Design and Characterization of an Open-Source Robotic Leg Prosthesis

Total Page:16

File Type:pdf, Size:1020Kb

Design and Characterization of an Open-Source Robotic Leg Prosthesis Design and Characterization of an Open-source Robotic Leg Prosthesis Alejandro F. Azocar, Student Member, IEEE, Luke M. Mooney, Levi J. Hargrove, Member, IEEE, and Elliott J. Rouse, Member, IEEE Abstract—Challenges associated with current prosthetic muscle activity of other joints, such as the hip [7], [8]. technologies limit the quality of life of lower-limb amputees. Compensatory changes to gait mechanics can lead to further Passive prostheses lead amputees to walk slower, use more complications, including osteoarthritis, osteoporosis, and energy, fall more often, and modify their gait patterns to back pain [9]. Thus, restoring appropriate gait characteristics compensate for the prosthesis’ lack of net-positive mechanical requires robotic leg prostheses that are safe, stable, and energy. Robotic prostheses can provide mechanical energy, but intuitively controlled. may also introduce challenges through controller design. Fortunately, talented researchers are studying how to best Over the past decade, many encouraging robotic leg control robotic leg prostheses, but the time and resources prostheses have been developed [10]–[13]. Three required to develop prosthetic hardware has limited their generations of knee-ankle prostheses were created at potential impact. Even after research is completed, comparison Vanderbilt University. The original design was of results is confounded by the use of different, researcher- pneumatically powered, and, after several revisions, the specific hardware. To address these issues, we have developed current prosthesis uses electric motors and a belt/chain the Open-source Leg (OSL): a scalable robotic knee/ankle transmission [14], [15]. In addition, investigators at the prosthesis intended to foster investigations of control strategies. Massachusetts Institute of Technology (MIT) developed This paper introduces the design goals, transmission selection, robotic ankle and knee systems independently. The robotic hardware implementation, and initial control benchmarks for ankle utilized series and parallel elasticity and was the OSL. The OSL provides a common hardware platform for commercialized by BiOM, and now Ottobock [16]. Their comparison of control strategies, lowers the barrier to entry for robotic knee prosthesis used a clutchable series-elastic prosthesis research, and enables testing within the lab, actuator (CSEA) for minimal electrical energy consumption community, and at home. [17]. Finally, researchers at Arizona State University I. INTRODUCTION developed a spring ankle with regenerative kinetics (SPARKy), which integrated an electric motor, lead screw, Over one million lower-limb amputees live in the United and a series spring [18]. Many other research groups, some States, and their quality of life is affected by the performance who focus on prosthesis control, have also developed of today’s prostheses [1]. Most amputees walk slower, use promising robotic prostheses and emulators [19]–[23]. more energy, and are less stable than able-bodied individuals [2]–[4]. In part, these deficits stem from the passive nature of While the design of high-performance robotic leg traditional prosthetic legs; that is, most leg prostheses cannot prostheses is challenging, development of intelligent control provide net-positive mechanical energy, which contrasts with systems is especially difficult. Prosthesis control systems the abilities of the human neuromuscular system [5]. Without must accomplish multiple tasks, such as recognizing the added mechanical energy, certain activities are especially amputee’s intended movements (high-level control), applying challenging for individuals with amputations, including stair an appropriate control law based on the amputee’s intent and ramp ascent [6]. Furthermore, to compensate for the lack (mid-level control), and using local feedback to command the of mechanical energy, amputees often adopt an asymmetrical actuation systems within the prosthesis (low-level control) gait pattern and significantly modify the biomechanics and [24]. Controller complexity increases further during simultaneous control of both knee and ankle joints [25]. Researchers have developed control systems capable of *This work was supported by the National Science Foundation (NSF) Graduate Research Fellowship under Grant No. DGE-1324585, NSF controlling multiple joints across various ambulation modes National Robotics Initiative (NRI) under Grant No. CMMI 1734586, and (level ground walking, ramp ascent/descent, stair the MSL Renewed Hope Foundation. ascent/descent); however, these control strategies are highly A. F. Azocar is with the Department of Mechanical Engineering, sophisticated, sometimes containing over 100 parameters and University of Michigan, and also with the Neurobionics Lab, University of requiring hours of tuning [26]. Before robotic legs can realize Michigan (e-mail: [email protected]). Luke M. Mooney is with Dephy, Inc., Boston, MA 02129 USA (e-mail: their full potential for clinical impact, future work is needed [email protected]). in the control of these systems. Levi J. Hargrove is with the Departments of Physical Medicine and Rehabilitation, and Biomedical Engineering, Northwestern University, The lack of open, available prosthetic hardware has Evanston, IL 60208 USA, and also with the Center for Bionic Medicine, limited the impact of the field, particularly with respect to Shirley Ryan AbilityLab, Chicago, IL 60611 USA (e-mail: l- intuitive, seamless control systems. A number of researchers [email protected]). around the world are independently developing robotic E. J. Rouse is with the Department of Mechanical Engineering and the prostheses on which to test their control strategies; however, Robotics Institute, University of Michigan, Ann Arbor, MI 48109 USA, and also with the Neurobionics Lab, University of Michigan, Ann Arbor, MI this development requires a substantial level of time and 48109 USA (phone: 734-763-3629; e-mail: [email protected]). financial resources. Thus, this high investment may preclude talented researchers in related fields, such as bipedal robotics, from applying their research to prostheses. Furthermore, even after research is completed, the differences in mechanical designs and performance can hinder comparisons. Researchers use different prostheses that vary widely in size, weight, transmission design, controllability, and degrees of freedom. Additionally, many research groups use prostheses that must be tethered to a power supply, limiting their research to within the laboratory. Low-cost, open-source prosthetic hardware and software will enable more researchers to enter the prosthetics field, improve comparison of control strategies, and promote worldwide collaboration to improve amputee quality of life. In this paper, we introduce the Open-source Leg (OSL): a robotic leg prosthesis that facilitates control system development and comparison [27]. We present the overarching design objectives, transmission selection, hardware implementation, and characterization in the time and frequency domains. The intent of the OSL is to offer a common hardware platform for comparison of control strategies, lower the barrier to entry for prosthesis research, and enable testing within the lab, community, and at home. II. DESIGN A. Design Objectives The overall goal of the OSL (Fig. 1) is to provide a common hardware platform that streamlines the development and testing of robotic leg prostheses. The OSL includes the prosthesis hardware, sensors, low-level control software, and an Application Peripheral Interface (API) to communicate with researchers’ preferred high-level control systems. We have developed several characteristics that have guided the overarching design: 1. Simple: the leg does not require high-precision machine Fig. 1. Rendering (top) and physical implementation (bottom) of the OSL. components (e.g., ball or roller screws) and can be easily assembled and disassembled. All hardware components are B. Transmission Design machined by a single manufacturer. To investigate potential prosthesis designs, able-bodied 2. Portable: the prosthesis is lightweight and does not locomotion data were obtained from the literature. Data from require a tether to a power supply. Each joint has its own walking at slow, self-selected, and fast speeds, in addition to onboard battery, allowing researchers to use the prosthesis data from ascending/descending stairs, were used [28]. These outside of the laboratory easily. data yielded insight into the prosthesis’ kinetic, kinematic, and electromechanical requirements, across a range of 3. Scalable: the ankle and knee operate independently, transmission ratios and stiffness coefficients for the series enabling researchers to work with both transtibial and elasticity. The associated torque/velocity, and accompanying transfemoral amputees, in single and dual joint current/voltage requirements were used as the foundation for configurations. Control strategies can be implemented in a the mechanical design decisions [17]. single embedded system that operates both joints. To simplify manufacturing, assembly, and control, the 4. Customizable: the knee joint is selectable series-elastic, knee and ankle joints follow similar design strategies. Both and can be configured with varying amounts of series joints use an electric motor coupled to a multi-stage belt drive elasticity (or none at all). In addition, the ankle can use both transmission, increasing the torque provided at the output. low-profile and flat feet,
Recommended publications
  • Partial Foot Prosthesis Physical Rehabilitation Programme 0868/002 09/2006 200 MISSION
    MANUFACTURING GUIDELINES PARTIAL FOOT PROSTHESIS Physical Rehabilitation Programme 0868/002 09/2006 200 MISSION The International Committee of the Red Cross (ICRC) is an impartial, neutral and independent organization whose exclusively humanitarian mission is to protect the lives and dignity of victims of war and internal violence and to provide them with assistance. It directs and coordinates the international relief activities conducted by the Movement in situations of conflict. It also endeavours to prevent suffering by promoting and strengthening humanitarian law and universal humanitarian principles. Established in 1863, the ICRC is at the origin of the International Red Cross and Red Crescent Movement. Acknowledgements: Jean François Gallay Leo Gasser Pierre Gauthier Frank Joumier International Committee of the Red Cross Jacques Lepetit 19 Avenue de la Paix Bernard Matagne 1202 Geneva, Switzerland Joel Nininger T + 41 22 734 60 01 F + 41 22 733 20 57 Guy Nury Peter Poestma E-mail: [email protected] Hmayak Tarakhchyan www.icrc.org © ICRC, September 2006 and all prosthetists-orthotists who have worked in ICRC-assisted physical rehabilitation centres. All photographs: ICRC/PRP Table of contents Foreword 2 Introduction 4 1. Footprint of sound side 5 2. Casting and rectification 6 3. Soft socket fabrication 7 4. Forefoot build-up 11 5. First fitting of soft socket 13 6. Draping of polypropylene 15 7. Trim lines 17 8. Fitting 20 9. Straps 21 10. Finished partial foot prosthesis 22 List of manufacturing materials 23 Manufacturing Guidelines Partial Foot Prosthesis 1 Foreword The ICRC polypropylene technology Since its inception in 1979, the ICRC’s Physical Rehabilitation Programme has promoted the use of technology that is appropriate to the specific contexts in which the organization operates, i.e., countries affected by war and low-income or developing countries.
    [Show full text]
  • Chapter 21 LOWER LIMB PROSTHETICS for SPORTS and RECREATION
    Lower Limb Prosthetics for Sports and Recreation Chapter 21 LOWER LIMB PROSTHETICS FOR SPORTS AND RECREATION † JOHN R. FERGASON, CPO*; AND PETER D. HARSCH, CP INTRODUCTION WHEN TO PROVIDE A SPORTS-SPECIFIC PROSTHESIS GENERAL-USE UTILITY PROSTHESIS SKIN TOLERANCE TO HIGH ACTIVITY GENERAL ALIGNMENT CONSIDERATIONS FOR SPORTS GENERAL COMPONENT CHOICES FOR FORCE REDUCTION IN SPORTS TRANSTIBIAL RUNNING TRANSFEMORAL RUNNING CYCLING ROCK CLIMBING WATER SPORTS WINTER SPORTS GOLF HIKING INJURIES AND LONG-TERM EFFECTS OTHER CONSIDERATIONS SUMMARY *Chief Prosthetist, Department of Orthopaedics and Rehabilitation, Brooke Army Medical Center, 3851 Roger Brooke Drive, Fort Sam Houston, Texas 78234 †Chief Prosthetist, C5 Combat Care Center Prosthetics, Naval Medical Center San Diego, 34800 Bob Wilson Drive, Building 3, San Diego, California 92134 581 Care of the Combat Amputee INTRODUCTION The value of sports and recreation continues to be a reported stress, pain, and depression, as well as a primary motivational factor for many service members general increase in the quality of life.8 Participation in with newly acquired lower limb amputations. Whether physical activity has shown a positive relationship with they were competitive prior to their amputations or improved body image for many amputees.9 For many not, they will become competitive to overcome their active duty service members, the desire to continue in current physical limitations. The background and de- the Armed Forces is correlated to their physical abil- mographics of an active duty service member differ ity to return to their previous military occupational from the demographics of the majority of new civilian specialty. Amputation of a lower limb does indeed amputations that occur each year.
    [Show full text]
  • The (Narrative) Prosthesis Re-Fitted Finding New Support for Embodied and Imagined Differences in Contemporary Art
    The (Narrative) Prosthesis Re-Fitted Finding New Support for Embodied and Imagined Differences in Contemporary Art Amanda Cachia Independent scholar and PhD candidate The (Narrative) Prosthesis Re-Fitted This article undertakes analyses of the contemporary American artists Robert Gober and Cindy Sherman to argue that they use the tropes of the obscene, abject, and traumatic—as discussed by Hal Foster—to make literal and metaphorical reference to David T. Mitchell and Sharon L. Snyder’s narrative prosthesis and its “truth,” while simultaneously leaving out the lived experience of disability. Consideration is given to the works of artists Carmen Papalia and Mike Parr, who use complex embodiment as a new methodology to signify empowerment and agency over what we might previously have considered the obscene, abject, or traumatic. They transform traditional understandings of the “prosthetic” within the specific rhetoric of disability. Introduction Why is it so de rigueur for contemporary artists to use disabled embodiment as a means to convey troubled emotional states, as a narrative and literal prosthesis? Narrative prosthesis is a term originally developed by David T. Mitchell and Sharon L. Snyder, where the disabled body is often inserted into literary, or in this case, visual narratives as a metaphorical opportunity. The disabled body or character is used as a type of crutch or supporting device that allows the narrative to take a turn or a new direction, but often the relationship between the story itself and the disabled body is one based on exploi- tation. “Through the corporeal metaphor,” Mitchell and Snyder articulate, “the disabled or otherwise different body may easily become a stand-in for more abstract notions of the human condition, as universal or nationally specific; thus the textual (disembodied) project depends upon—and takes advantage of—the materiality of the body” (50).
    [Show full text]
  • The Effects of Prosthesis Use Versus Non-Use on Forward Reach
    Grand Valley State University ScholarWorks@GVSU Masters Theses Graduate Research and Creative Practice 1999 The ffecE ts of Prosthesis Use Versus Non-use on Forward Reach Distance in Children Ages 5 to 15 with Unilateral Upper Extremity Amputation as Measured by the Functional Reach Test Mary E. Weber Grand Valley State University Follow this and additional works at: http://scholarworks.gvsu.edu/theses Part of the Physical Therapy Commons Recommended Citation Weber, Mary E., "The Effects of Prosthesis Use Versus Non-use on Forward Reach Distance in Children Ages 5 to 15 with Unilateral Upper Extremity Amputation as Measured by the Functional Reach Test" (1999). Masters Theses. 346. http://scholarworks.gvsu.edu/theses/346 This Thesis is brought to you for free and open access by the Graduate Research and Creative Practice at ScholarWorks@GVSU. It has been accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@GVSU. For more information, please contact [email protected]. The Effects of Prosthesis Use Versus Non-use on Forward Reach Distance in Children Ages 5 to 15 with Unilateral Upper Extremity Amputation as Measured by the Functional Reach Test by Mary E. Weber Scot G. Smith THESIS Submitted to the Physical Therapy Program at Grand Valley State University Allendale, Michigan in partial MGHment o f the requirements for the degree of MASTER OF SCIENCE IN PHYSICAL THERAPY 1999 THESIS COMMITTEE APPROVAL: H U U u Chair; Mary/^. Green, M.S., P.T. .v ü fa i. Mi rn y i.LiitLMi : Je m ^ r McWain, M.S., P.T. The Effects of Prosthesis Use Versus Non-use on Forward Reach Distance in Children Ages 5 to 15 with Unilateral Upper Extremity Amputation as Measured by the Functional Reach Test ABSTRACT The purpose o f this study was to investigate the possible differences in maximal forward reaching distance in children with unilateral upper extremity amputations while wearing and not wearing a prosthesis using the Functional Reach (FR) test.
    [Show full text]
  • Rehabilitation of People with Physical Disabilities in Developing Countries
    Rehabilitation of people with physical disabilities in developing countries Program Report for Collaborative Agreement: DFD-A-00-08-00309-00 September 30, 2008 – December 31, 2015 Author: Sandra Sexton March 2016 ISPO Registered Office: International Society for Prosthetics and Orthotics (ISPO) c/o ICAS ApS Trekronervej 28 Strøby Ergede 4600 Køge Denmark Correspondence: International Society for Prosthetics and Orthotics 22-24 Rue du Luxembourg BE-1000 Brussels, Belgium Telephone: +32 2 213 13 79 Fax: +32 2 213 13 13 E-mail: [email protected] Website: www.ispoint.org ISBN 978-87-93486-00-3 1 Contents Page 1. Executive summary 3 2. List of acronyms 4 3. Acknowledgements 5 4. Introduction and background 6 4.1 Prosthetics and orthotics in developing countries 6 4.2 The prosthetics and orthotics workforce 6 5. Program activities, progress and results 7 5.1 Scholarships 7 5.2 Measuring the impact of training in prosthetics and orthotics 13 5.3 Enhancement of prosthetics and orthotics service provision 18 6. Budget and expenditure 22 7. References 23 2 1. Executive Summary Prosthetics and orthotics services enable people with physical impairments of their limbs or spine the opportunity to achieve greater independence to participate in society. Alarmingly, such services are not available to an estimated 9 out of 10 people with disabilities globally due to a shortage of personnel, service units and health rehabilitation infrastructures1. To try and address this situation, our International Society for Prosthetics and Orthotics (ISPO) members have been working towards development of the prosthetics and orthotics sector since our Society’s inception in the 1970s.
    [Show full text]
  • Returning to School After a Limb Amputation
    FAct Sheet 10 Returning to School after a Limb Amputation When your child returns to kindergarten, pre-school or >> Speak to your Social Worker. Your Social Worker can school after a limb amputation it can be a stressful and provide you with access to support and confidential emotional time for you, your child and the rest of your counselling if you require it. In addition, your Social family. It can also be a worrying time for your child’s Worker can liaise with your child’s school and assist school, teachers and peers. To reduce stress during this during the return to school transition period. transition there are approaches you can use to ensure >> Speak to your Prosthetist. Your Prosthetist will the return to school period is as smooth as possible. already be working with you and your child to This Fact Sheet explores issues related to your child’s determine which prosthesis (if any) will best suit your return to kindergarten, pre-school or school after an child. Depending on your child’s recovery period, he amputation, including: how to begin the transition or she may not be ready for their prosthesis prior to process; what you need to discuss with your child’s returning to school. You will need to consider what (if school; preparing for a school meeting; and, ways any) impacts returning to school prior to receiving a to assist other students to positively understand the prosthesis may have at a physical and emotional level. physical change in your son or daughter. Discuss these matters with your Prosthetist and other health professionals supporting your child.
    [Show full text]
  • Before the Office of Administrative Hearings State of California
    BEFORE THE OFFICE OF ADMINISTRATIVE HEARINGS STATE OF CALIFORNIA In the Matter of: PARENT ON BEHALF OF STUDENT, OAH CASE NO. 2012110220 v. LOS ANGELES UNIFIED SCHOOL DISTRICT. DECISION Administrative Law Judge (ALJ) Adrienne L. Krikorian, Office of Administrative Hearings (OAH), State of California, heard this matter on February 5 and 6, 2013 in Van Nuys, California. Student’s Father (Father) represented Student and testified at the hearing. A Spanish language interpreter assisted him. Student’s mother attended both hearing days. Student was present on the first day of hearing. Attorney Donald Erwin represented Los Angeles Unified School District (District). District Coordinator of Compliance Support and Monitoring, Division of Special Education Diana Massaria was also present on all hearing days. On November 5, 2012, Student filed a request for due process hearing. OAH granted a continuance for good cause on December 14, 2012. On February 6, 2013, at the request of the parties, the ALJ further continued the hearing to February 13, 2013, to allow the parties time to file closing briefs. The parties timely submitted their briefs and the record was closed on February 13, 2013. ISSUE Did District deny Student a free appropriate public education (FAPE) in his June 15, 2012 individualized education program (IEP) by offering Student placement at Salvin Special Education Center? FACTUAL FINDINGS 1. Student was 10 years old at the time of the hearing and lived with his parents (Parents) within District boundaries. Student has attended District’s Salvin Special Education Center (Salvin) in a multiple disabilities/severe (MD-S) classroom since 2005, except for an approximately two-year break for medical reasons.
    [Show full text]
  • The Aesthetics of Prosthetic Design: from Theory to Practice
    INTERNATIONAL DESIGN CONFERENCE - DESIGN 2014 Dubrovnik - Croatia, May 19 - 22, 2014. THE AESTHETICS OF PROSTHETIC DESIGN: FROM THEORY TO PRACTICE S. Sansoni, A. Wodehouse and A. Buis Keywords: aesthetics, prosthetic devices, design principles 1. Introduction Aesthetics of prosthetic device design is an emerging field of research; this study investigates both the theoretical and the practical aspects of this subject. Our belief is that prostheses, perceived by users as attractive, can enhance a positive feeling, promote their psychological acceptance of the "new limb" and, in general, their well-being. "Prosthetic" is a term that refers to devices designed to replace a missing part of the body. This definition applies to devices that replace a limb segment rather than externally-applied devices which are referred to as "orthotics". For example, we can classify an artificial arm, leg, or finger as a prosthesis, whereas external entities such as a dental brace, insoles or a pair of glasses are orthotics. Specifically, this field of research is currently focusing on below-knee prosthetic devices. This paper represents a part of our research track and aims to show recent progression and to inform people of the existence of this field of research. A fundamental research question is "what are the characteristics that make a prosthetic device look and feel aesthetically attractive?" What we want to explore are the aesthetic expectations of prosthetic users for their ideal devices and how wearing them could positively affect their self-confidence. In order to investigate this field in a wider perspective, an interdisciplinary approach was set up to include product design (with relevant consideration for natural-inspired design), prosthetic design, emotional design, psychology, and fashion trends.
    [Show full text]
  • Service Dog Application Form Must Be Completed Along with a Recent Photo and a $50 Non- Refundable Application Fee
    Before filling out the application, we ask that you read the following information to ensure that you qualify as an applicant: Thank you for your interest in applying for a New Horizons Service Dog The process is as follows: The Service Dog Application form must be completed along with a recent photo and a $50 non- refundable application fee. The Medical History Form must be filled out by your primary care physician and returned directly to NHSDI. The proof of income (financial) information must include a W-2, pay stubs, social security statement or any document that proves your income for one month. A letter of reference must be submitted directly to NHSDI on your behalf by a non-family member. Your eligibility will be determined when all of the above paperwork is received in our office. You will receive an email letting you know your file is complete and you have been placed on the waiting list. Please keep in mind that our waiting period can take up to 1 year. All eligible applicants remain on file until we are able to place each and every service dog with the client they are best suited for. You will hear from us, closer to the time of placement, when we will request a personal interview. You are responsible for all costs related to a 2-week Team Training, in which you will come to the Central Florida area with the dog every day for 2 weeks under our guidance and instruction. There is no cost for the service dog, however, there are costs related to the receiving of the dog.
    [Show full text]
  • Design of an Accessible, Powered Myoelectrically Controlled Hand Prosthesis
    TEM Journal. Volume 6, Issue 3, Pages 479-483, ISSN 2217-8309, DOI: 10.18421/TEM63-07, August 2017. Design of an Accessible, Powered Myoelectrically Controlled Hand Prosthesis Osman Onur Akirmak 1, Çağdaş Tatar 1, Ziya Gökalp Altun 1, Yuriy Mishchenko 2 1 Toros University, Bahcelievler 45, Mersin, Turkey 2 Izmir University of Economics, Sakarya Cad 56, Izmir, Turkey Abstract – In this paper we describe accessible developments have been confined to advanced myoelectric prosthetic hand design based on biomedical and robotics laboratories in main modification of existing mechanical prosthesis and off- industrial countries, whereas the end designs are the-shelf parts and components. Despite significant complex and extremely costly thanks to reliance on advances in myoelectric prosthetics, such existing complex parts and advanced technologies. i-Limb devices remain out of reach of the majority of the patients needing them due to high costs and prosthetic hand – one of such offerings sold complexity. We describe a simple design that can be commercially – comes with a price tag of 20,000 assembled based on existing or readily acquirable parts USD [10]. Despite a significant need existing in at approximately 1/100 of the cheapest commercially myoelectric prosthetics in developing countries, the available alternative. Our design offers wrist above factors make it all but impossible for such disarticulation patients in developing countries an patients to obtain a myoelectric prosthetic. affordable myoelectric prosthesis with significant In this report, we describe a design for myoelectric capacity for improving their quality of life. hand prosthetic that is simple, inexpensive, and does not rely on advanced components or expertise.
    [Show full text]
  • Breast Reconstruction Or Prosthesis After Mastectomy
    BREAST RECONSTRUCTION OR PROSTHESIS AFTER MASTECTOMY Breast reconstruction Breast reconstruction can help restore the look of the breast after a mastectomy. It can be done at the same time as the mastectomy (immediate) or later (delayed). The timing depends on: • A physical exam by the plastic surgeon • Surgical risk factors (such as smoking and being overweight) – Women who smoke or are overweight have a higher risk of problems with surgery. Sometimes, waiting to have reconstruction until after you quit smoking or lose weight may lower these risks • Treatments you will need after surgery Types of breast reconstruction Breast implant Breast reconstruction can be done with: associated anaplastic large cell lymphoma • Breast implants (BIA-ALCL) • Tissue flaps (using skin, fat and sometimes, muscle from your body) BIA-ALCL is a rare • A combination of both cancer of the cells of There’s no one best reconstruction method. There are pros and cons to each. Breast the immune system in women with breast implants require less invasive surgery than using your own body tissues, but the results may implants. not look and feel as natural. • The FDA is studying Your breast cancer treatment, your body and your lifestyle will affect your options. Talk the link between with your doctors about what type of reconstruction is right for you. breast implants and a slight increase in risk Breast Implants of BIA-ALCL. There are 2 basic types of breast implants: • The risk of BIA-ALCL saline and silicone. Implants come in appears to be linked to textured breast different shapes to match the look of the implants rather than natural breast.
    [Show full text]
  • Diabetes.Pdf
    The War Amps For Your Information Tel.: 1 877 622-2472 Fax: 1 855 860-5595 [email protected] Diabetes Diabetes presents very specific issues for amputees. his article discusses concerns amputees may have Trelated to Type 1 and Type 2 diabetes – including Monitoring your diabetes, developing a how to prevent diabetes, how to manage diabetes, and healthy lifestyle and taking care of your how to be especially careful if your amputation was due lower extremities will go a long way to help to diabetes or circulatory problems. Type 1 diabetes you manage your diabetes. has additional concerns which are highlighted under What is Diabetes? Information presented here is to act The good news is that more is known about diabetes only as a guide, please contact your doctor for specific than ever before to help people with diabetes control advice for your situation. it better and live fuller lives. We will describe how to live well if you have diabetes, but first let’s look at Diabetes presents very specific issues for amputees. If you diabetes generally. have an amputation not related to your diabetes (ex: due to an accident or if you are a congenital amputee), you What is Diabetes? need to try to minimize the effects diabetes has on your lifestyle, which is already affected by your amputation. Diabetes is a metabolism abnormality that affects For instance, if you are a lower-limb amputee, you need the way your body uses blood sugar (glucose), your to take care of your residual limb and your sound leg – main source of energy.
    [Show full text]