Clinical Concept Extraction for Document-Level Coding

Total Page:16

File Type:pdf, Size:1020Kb

Clinical Concept Extraction for Document-Level Coding Clinical Concept Extraction for Document-Level Coding Sarah Wiegreffe1, Edward Choi1∗, Sherry Yan2, Jimeng Sun1, Jacob Eisenstein1 1Georgia Institute of Technology 2Sutter Health ∗ Current Affiliation: Google Inc [email protected], [email protected], [email protected], [email protected], [email protected] Abstract Clinical concept extraction tools abstract over The text of clinical notes can be a valuable the noise inherent in surface representations of source of patient information and clinical as- clinical text by linking raw text to standardized sessments. Historically, the primary approach concepts in clinical ontologies. The Apache clin- for exploiting clinical notes has been informa- ical Text Analysis Knowledge Extraction System tion extraction: linking spans of text to con- (cTAKES, Savova et al., 2010) is the most widely- cepts in a detailed domain ontology. How- used such tool, with over 1000 citations. Based on ever, recent work has demonstrated the poten- rules and non-neural machine learning methods and tial of supervised machine learning to extract engineered for almost a decade, cTAKES provides document-level codes directly from the raw text of clinical notes. We propose to bridge an easily-obtainable source of human-encoded do- the gap between the two approaches with two main knowledge, although it cannot leverage deep novel syntheses: (1) treating extracted con- learning to make document-level predictions. cepts as features, which are used to supple- Our goal in this paper is to maximize the predic- ment or replace the text of the note; (2) treating tive power of clinical notes by bridging the gap labels extracted concepts as , which are used to between information extraction and deep learn- learn a better representation of the text. Un- fortunately, the resulting concepts do not yield ing models. We address the following research performance gains on the document-level clin- questions: how can we best leverage tools such as ical coding task. We explore possible explana- cTAKES on clinical text? Can we show the value tions and future research directions. of these tools in linking unstructured data to struc- tured codes in an existing ontology for downstream 1 Introduction prediction? Clinical decision support from raw-text notes taken We explore two novel hybrids of these meth- by clinicians about patients has proven to be a ods: data augmentation (augmenting text with ex- valuable alternative to state-of-the-art models built tracted concepts) and multi-task learning (learning from structured EHRs. Clinical notes contain valu- to predict the output of cTAKES). Unfortunately, able information that the structured part of the in neither case does cTAKES improve downstream EHR does not provide, and do not rely on expen- performance on the document-level clinical cod- sive and time-consuming human annotation (Torres ing task. We probe this negative result through an et al., 2017; American Academy of Professional extensive series of ablations, and suggest possible Coders, 2019). Impressive advances using deep explanations, such as the lack of word variation learning have allowed for modeling on the raw text captured through concept assignment. alone (Mullenbach et al., 2018; Rios and Kavuluru, 2018a; Baumel et al., 2018). However, there exist 2 Related Work some shortcomings to these approaches: clinical text is noisy, and often contains heavy amounts of Clinical Ontologies Clinical concept ontologies abbreviations and acronyms, a challenge for ma- facilitate the maintenance of EHR systems with chine reading (Nguyen and Patrick, 2016). Addi- standardized and comprehensive code sets, allow- tionally, rare words replaced with "UNK" tokens ing consistency across healthcare institutions and for better generalization may be crucial for predict- practitioners. The Unified Medical Language Sys- ing rare labels. tem (UMLS) (Lindberg et al., 1993) maintains 261 Proceedings of the BioNLP 2019 workshop, pages 261–272 Florence, Italy, August 1, 2019. c 2019 Association for Computational Linguistics the text and their positions, with functionality to map them to other ontologies such as SNOMED and ICD9. It is highly scalable, and can be de- ployed locally to avoid compromising identifiable patient data. Figure2 shows an example cTAKES annotation on a clinical record. Clinical Named-Entity Recognition (NER) Recent work has focused on developing tools Figure 1: A subtree of the ICD ontology (figure from to replace cTAKES in favor of modern neural Singh et al., 2014). architectures such as Bi-LSTM CRFs (Boag et al., 2018; Tao et al., 2018; Xu et al., 2018; Greenberg et al., 2018), varying in task definition a standardized vocabulary of clinical concepts, and evaluation. Newer approaches leverage each of which is assigned a concept unique iden- contextualized word embeddings such as ELMo tifier (CUI). The Systematized Nomenclature of (Zhu et al., 2018; Si et al., 2019). In contrast, we Medicine- Clinical Terms (SNOMED-CT) (Don- focus on maximizing the power of existing tools nelly, 2006) and the International Classification such as cTAKES. This approach is more practical of Diseases (ICD) (National Center for Health in the near-term, because the adoption of new Statistics, 1991) build off of the UMLS and pro- NER systems in the clinical domain is inhibited vide structure by linking concepts based on their by the amount of computational power, data, and relationships. The SNOMED ontology has over gold-label annotations needed to build and train 340,000 active concepts, ranging from fine-grained such token-level models, as well as considerations ("Adenylosuccinate lyase deficiency") to extremely for the effectiveness of domain transfer and a general ("patient"). The ICD ontology is narrower necessity to perform annotations locally in order to in scope, with around 13,000 diagnosis and pro- protect patient data. Newer models do not provide cedure codes used for insurance billing. Unlike these capabilities. SNOMED, which has an unconstrained graph struc- ture, ICD9 is organized into a top-down hierarchy NER in Text-based Models Prior works use the of specificity (see Figure 1). output of cTAKES as features for disease- and Clinical Information Extraction Tools There drug-specific tasks, but either concatenate them are several tools for extracting structured informa- as shallow features, or substitute them for the text tion from clinical text. Popular types of informa- itself (see Wang et al.(2017) for a literature re- tion extraction include named-entity recognition, view). Weng et al.(2017) incorporate the output identifying words or phrases in the text which align of cTAKES into their input feature vectors for the with clinical concepts, and ontology mapping, la- task of predicting the medical subdomain of clini- belling the identified words and phrases with their cal notes. However, they use them as shallow fea- respective clinical codes from an existing ontol- tures in a non-neural setting, and combine cTAKES ogy.1 Of the tools which perform both of these annotations with the text representations by con- tasks, the open-source Apache cTAKES is used catenating the two into one larger feature vector. in over 50% of recent work (Wang et al., 2017), In contrast, we propose to learn dense neural con- outpacing competitors such as MetaMap (Aronson, cept embedding representations, and integrate the 2001) and MedLEE (Friedman, 2000). concepts in a learnable fashion to guide the rep- cTAKES utilizes a rule-based system for per- resentation learning process, rather than simply forming ontology mapping, via a UMLS dictionary concatenating them or using them as a text replace- lookup on the noun phrases inferred by a part-of- ment. We additionally focus on a more challenging speech tagger. Taking raw text as input, the soft- task setting. ware outputs a set of UMLS concepts identified in Boag and Kané(2017) augment a Word2Vec training objective to predict clinical concepts. This 1 Ontology mapping also serves as a form of text normal- work is orthogonal to ours as it is an unsupervised ization. 2Figure from https://healthnlp.github.io/ "embedding pretraining" approach rather than an examples/. end-to-end supervised model. 262 Figure 2: An example of cTAKES annotation output with part-of-speech tags and UMLS CUIs for named entities.2 Automated Clinical Coding The automated Results on the extracted concepts are presented in clinical coding task is to predict from the raw text Table1. Note the difference in number of anno- of a hospital discharge summary describing a pa- tations provided by using the SNOMED ontology tient encounter all of the possible ICD9 (diagnosis compared to ICD9.4 and procedure) codes which a human annotator would assign to the visit. Because these annotators ICD9 Total concepts extracted 1,005,756 are trained professionals, the ICD codes assigned Mean # extracted concepts per document 19.10 serve as a natural label set for describing a patient Mean % words assigned a concept per document 1.26% record, and the task can be seen as a proxy for SNOMED a general patient outcome or treatment prediction Total concepts extracted 28,090,075 Mean # extracted concepts per document 532.76 task. State-of-the-art methods such as CAML (Mul- Mean % words assigned a concept per document 35.21% lenbach et al., 2018) treat each label prediction as a separate task, performing many binary classifi- Mean # tokens per document 1513.00 cations over the many-thousand-dimensional label Table 1: Descriptive Statistics on concept extraction for space. The model is described in more detail in the the MIMIC-III corpus. next section. The label space is very large (tens of thousands of possible codes) and frequency is long-tailed. Base model We evaluate against CAML (Mul- Rios and Kavuluru(2018b) find that CAML per- lenbach et al., 2018), a state-of-the-art text-based forms weakly on rare labels. model for the clinical coding task. The model lever- ages a convolutional neural network (CNN) with 3 Problem Setup per-label attention to predict the combination of Task Notation A given discharge summary is codes to assign to a diven discharge summary.
Recommended publications
  • BENTO: a Visual Platform for Building Clinical NLP Pipelines Based on Codalab
    BENTO: A Visual Platform for Building Clinical NLP Pipelines Based on CodaLab Yonghao Jin, Fei Li and Hong Yu Department of Computer Science, University of Massachusetts Lowell, MA, USA Abstract CodaLab1 is an open-source web-based plat- form for collaborative computational research. Although CodaLab has gained popularity in the research community, its interface has lim- ited support for creating reusable tools that can be easily applied to new datasets and composed into pipelines. In clinical domain, natural language processing (NLP) on med- ical notes generally involves multiple steps, like tokenization, named entity recognition, etc. Since these steps require different tools Figure 1: The architecture of BENTO. The BENTO which are usually scattered in different publi- back end stores the description files of various tools cations, it is not easy for researchers to use (e.g., pre-trained NLP models), processes static con- them to process their own datasets. In this pa- tents of the application and handles compilation of the per, we present BENTO, a workflow manage- user-defined pipelines. The CodaLab back end stores ment platform with a graphic user interface the datasets (bundles) and executes computational jobs. (GUI) that is built on top of CodaLab, to fa- The two back end servers are brought behind a single cilitate the process of building clinical NLP domain name using a reverse proxy server. pipelines. BENTO comes with a number of clinical NLP tools that have been pre-trained using medical notes and expert annotations this problem, researchers have developed CodaLab and can be readily used for various clinical as an open-source platform for researchers and soft- NLP tasks.
    [Show full text]
  • Download Thesis
    This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Big data approaches to investigating Child Mental Health disorder outcomes Downs, Jonathan Muir Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 07. Oct. 2021 BIG DATA APPROACHES TO INVESTIGATING CHILD MENTAL HEALTH DISORDER OUTCOMES JOHNNY DOWNS Thesis submitted for the degree of Doctor of Philosophy September 2017 Department of Psychological Medicine Institute of Psychiatry, Psychology & Neuroscience King’s College London ABSTRACT Background: In the UK, administrative data resources continue to expand across publically funded youth-orientated health, education and social services.
    [Show full text]
  • Deliverable 2.4 Development of Supervised Categorization Models
    Project Acronym:ICTUSnet Project code: SOE2/P1/E0623 E2.4 DEVELOPMENT OF SUPERVISED CATEGORIZATION MODELS, TOPIC MODELLING AND EXTRACTION OF CLINICAL INFORMATION COMPUTING. Due date: 30/04/2020 WP2. WPActual Development submission date: and30/ 04integration/2021 of 'Machine Responsible partner: BSC Version: Learning' algorithms04 Status: Final Dissemination level: Public / Consortium Project funded by the Interreg Sudoe Programme through the European Regional Development Fund (ERDF) Project Acronym: ICTUSnet Project code: SOE2/P1/E0623 Deliverable description: This deliverable describes the methodology used in WP2 to develop the SUPERVISED CATEGORIZATION MODELS, TOPIC MODELLING AND EXTRACTION OF CLINICAL INFORMATION using deep learning techniques. The results obtained by the deep learning models are remarkable, reaching 91% F1 on average. Revision history Version Date Comments Partner 01 12/2020 First version BSC 02 02/2021 Second version BSC 03 04/2021 Final version BSC Authors Name Partner Marta Villegas Montserrat BSC Aitor González Agirre BSC Joan Llop BSC Siamak Barzegar BSC Contributors Name Partner ICTUSnet: E2.4Development of supervised categorization models, topic modelling and extraction of clinical information via cognitive computing. 30/04/2021 02 Page 2 of 65 Project Acronym: ICTUSnet Project code: SOE2/P1/E0623 ABBREVIATIONS AND ACRONYMS HUSE Hospital Universitario Son Espases XML Extensible Markup Language HER Electronic Health Record TTR Type Token Ratio BRAT Brat Rapid Annotation Tool F1 F1 score IAA Inter-Annotator Agreement NER Named Entity Recognition NERC Named Entity Recognition and Classification ICTUSnet: E2.4Development of supervised categorization models, topic modelling and extraction of clinical information via cognitive computing. 30/04/2021 02 Page 3 of 65 Project Acronym: ICTUSnet Project code: SOE2/P1/E0623 TABLE OF CONTENTS INRODUCTION .............................................................................................................
    [Show full text]
  • Code Smell Prediction Employing Machine Learning Meets Emerging Java Language Constructs"
    Appendix to the paper "Code smell prediction employing machine learning meets emerging Java language constructs" Hanna Grodzicka, Michał Kawa, Zofia Łakomiak, Arkadiusz Ziobrowski, Lech Madeyski (B) The Appendix includes two tables containing the dataset used in the paper "Code smell prediction employing machine learning meets emerging Java lan- guage constructs". The first table contains information about 792 projects selected for R package reproducer [Madeyski and Kitchenham(2019)]. Projects were the base dataset for cre- ating the dataset used in the study (Table I). The second table contains information about 281 projects filtered by Java version from build tool Maven (Table II) which were directly used in the paper. TABLE I: Base projects used to create the new dataset # Orgasation Project name GitHub link Commit hash Build tool Java version 1 adobe aem-core-wcm- www.github.com/adobe/ 1d1f1d70844c9e07cd694f028e87f85d926aba94 other or lack of unknown components aem-core-wcm-components 2 adobe S3Mock www.github.com/adobe/ 5aa299c2b6d0f0fd00f8d03fda560502270afb82 MAVEN 8 S3Mock 3 alexa alexa-skills- www.github.com/alexa/ bf1e9ccc50d1f3f8408f887f70197ee288fd4bd9 MAVEN 8 kit-sdk-for- alexa-skills-kit-sdk- java for-java 4 alibaba ARouter www.github.com/alibaba/ 93b328569bbdbf75e4aa87f0ecf48c69600591b2 GRADLE unknown ARouter 5 alibaba atlas www.github.com/alibaba/ e8c7b3f1ff14b2a1df64321c6992b796cae7d732 GRADLE unknown atlas 6 alibaba canal www.github.com/alibaba/ 08167c95c767fd3c9879584c0230820a8476a7a7 MAVEN 7 canal 7 alibaba cobar www.github.com/alibaba/
    [Show full text]
  • Proceedings of the Workshop on NLP for Medicine and Biology Associated with RANLP 2013, Pages 1–8, Hissar, Bulgaria, 13 September 2013
    NLP for Medicine and Biology 2013 Proceedings of the Workshop on NLP for Medicine and Biology associated with The 9th International Conference on Recent Advances in Natural Language Processing (RANLP 2013) 13 September, 2013 Hissar, Bulgaria WORKSHOP ON NLP FOR MEDICINE AND BIOLOGY ASSOCIATED WITH THE INTERNATIONAL CONFERENCE RECENT ADVANCES IN NATURAL LANGUAGE PROCESSING’2013 PROCEEDINGS Hissar, Bulgaria 13 September 2013 ISBN 978-954-452-024-3 Designed and Printed by INCOMA Ltd. Shoumen, BULGARIA ii Preface Biomedical NLP deals with the processing of healthcare-related text—clinical documents created by physicians and other healthcare providers at the point of care, scientific publications in the areas of biology and medicine, and consumer healthcare text such as social media blogs. Recent years have seen dramatic changes in the types and amount of data available to researchers in this field. Where most research on publications in the past has dealt with the abstracts of journal articles, we now have access to the full texts of journal articles via PubMedCentral. Where research on clinical documents has been hampered by a lack of availability of data, we now have access to large bodies of data through the auspices of the Cincinnati Children’s Hospital NLP Challenge, the i2b2 shared tasks (www.i2b2.org), the TREC Electronic Medical Records track, the US-funded Strategic Health Advanced Research Projects Area 4 (www.sharpn.org) and the Shared Annotated Resources (ShARe; https://sites.google.com/site/shareclefehealth/taskdescription; www.clinicalnlpannotations.org) project. Meanwhile, the number of abstracts in PubMed continues to grow exponentially. Text in the form of blogs created by patients discussing various healthcare topics has emerged as another data source, with a new perspective on healthrelated issues.
    [Show full text]
  • Clinical Annotation Research Kit (CLARK): Computable Phenotyping Using Machine Learning
    JMIR MEDICAL INFORMATICS Pfaff et al Viewpoint Clinical Annotation Research Kit (CLARK): Computable Phenotyping Using Machine Learning Emily R Pfaff1, MS; Miles Crosskey2, PhD; Kenneth Morton2, PhD; Ashok Krishnamurthy3, PhD 1North Carolina Translational and Clinical Sciences Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States 2CoVar Applied Technologies, Durham, NC, United States 3Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States Corresponding Author: Emily R Pfaff, MS North Carolina Translational and Clinical Sciences Institute University of North Carolina at Chapel Hill 160 N Medical Drive Chapel Hill, NC, United States Phone: 1 919 843 4712 Email: [email protected] Abstract Computable phenotypes are algorithms that translate clinical features into code that can be run against electronic health record (EHR) data to define patient cohorts. However, computable phenotypes that only make use of structured EHR data do not capture the full richness of a patient's medical record. While natural language processing (NLP) methods have shown success in extracting clinical features from text, the use of such tools has generally been limited to research groups with substantial NLP expertise. Our goal was to develop an open-source phenotyping software, Clinical Annotation Research Kit (CLARK), that would enable clinical and translational researchers to use machine learning±based NLP for computable phenotyping without requiring deep informatics expertise. CLARK enables nonexpert users to mine text using machine learning classifiers by specifying features for the software to match in clinical notes. Once the features are defined, the user-friendly CLARK interface allows the user to choose from a variety of standard machine learning algorithms (linear support vector machine, Gaussian Naïve Bayes, decision tree, and random forest), cross-validation methods, and the number of folds (cross-validation splits) to be used in evaluation of the classifier.
    [Show full text]
  • Domain Independent Natural Language Processing—A Case Study for Hospital Readmission with COPD
    2014 IEEE 14th International Conference on Bioinformatics and Bioengineering Domain Independent Natural Language Processing – A Case Study for Hospital Readmission with COPD Ankur Agarwal, Ph.D. Sirish Malpura Florida Atlantic University Florida Atlantic University Boca Raton, Florida Boca Raton, Florida [email protected] [email protected] Ravi S Behara, Ph.D. Vivek Tyagi Florida Atlantic University Florida Atlantic University Boca Raton, Florida Boca Raton, Florida [email protected] [email protected] Abstract—Natural language processing is a field of computer science, which focuses on interactions between computers and phenomena based on actual examples of these phenomena human (natural) languages. The human languages are provided by the text input without adding significant linguistic ambiguous unlike Computer languages, which make its analysis or world knowledge. Machine learning based NLP solutions and processing difficult. Most of the data present these days is in use this approach. unstructured form (such as: Accident reports, Patient discharge summary, Criminal records etc), which makes it hard for Connectionist Approach: Connectionist approach computers to understand for further use and analysis. This develops generalized models from examples of linguistic unstructured text needs to be converted into structured form by phenomena. However, connectionist models combine clearly defining the sentence boundaries, word boundaries and statistical learning with various theories of representation – context dependent character boundaries for further analysis. This paper proposes a component-based domain-independent thus the connectionist representations allow transformation, text analysis system for processing of the natural language known inference, and manipulation of logic formulae. [1] as Domain-independent Natural Language Processing System (DINLP). Further the paper discusses the system capability and Connectionist NLP approach is newer compared to its application in the area of bioinformatics through the case symbolic and statistical approaches.
    [Show full text]
  • A Spanish EHR Semantic Search Engine
    TIDA: A Spanish EHR semantic search engine Roberto Costumero1, Consuelo Gonzalo1, and Ernestina Menasalvas1 Universidad Politecnica´ de Madrid - Centro de Tecnolog´ıa Biomedica, Madrid, Spain roberto.costumero, consuelo.Gonzalo, [email protected] Abstract. Electronic Health Records (EHR) and the constant adoption of In- formation Technologies in healthcare have dramatically increased the amount of unstructured data stored. The extraction of key information from this data will bring better caregivers decisions and an improvement in patients’ treatments. With more than 495 million people talking Spanish, the need to adapt algorithms and technologies used in EHR knowledge extraction in English speaking coun- tries, leads to the development of different frameworks. Thus, we present TIDA, a Spanish EHR semantic search engine, to give support to Spanish speaking medi- cal centers and hospitals to convert pure raw data into information understandable for cognitive systems. This paper presents the results of TIDA’s Spanish EHR free-text treatment component with the adaptation of negation and context detec- tion algorithms applied in a semantic search engine with a database with more than 30,000 clinical notes. Keywords: Natural Language Processing, Electronic Health Records, Negation Detection 1 Introduction The adoption and effective use of information technologies in healthcare (in particu- larly the Electronic Health Record - EHR) has been hindered for decades. The leading English speaking countries have brought new technologies to build health decision- making systems in the last years such as Natural Language Processing (NLP), Negation and context detection algorithms, frameworks like Mayo’s cTAKES [1], terminology systems as the Unified Medical Language System (UMLS) [2] or actual systems such as IBM WatsonTM[3].
    [Show full text]
  • Testsmelldescriber Enabling Developers’ Awareness on Test Quality with Test Smell Summaries
    Bachelor Thesis January 31, 2018 TestSmellDescriber Enabling Developers’ Awareness on Test Quality with Test Smell Summaries Ivan Taraca of Pfullendorf, Germany (13-751-896) supervised by Prof. Dr. Harald C. Gall Dr. Sebastiano Panichella software evolution & architecture lab Bachelor Thesis TestSmellDescriber Enabling Developers’ Awareness on Test Quality with Test Smell Summaries Ivan Taraca software evolution & architecture lab Bachelor Thesis Author: Ivan Taraca, [email protected] URL: http://bit.ly/2DUiZrC Project period: 20.10.2018 - 31.01.2018 Software Evolution & Architecture Lab Department of Informatics, University of Zurich Acknowledgements First of all, I like to thank Dr. Harald Gall for giving me the opportunity to write this thesis at the Software Evolution & Architecture Lab. Special thanks goes out to Dr. Sebastiano Panichella for his instructions, guidance and help during the making of this thesis, without whom this would not have been possible. I would also like to express my gratitude to Dr. Fabio Polomba, Dr. Yann-Gaël Guéhéneuc and Dr. Nikolaos Tsantalis for providing me access to their research and always being available for questions. Last, but not least, do I want to thank my parents, sisters and nephews for the support and love they’ve given all those years. Abstract With the importance of software in today’s society, malfunctioning software can not only lead to disrupting our day-to-day lives, but also large monetary damages. A lot of time and effort goes into the development of test suites to ensure the quality and accuracy of software. But how do we elevate the quality of test code? This thesis presents TestSmellDescriber, a tool with the ability to generate descriptions detailing potential problems in test cases, which are collected by conducting a Test Smell analysis.
    [Show full text]
  • Natural Language Processing: Integration of Automatic and Manual Analysis
    Natural Language Processing: Integration of Automatic and Manual Analysis Natürliche Sprachverarbeitung: Integration automatischer und manueller Analyse Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) genehmigte Dissertation von Dipl.-Inform. Richard Eckart de Castilho aus Bensheim 2014 - Fachbereich Informatik — Darmstadt — D 17 Natural Language Processing: Integration of Automatic and Manual Analysis Natürliche Sprachverarbeitung: Integration automatischer und manueller Analyse Genehmigte Dissertation von Dipl.-Inform. Richard Eckart de Castilho aus Bensheim 1. Gutachten: Prof. Dr. Iryna Gurevych, Technische Universität Darmstadt 2. Gutachten: Prof. Dr. Andreas Henrich, Otto-Friedrich-Universität Bamberg 3. Gutachten: Prof. Christopher D. Manning, PhD., Stanford University Tag der Einreichung: 16. Dezember 2013 Tag der Prüfung: 10. Februar 2014 Darmstadt — D 17 Produkte oder Dienstleistungen auf welche in diesem Dokument verwiesen wird können Handels- marken oder eingetragene Handelsmarken der jeweiligen Rechteinhaber seine. Weder der Autor noch der Verlag erheben Ansprüche darauf. Products and services that are referred to in this work may be either trademarks and/or regis- tered trademarks of their respective owners. The author and the publishers make no claim to these trademarks. Bitte zitieren Sie dieses Dokument als: URN: urn:nbn:de:tuda-tuprints-41517 URL: http://tuprints.ulb.tu-darmstadt.de/id/eprint/4151 Dieses Dokument wird bereitgestellt von tuprints, E-Publishing-Service der TU Darmstadt http://tuprints.ulb.tu-darmstadt.de [email protected] Die Veröffentlichung steht unter folgender Creative Commons Lizenz: Namensnennung – Keine kommerzielle Nutzung – Keine Bearbeitung 3.0 Deutschland http://creativecommons.org/licenses/by-nc-nd/3.0/de/ To my family. Erklärung zur Dissertation Hiermit versichere ich, die vorliegende Dissertation ohne Hilfe Dritter nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben.
    [Show full text]
  • Apache Solr: a Practical Approach to Enterprise Search Teaches You How to Build an Enterprise Search Engine Using Apache Solr
    Shahi BOOKS FOR PROFESSIONALS BY PROFESSIONALS® THE EXPERTS VOICE® IN ENTERPRISE SEARCH Apache Solr Apache Solr Apache Solr: A Practical Approach to Enterprise Search teaches you how to build an enterprise search engine using Apache Solr. You’ll soon learn how to index and search your documents; ingest data from varied sources; pre-process, transform and enrich your data; and build the processing pipeline. You will understand the concepts and internals of Apache Solr and tune the results for your Apache Solr client’s search needs. The book explains each essential concept—backed by practical and industry examples—to help you attain expert-level knowledge. The book, which assumes a basic knowledge of Java, starts with an introduction to Solr, followed by steps to setting it up, indexing your first set of documents, and searching them. It A Practical Approach to Enterprise Search then covers the end-to-end process of data ingestion from varied sources, pre-processing the data, transformation and enrichment of data, building the processing pipeline, query parsing, — and scoring the document. It also teaches you how to make your system intelligent and able to learn through feedback loops. Dikshant Shahi After covering out-of-the-box features, Solr expert Dikshant Shahi dives into ways you can customize Solr for your business and its specific requirements, along with ways to plug in your own components. Most important, you will learn to handle user queries and retrieve meaningful results. The book explains how each user query is different and how to address them differently to get the best result.
    [Show full text]
  • Interoperability Landscaping Report December 28, 2015
    Ref. Ares(2016)2259176 - 13/05/2016 Interoperability Landscaping Report December 28, 2015 Deliverable Code: D5.1 Version: 3 – Intermediary Dissemination level: PUBLIC H2020-EINFRA-2014-2015 / H2020-EINFRA-2014-2 Topic: EINFRA-1-2014 Managing, preserving and computing with big research data Research & Innovation action Grant Agreement 654021 Interoperability Landscaping Report Document Description D5.1 – Interoperability Landscaping Report WP5 – Interoperability Framework WP participating organizations: ARC, UNIMAN, UKP-TUDA, INRA, EMBL-EBI, AK, LIBER, UvA, OU, EPFL, CNIO, USFD, GESIS, GRNET, Frontiers, UoS Contractual Delivery Date: 12/2015 Actual Delivery Date: 12/2015 Nature: Report Version: 1.0 (Draft) Public Deliverable Preparation slip Name Organization Date Authors Listed in the document Edited by Piotr Przybyła UNIMAN 20/12/2015 Matthew Shardlow UNIMAN Reviewed by John McNaught UNIMAN 20/12/2015 Natalia Manola ARC 22/12/2015 Approved by Natalia Manola ARC 16/1/2016 For delivery Mike Hatzopoulos ARC Document change record Issue Item Reason for Change Author Organization V0.1 Draft version Initial document structure Piotr Przybyła, UNIMAN Matthew Shardlow V0.2 Draft version Included initial content Piotr Przybyła, UNIMAN Matthew Shardlow V1.0 First delivery Applied corrections and Piotr Przybyła, UNIMAN added discussion Matthew Shardlow Public Page 1 of 112 Interoperability Landscaping Report Table of Contents 1. INTRODUCTION 8 2. REPOSITORIES 11 2.1 DESCRIPTION OF RESOURCES 11 2.1.1 METADATA SCHEMAS & PROFILES 12 2.1.2 VOCABULARIES AND ONTOLOGIES FOR DESCRIBING SPECIFIC INFORMATION TYPES 19 2.1.3 MECHANISMS USED FOR THE IDENTIFICATION OF RESOURCES 20 2.1.4 SUMMARY 20 2.2 REGISTRIES/REPOSITORIES OF RESOURCES 21 3.
    [Show full text]