, L (L = PPh 3, P( m-CH 3C6H4)3, P( p-CH 3C6H4)3, P( p-FC 6H4)3, P( p-ClC 6H4)3, PCy 3) occurred in the absence of solvent in the melt phase to give the migratory-insertion products, (C 5H5)Fe(CO)(COCH 3)(L). The reaction was more rapid with small electron withdrawing ligands. Insertion reaction between (RC 5H4)Fe(CO) 2R’ (R = H, CH 3; R’ = CH 3, CH 2Ph) and gaseous ligands such as SO 2 and CO were also studied. The insertion of SO 2 occurred readily for all the substrates investigated, but CO insertion did not occur (< 1 %) using the solventless reaction condition. KEY WORDS: Melt phase, Solventless chemistry, Cyclopentadiene, Iron complexes, Migratory-insertion INTRODUCTION An insertion reaction occurs when an incoming ligand is incorporated into an existing complex without releasing any of the previously coordinated groups [1]. Generally, small molecules such as CO, SO 2, carbenes, etc.
    [Show full text]
  • Synthesis of Nitrogen-Containing Heterocycles Via Carbenoid Insertion/Ring-Closing
    Synthesis of Nitrogen-Containing Heterocycles via Carbenoid Insertion/Ring-Closing Metathesis Sequence A dissertation presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Oksana M. Pavlyuk June 2011 © 2011 Oksana M. Pavlyuk. All Rights Reserved. 2 This dissertation titled Synthesis of Nitrogen-Containing Heterocycles via Carbenoid Insertion/Ring-Closing Metathesis Sequence by OKSANA M. PAVLYUK has been approved for the Department of Chemistry and Biochemistry and the College of Arts and Sciences by Mark C. McMills Associate Professor of Chemistry and Biochemistry Benjamin M. Ogles Dean, College of Arts and Sciences 3 ABSTRACT PAVLYUK, OKSANA M., Ph.D., June 2011, Chemistry and Biochemistry Synthesis of Nitrogen-Containing Heterocycles via Carbenoid Insertion/Ring-Closing Metathesis Sequence Director of Dissertation: Mark C. McMills A series of five- to nine-membered nitrogen-containing heterocycles were prepared via a general and efficient sequence featuring rhodium-catalyzed insertions of !- diazocarbonyls into the N-H or C-H bonds of a series of tert-butoxy-(Boc)-protected amines, followed by ring-closing metathesis catalyzed by ruthenium benzylidene complexes. The newly developed methodology allows easy and convenient access to highly functionalized azacycloalkenes in good yields and excellent selectivities. Vinyl diazoacetoacetate and styryl diazoacetate were found to undergo exceptionally chemoselective carbenoid insertions into the N-H bonds of a series of Boc- protected amines in good yields; however, no stereoselectivity was observed for this process. In contrast, diastereo- and enantioselective C-H insertions and cyclopropanations were observed for the decomposition of styryl diazoacetate catalyzed by the same rhodium catalyst.
    [Show full text]