Figures and Figure Supplements

Total Page:16

File Type:pdf, Size:1020Kb

Figures and Figure Supplements RESEARCH ARTICLE Figures and figure supplements Dynamics of genomic innovation in the unicellular ancestry of animals Xavier Grau-Bove´ et al Grau-Bove´ et al. eLife 2017;6:e26036. DOI: 10.7554/eLife.26036 1 of 28 Research article Genes and Chromosomes Genomics and Evolutionary Biology 500bp A. Phylogeny and genome statistics B. Phenotypic traits Metazoa+ Metazoa Choanoflagellata Source Abreviation Genome size# scaffolds(Mb) L75 N50 (kb) # genes % BUSCOorthologs % GC Monosiga brevicollis † Mbre 41.6 218 27 1,073.6 9,172 78.6% 54.9 Choanoflagellata Single-celled flagellates, Filozoa Choano- colonial forms ( Salpingoeca ) flagellata Salpingoeca rosetta † Sros 55.4 154 25 1,519.5 11,624 80.6% 56.0 Capsaspora owczarzaki † Cowc 27.9 84 11 1,617.7 8,741 86.6% 53.8 Filasterea Single-celled filopodiated amoebas, Filasterea Ministeria vibrans ‡ Mvib - - - - - - - aggregative stage ( Capsaspora ) Creolimax fragrantissima Cfra 42.9 83 17 1,585.0 8,694 86.7% 40.5 Ichthyosporea Ichthyophonida Sphaeroforma arctica * Sarc 120.9 15,618 1,442 116.1 18,319 77.15% 42.0 Coenocytic clonal growth, schizogony and propagule Holozoa * dispersal (by amoebas, Ichthyo- Ichthyophonus hoferi Ihof 88.1 1,633 515 106.7 6,351 63.2% 33.4 flagellated or not) phonida Amoebidium parasiticum *‡ Apar - - - - - - - Ichthyo- Abeoforma whisleri Awhi 101.9 51,561 25,133 2.4 17,283 11.9% 30.24 Teretosporea sporea Pirum gemmata ** Pgem 84.4 50,415 25,440 1.9 21,835 17.0% 29.11 Opisthokonta ** Dermocystida Chromosphaera perkinsii Cper 34.6 3,994 187 120.2 12,463 85.5% 42.13 Coenocytic clonal growth, Dermo- ** flagellated amoeboid dispersal stage cystida Sphaerothecum destruens ‡ Sdes - - - - - - - Corallochytrium limacisporum Clim 24.1 287 86 180.5 7,535 83.4% 51.2 Corallochytrea Obazoa Colonies with palintomic division, ** amoeboid dispersal stage (cryptic ? Fungi Unikonta/ flagellum hypothesized) Amorphea Holomycota Discicristoidea Apusomonadida LECA Amoebozoa Diaphoratickes+Excavata / Bikonta Figure 1. Evolutionary framework and genome statistics of the study. (A) Schematic phylogenetic tree of eukaryotes, with a focus on the Holozoa. The adjacent table summarizes genome assembly/annotation statistics. Data sources: red asterisks denote Teretosporea genomes reported here; double asterisks denote organisms sequenced for this study; † previously sequenced genomes (King et al., 2008; Fairclough et al., 2013; Suga et al., 2013); ‡ organisms for which transcriptomic data exists but no genome is available (Torruella et al., 2015). (B) Overview of the phenotypic traits of each group of unicellular Holozoa, focusing on their multicellular-like characteristics. For further details, see (Torruella et al., 2015; Mendoza et al., 2002; Marshall et al., 2008; Glockling et al., 2013). Figure 1—source data 1 and 2. DOI: 10.7554/eLife.26036.003 The following source data is available for figure 1: Source data 1. Table of genome structure statistics, from the data-set of eukaryotic genomes used in the study. DOI: 10.7554/eLife.26036.004 Source data 2. List of genome and transcriptome assemblies and annotations, including abbreviations, taxonomic classification and data sources. DOI: 10.7554/eLife.26036.005 Grau-Bove´ et al. eLife 2017;6:e26036. DOI: 10.7554/eLife.26036 2 of 28 Research article Genes and Chromosomes Genomics and Evolutionary Biology Pair-wise comparisons of 1-to-1 orthologs' lenghts Salpingoeca Monosiga Capsaspora Sphaeroforma Creolimax Abeoforma Pirum Ichthyophonus Chromosphaera Corallochytrium Salpingoeca 1000 100 Monosiga 1000 100 Capsaspora 1000 100 Sphaeroforma 1000 100 Creolimax 1000 100 length Abeoforma 1000 100 1000 Pirum 100 Ichthyophonus 1000 100 Chromosphaera 1000 100 Corallochytrium 1000 100 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 length Choanoflagellata Density Filasterea Ichthyosporea 10 20 30 40 50 Corallochytrium Figure 1—figure supplement 1. Comparisons of gene length of one-to-one orthologs from pair-wise comparisons of all 10 unicellular Holozoa. Dots around the diagonal lines indicate that orthologs from both organisms have identical lengths. Note that Abeoforma and Pirum have abundant incomplete orthologous sequences. Figure 1—figure supplement 1 continued on next page Grau-Bove´ et al. eLife 2017;6:e26036. DOI: 10.7554/eLife.26036 3 of 28 Research article Genes and Chromosomes Genomics and Evolutionary Biology Figure 1—figure supplement 1 continued DOI: 10.7554/eLife.26036.006 Grau-Bove´ et al. eLife 2017;6:e26036. DOI: 10.7554/eLife.26036 4 of 28 Research article Genes and Chromosomes Genomics and Evolutionary Biology Supports: Xenopus tropicalis Metazoa 99/1 ML LG+R7+C60 / Branchiostoma floridae BI LG+ 7+i Saccoglossus kowalevskii Distance: Lottia gigantea 0.2 Capitella teleta Daphnia pulex Acropora digitifera Nematostella vectensis 100/0.9 Hydra magnipapillata 95/1 Trichoplax adhaerens Oscarella carmela Amphimedon queenslandica Mnemiopsis leidyi Didymoeca costata Choanoflagellata Helgoeca nana Salpingoeca rosetta Monosiga brevicollis Capsaspora owczarzaki Filasterea Ministeria vibrans Ichthyophonus hoferi Washington Ichthyo- Ichthyosporea Holozoa Ichthyophonus hoferi Alaska phonida Amoebidium parasiticum Creolimax fragrantissima Sphaeroforma arctica Abeoforma whisleri Teretosporea 98/1 Pirum gemmata Chromosphaera perkinsii Dermo- 93/0.85 Sphaerothecum destruens cystida Corallochytrium limacisporum Hawaii Corallochytrea Corallochytrium limacisporum India Mucor circinelloides Fungi Rhizopus oryzae 98/NA Opisthokonta Mortierella verticillata Rhizophagus irregularis Cryptococcus neoformans Ustilago maydis Schizosaccharomyces pombe 64/1 Coemansia reversa Conidiobolus coronatus Allomyces macrogynus 84/0.95 Catenaria anguillulae Piromyces sp. E2 94/1 Gonapodya prolifera Spizellomyces punctatus Holomycota Batrachochytrium dendrobatidis Rozella allomycis Parvularia atlantis (Nuclearia sp. ) Nucleariids Fonticula alba Thecamonas trahens Apusomonadida Manchomonas bermudensis Breviata anathema Breviatea Subulatomonas tetraspora Pygsuia biforma Dictyostelium discoideum Amoebozoa Polysphondylium pallidum Physarum polycephalum Acanthamoeba castellanii Figure 2. Phylogenomic tree of Unikonta/Amorphea. Phylogenomic analysis of the BVD57 taxa matrix. Tree topology is the consensus of two Markov chain Monte Carlo chains run for 1231 generations, saving every 20 trees and after a burn-in of 32%. Statistical supports are indicated at each node: (i) non-parametric maximum likelihood ultrafast-bootstrap (UFBS) values obtained from 1000 replicates using IQ-TREE and the LG + R7+C60 model; (ii) Bayesian posterior probabilities (BPP) under the LG+G7 + CAT model as implemented in Phylobayes. Nodes with maximum support values (BPP = 1 and UFBS = 100) are indicated by a black bullet. See Figure 2—figure supplement 1 for raw trees with complete statistical supports. Figure 2—source data 1. DOI: 10.7554/eLife.26036.007 The following source data is available for figure 2: Source data 1. BVD57 phylogenomic dataset (Torruella et al., 2015) including 87 unaligned protein domains (with PFAM accession number) per species. DOI: 10.7554/eLife.26036.008 Grau-Bove´ et al. eLife 2017;6:e26036. DOI: 10.7554/eLife.26036 5 of 28 Research article Genes and Chromosomes Genomics and Evolutionary Biology A. Phylogenomic analysis: BVD57, ML (LG+R7+C60) B. Phylogenomic analysis: BVD57, ML (LG+R7+PMSF) 100/100 Xenopus tropicalis 99 Xenopus tropicalis 0 . 2 0 . 0 9 99.1/99 Branchiostoma floridae 96 Branchiostoma floridae Saccoglossus kowalevskii Saccoglossus kowalevskii 100/100 100 100/100 Lottia gigantea 100 Lottia gigantea 100/100 Capitella teleta 100 Capitella teleta 100/100 Daphnia pulex 59 Daphnia pulex 100/100 Acropora digitifera 100 Acropora digitifera 99.9/100 100/100 Nematostella vectensis 98 Nematostella vectensis 93.5/95 Hydra magnipapillata 99 43 Hydra magnipapillata Trichoplax adhaerens Trichoplax adhaerens 100/100 100 100/100 Oscarella carmela 99 Oscarella carmela Amphimedon queenslandica Amphimedon queenslandica 100/100 Mnemiopsis leidyi 100 Mnemiopsis leidyi 100/100 Didymoeca costata 100 Didymoeca costata 100/100 Helgoeca nana 100 Helgoeca nana 100/100 68 100/100 Salpingoeca rosetta 100 Salpingoeca rosetta Monosiga brevicollis Monosiga brevicollis 100/100 Capsaspora owczarzaki 100 Capsaspora owczarzaki Ministeria vibrans Ministeria vibrans 100/100 Ichthyophonus hoferi Washington 100 Ichthyophonus hoferi Washington 100/100 Ichthyophonus hoferi Alaska 100 Ichthyophonus hoferi Alaska 100/100 100 100/100 Amoebidium parasiticum 100 Amoebidium parasiticum 100/100 Creolimax fragrantissima 100 Creolimax fragrantissima 100/100 Sphaeroforma arctica 100 Sphaeroforma arctica 100/100 Abeoforma whisleri 100 Abeoforma whisleri 98.1/98 Pirum gemmata 59 Pirum gemmata 100/100 Chromoshpaera perkinsii 100 Chromoshpaera perkinsii 84.9/93 Sphaerothecum destruens 58 Sphaerothecum destruens 100/100 Corallochytrium limacisporum Hawaii 100 Corallochytrium limacisporum Hawaii Corallochytrium limacisporum India Corallochytrium limacisporum India 100/100 Mucor circinelloides 100 Mucor circinelloides 99.2/100 Rhizopus oryzae 98 Rhizopus oryzae 99.2/98 Mortierella verticillata 98 Mortierella verticillata 100/100 Rhizophagus irregularis 100 Rhizophagus irregularis 100/100 97 100/100 Cryptococcus neoformans 100 Cryptococcus neoformans 100/100 Ustilago maydis 100 Ustilago maydis 100 100/100 Schizosaccharomyces pombe Schizosaccharomyces pombe 100/100 Coemansia reversa 100 Coemansia reversa Conidiobolus coronatus 71 Conidiobolus coronatus 17.5/64 100/100 Allomyces
Recommended publications
  • A Six-Gene Phylogeny Provides New Insights Into Choanoflagellate Evolution Martin Carr, Daniel J
    A six-gene phylogeny provides new insights into choanoflagellate evolution Martin Carr, Daniel J. Richter, Parinaz Fozouni, Timothy J. Smith, Alexandra Jeuck, Barry S.C. Leadbeater, Frank Nitsche To cite this version: Martin Carr, Daniel J. Richter, Parinaz Fozouni, Timothy J. Smith, Alexandra Jeuck, et al.. A six- gene phylogeny provides new insights into choanoflagellate evolution. Molecular Phylogenetics and Evolution, Elsevier, 2017, 107, pp.166 - 178. 10.1016/j.ympev.2016.10.011. hal-01393449 HAL Id: hal-01393449 https://hal.archives-ouvertes.fr/hal-01393449 Submitted on 7 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Molecular Phylogenetics and Evolution 107 (2017) 166–178 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A six-gene phylogeny provides new insights into choanoflagellate evolution ⇑ Martin Carr a, ,1, Daniel J. Richter b,1,2, Parinaz Fozouni b,3, Timothy J. Smith a, Alexandra Jeuck c, Barry S.C. Leadbeater d, Frank Nitsche c a School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK b Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA c University of Cologne, Biocentre, General Ecology, Zuelpicher Str.
    [Show full text]
  • The Closest Unicellular Relatives of Animals
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology, Vol. 12, 1773–1778, October 15, 2002, 2002 Elsevier Science Ltd. All rights reserved. PII S0960-9822(02)01187-9 The Closest Unicellular Relatives of Animals B.F. Lang,1,2 C. O’Kelly,1,3 T. Nerad,4 M.W. Gray,1,5 Results and Discussion and G. Burger1,2,6 1The Canadian Institute for Advanced Research The evolution of the Metazoa from single-celled protists Program in Evolutionary Biology is an issue that has intrigued biologists for more than a 2 De´ partement de Biochimie century. Early morphological and more recent ultra- Universite´ de Montre´ al structural and molecular studies have converged in sup- Succursale Centre-Ville porting the now widely accepted view that animals are Montre´ al, Que´ bec H3C 3J7 related to Fungi, choanoflagellates, and ichthyosporean Canada protists. However, controversy persists as to the spe- 3 Bigelow Laboratory for Ocean Sciences cific evolutionary relationships among these major P.O. Box 475 groups. This uncertainty is reflected in the plethora of 180 McKown Point Road published molecular phylogenies that propose virtually West Boothbay Harbor, Maine 04575 all of the possible alternative tree topologies involving 4 American Type Culture Collection Choanoflagellata, Fungi, Ichthyosporea, and Metazoa. 10801 University Boulevard For example, a monophyletic MetazoaϩChoanoflagel- Manassas, Virginia 20110 lata group has been suggested on the basis of small 5 Department of Biochemistry subunit (SSU) rDNA sequences [1, 6, 7]. Other studies and Molecular Biology using the same sequences have allied Choanoflagellata Dalhousie University with the Fungi [8], placed Choanoflagellata prior to the Halifax, Nova Scotia B3H 4H7 divergence of animals and Fungi [9], or even placed Canada them prior to the divergence of green algae and land plants [10].
    [Show full text]
  • Sex Is a Ubiquitous, Ancient, and Inherent Attribute of Eukaryotic Life
    PAPER Sex is a ubiquitous, ancient, and inherent attribute of COLLOQUIUM eukaryotic life Dave Speijera,1, Julius Lukešb,c, and Marek Eliášd,1 aDepartment of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands; bInstitute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 370 05 Ceské Budejovice, Czech Republic; cCanadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8; and dDepartment of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic Edited by John C. Avise, University of California, Irvine, CA, and approved April 8, 2015 (received for review February 14, 2015) Sexual reproduction and clonality in eukaryotes are mostly Sex in Eukaryotic Microorganisms: More Voyeurs Needed seen as exclusive, the latter being rather exceptional. This view Whereas absence of sex is considered as something scandalous for might be biased by focusing almost exclusively on metazoans. a zoologist, scientists studying protists, which represent the ma- We analyze and discuss reproduction in the context of extant jority of extant eukaryotic diversity (2), are much more ready to eukaryotic diversity, paying special attention to protists. We accept that a particular eukaryotic group has not shown any evi- present results of phylogenetically extended searches for ho- dence of sexual processes. Although sex is very well documented mologs of two proteins functioning in cell and nuclear fusion, in many protist groups, and members of some taxa, such as ciliates respectively (HAP2 and GEX1), providing indirect evidence for (Alveolata), diatoms (Stramenopiles), or green algae (Chlor- these processes in several eukaryotic lineages where sex has oplastida), even serve as models to study various aspects of sex- – not been observed yet.
    [Show full text]
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • An Ichthyophonus Hoferi Epizootic in Herring in the North Sea, the Skagerrak, the Kattegat and the Baltic Sea
    Downloaded from orbit.dtu.dk on: Oct 04, 2021 An Ichthyophonus hoferi epizootic in herring in the North Sea, the Skagerrak, the Kattegat and the Baltic Sea Mellergaard, Stig; Spanggaard, Bettina Published in: Diseases of Aquatic Organisms Link to article, DOI: 10.3354/dao028191 Publication date: 1997 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Mellergaard, S., & Spanggaard, B. (1997). An Ichthyophonus hoferi epizootic in herring in the North Sea, the Skagerrak, the Kattegat and the Baltic Sea. Diseases of Aquatic Organisms, 28(3), 191-199. https://doi.org/10.3354/dao028191 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. DISEASES OF AQUATIC ORGANISMS Vol. 28: 191-199, 1997 Published March 27 Dis Aquat Org 1 An Ichthyophonus hoferi epizootic in herring in the North Sea, the Skagerrak, the Kattegat and the Baltic Sea 'Danish Institute of Fisheries Research, Department for Marine and Coastal Ecology.
    [Show full text]
  • Predatory Flagellates – the New Recently Discovered Deep Branches of the Eukaryotic Tree and Their Evolutionary and Ecological Significance
    Protistology 14 (1), 15–22 (2020) Protistology Predatory flagellates – the new recently discovered deep branches of the eukaryotic tree and their evolutionary and ecological significance Denis V. Tikhonenkov Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742, Russia | Submitted March 20, 2020 | Accepted April 6, 2020 | Summary Predatory protists are poorly studied, although they are often representing important deep-branching evolutionary lineages and new eukaryotic supergroups. This short review/opinion paper is inspired by the recent discoveries of various predatory flagellates, which form sister groups of the giant eukaryotic clusters on phylogenetic trees, and illustrate an ancestral state of one or another supergroup of eukaryotes. Here we discuss their evolutionary and ecological relevance and show that the study of such protists may be essential in addressing previously puzzling evolutionary problems, such as the origin of multicellular animals, the plastid spread trajectory, origins of photosynthesis and parasitism, evolution of mitochondrial genomes. Key words: evolution of eukaryotes, heterotrophic flagellates, mitochondrial genome, origin of animals, photosynthesis, predatory protists, tree of life Predatory flagellates and diversity of eu- of the hidden diversity of protists (Moon-van der karyotes Staay et al., 2000; López-García et al., 2001; Edg- comb et al., 2002; Massana et al., 2004; Richards The well-studied multicellular animals, plants and Bass, 2005; Tarbe et al., 2011; de Vargas et al., and fungi immediately come to mind when we hear 2015). In particular, several prevailing and very abun- the term “eukaryotes”. However, these groups of dant ribogroups such as MALV, MAST, MAOP, organisms represent a minority in the real diversity MAFO (marine alveolates, stramenopiles, opistho- of evolutionary lineages of eukaryotes.
    [Show full text]
  • A Unicellular Relative of Animals Generates a Layer of Polarized Cells
    RESEARCH ARTICLE A unicellular relative of animals generates a layer of polarized cells by actomyosin- dependent cellularization Omaya Dudin1†*, Andrej Ondracka1†, Xavier Grau-Bove´ 1,2, Arthur AB Haraldsen3, Atsushi Toyoda4, Hiroshi Suga5, Jon Bra˚ te3, In˜ aki Ruiz-Trillo1,6,7* 1Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain; 2Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; 3Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway; 4Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan; 5Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan; 6Departament de Gene`tica, Microbiologia i Estadı´stica, Universitat de Barcelona, Barcelona, Spain; 7ICREA, Barcelona, Spain Abstract In animals, cellularization of a coenocyte is a specialized form of cytokinesis that results in the formation of a polarized epithelium during early embryonic development. It is characterized by coordinated assembly of an actomyosin network, which drives inward membrane invaginations. However, whether coordinated cellularization driven by membrane invagination exists outside animals is not known. To that end, we investigate cellularization in the ichthyosporean Sphaeroforma arctica, a close unicellular relative of animals. We show that the process of cellularization involves coordinated inward plasma membrane invaginations dependent on an *For correspondence: actomyosin network and reveal the temporal order of its assembly. This leads to the formation of a [email protected] (OD); polarized layer of cells resembling an epithelium. We show that this stage is associated with tightly [email protected] (IR-T) regulated transcriptional activation of genes involved in cell adhesion.
    [Show full text]
  • Group of Microorganisms at the Animal-Fungal Boundary
    16 Aug 2002 13:56 AR AR168-MI56-14.tex AR168-MI56-14.SGM LaTeX2e(2002/01/18) P1: GJC 10.1146/annurev.micro.56.012302.160950 Annu. Rev. Microbiol. 2002. 56:315–44 doi: 10.1146/annurev.micro.56.012302.160950 First published online as a Review in Advance on May 7, 2002 THE CLASS MESOMYCETOZOEA: A Heterogeneous Group of Microorganisms at the Animal-Fungal Boundary Leonel Mendoza,1 John W. Taylor,2 and Libero Ajello3 1Medical Technology Program, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing Michigan, 48824-1030; e-mail: [email protected] 2Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102; e-mail: [email protected] 3Centers for Disease Control and Prevention, Mycotic Diseases Branch, Atlanta Georgia 30333; e-mail: [email protected] Key Words Protista, Protozoa, Neomonada, DRIP, Ichthyosporea ■ Abstract When the enigmatic fish pathogen, the rosette agent, was first found to be closely related to the choanoflagellates, no one anticipated finding a new group of organisms. Subsequently, a new group of microorganisms at the boundary between an- imals and fungi was reported. Several microbes with similar phylogenetic backgrounds were soon added to the group. Interestingly, these microbes had been considered to be fungi or protists. This novel phylogenetic group has been referred to as the DRIP clade (an acronym of the original members: Dermocystidium, rosette agent, Ichthyophonus, and Psorospermium), as the class Ichthyosporea, and more recently as the class Mesomycetozoea. Two orders have been described in the mesomycetozoeans: the Der- mocystida and the Ichthyophonida. So far, all members in the order Dermocystida have been pathogens either of fish (Dermocystidium spp.
    [Show full text]
  • Revisiting the Phylogenetic Position of Caullerya Mesnili (Ichthyosporea), a Common
    Revisiting the phylogenetic position of Caullerya mesnili (Ichthyosporea), a common Daphnia parasite, based on 22 protein-coding genes Yameng Lu 1, 2, *, Eduard Ocaña-Pallarès 3, *, David López-Escardó 3, 4, Stuart R. Dennis 2, Michael T. Monaghan 1, 5, 6, Iñaki Ruiz-Trillo 3, 7, 8, Piet Spaak 2, Justyna Wolinska 1, 6 *these authors contributed equally to this work 1Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; 2Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland; 3Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain; 4Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain; 5Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany; 6Institut für Biologie, Freie Universität Berlin (FU), Berlin, Germany; 7Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona 08028, Catalonia, Spain; 8ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain; This document is the accepted manuscript version of the following article: Lu, Y., Ocaña-Pallarès, E., López-Escardó, D., Dennis, S. R., Monaghan, M. T., Ruiz- Trillo, I., … Wolinska, J. (2020). Revisiting the phylogenetic position of Caullerya mesnili (Ichthyosporea), a common Daphnia parasite, based on 22 protein-coding genes. Molecular Phylogenetics and Evolution, 106891 (31 pp.). https://doi.org/10.1016/ j.ympev.2020.106891 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Abstract Caullerya mesnili is a common and virulent parasite of the water flea, Daphnia. It was classified within the Haplosporidia (Rhizaria) for over a century.
    [Show full text]
  • New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life Jürgen F. H. Strassert1, Mahwash Jamy1, Alexander P. Mylnikov2, Denis V. Tikhonenkov2, Fabien Burki1,* 1Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden 2Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia *Corresponding author: E-mail: [email protected] Keywords: TSAR, Telonemia, phylogenomics, eukaryotes, tree of life, protists bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these ‘orphan’ groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments.
    [Show full text]
  • Genetic Tool Development in Marine Protists: Emerging Model Organisms for Experimental Cell Biology
    RESOURCE https://doi.org/10.1038/s41592-020-0796-x Genetic tool development in marine protists: emerging model organisms for experimental cell biology Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of pro- tists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways. he ocean represents the largest continuous planetary ecosys- Results tem, hosting an enormous variety of organisms, which include Overview of taxa in the EMS initiative. Taxa were selected from Tmicroscopic biota such as unicellular eukaryotes (protists). multiple eukaryotic supergroups1,7 to maximize the potential of cel- Despite their small size, protists play key roles in marine biogeo- lular biology and to evaluate the numerous unigenes with unknown chemical cycles and harbor tremendous evolutionary diversity1,2. functions found in marine protists (Fig. 1). Before the EMS initia- Notwithstanding their significance for understanding the evolution tive, reproducible transformation of marine protists was limited to of life on Earth and their role in marine food webs, as well as driv- only a few species such as Thalassiosira pseudonana, Phaeodactylum ing biogeochemical cycles to maintain habitability, little is known tricornutum and Ostreococcus tauri (Supplementary Table 1).
    [Show full text]
  • Effects of Ichthyophonus on Survival and Reproductive Success of Yukon River Chinook Salmon
    U.S. Fish and Wildlife Service Office of Subsistence Management Fisheries Resource Monitoring Program Effects of Ichthyophonus on Survival and Reproductive Success of Yukon River Chinook Salmon Final Report for Study 01-200 Richard Kocan and Paul Hershberger* School of Aquatic & Fishery Sciences, Box 355100 University of Washington, Seattle, WA 98195 Phone: 206-685-3275 e-mail: [email protected] and James Winton Western Fisheries Research Center, USGS-BRD, 6505 NE 65th Street, Seattle, WA 98115 Phone: 206-526-6587 e-mail: [email protected] July 2004 *Present Address: Marrowstone Marine Station, USGS-BRD, 616 Marrowstone Point Road, Nordland, WA 98358; Phone: 360-385-1007; e-mail: [email protected] TABLE OF CONTENTS Abstract, keywords, and citation.……………………..……………………………. 4 Introduction………………………………………………………………………… 5 Objectives………………………………………………………………………….. 6 Methods………………………………………………….…………………………. 6 Results……………………………………………………..……………………….. 13 Discussion………………………………………………………………………….. 17 Summary…………………………………………………………………………… 24 Conclusions………………………………………………………………………… 24 Acknowledgements………………………………………………………………… 25 Literature cited……………………………………………..………………………. 25 Footnotes…………………………………………………………………………… 29 Figures Figure 1 Map of Alaska showing sample sites along the Yukon and Tanana Rivers………………………….……………….………………….… 30 Figure 2 Infection prevalence in male and female chinook salmon from the Yukon River mainstem all years combined.……….………….……. 31 Figure 3 Annual infection prevalence 1999-2002.…………………………… 32 Figure 4 Ichthyophonus infection
    [Show full text]