Download (1570Kb)

Total Page:16

File Type:pdf, Size:1020Kb

Download (1570Kb) A Thesis Submitted for the Degree of PhD at the University of Warwick Permanent WRAP URL: http://wrap.warwick.ac.uk/148579 Copyright and reuse: This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Stable rationality and degenerations of conic bundles Author: Supervisor: Alessandro Bigazzi Christian Böhning Thesis submitted to the University of Warwick for the degree of Doctor of Philosophy Department of Mathematics March 2020 Contents Acknowledgments. iii Declaration. v Abstract. vii Introduction. ix Chapter 1. Nearly rational varieties and the stable Lüroth problem. 1 1.1. Rationality and unirationality. 1 1.2. The stable Lüroth problem. 3 1.3. Currently known results. 5 Chapter 2. Chow-theoretic invariants and the degeneration method. 11 2.1. Decomposition of the diagonal and zero-cycles. 11 2.2. Mild desingularisation 13 2.3. The degeneration method. 14 2.4. Further generalisation: semi-stable degeneration method. 16 Chapter 3. Brauer groups, unramified invariants and applications to conic bundles. 25 3.1. Brauer group of fields. 25 3.2. Brauer group of schemes. 33 3.3. Residue maps and unramified cohomology. 38 3.4. Conic bundles. 44 3.5. The case of cubic threefold hypersurfaces. 56 Chapter 4. Purity and universal triviality for the p-torsion of the Brauer group in characteristic p. 65 4.1. Introduction. 65 4.2. Unramified elements and purity. 66 4.3. A variant of Weil reciprocity and a pairing. 70 4.4. Proof of universal triviality of the Brauer group. 75 Chapter 5. The unramified Brauer group of conic bundle threefolds in characteristic 2. 77 5.1. Preliminaries on conic bundles in characteristic 2. 77 5.2. Residue maps in characteristic 2. 84 5.3. Residue maps and conic bundles in characteristic 2. 89 i ii CONTENTS 5.4. A formula for the unramified Brauer group of a conic bundle threefold in characteristic 2. 96 5.5. A stably irrational conic bundle threefold. 98 Bibliography 111 Acknowledgments. I would like to express my sincere gratitude to my supervisor, Dr. Chris- tian Bõhning, for the continuous support during my Ph.D. study, for his patience, motivation, and immense knowledge but especially for his ment- orship, which helped me broadening my understanding of mathematics. I could not have imagined having a better advisor and mentor for my Ph.D. I also want to thank all my family for believing in me and offering constant support: none of my achievements would have ever been realisable without their help. Finally, I am indebted with my wife Claudia for her infinite patience during these years of intense study and work. No matter how far away from earth my mind was, she has never left my side. Coventry, 21 − 03 − 2020 Addendum: I wish to extend my gratitude to my two examiners, who have carefully read my work and offered a much welcome external point of view on it. In particular, I am grateful to Professor Miles Reid for the really helpful notes on the usage of the English language in mathematics and to Professor Nicholas Shepherd-Barron for his deep, inquisitive questions that allowed me to demonstrate the cohesion between all chapters of this thesis. Coventry, 21 − 6 − 2020 iii Declaration. I hereby confirm that this thesis has been composed by myself and has not been submitted in any previous application for any degree. Each part of the thesis which is not product of my own work has been acknowledged with appropriate citations. Parts of this thesis are a result of collaborative research, whose results have been published in the papers [ABBvB-19, ABBvB-18]. v Abstract. The main task of the thesis is to illustrate a new techniue for establishing stable irrationality of certain conic bundles by degenerating to character- istic 2 and studying the unramified Brauer group of the degenerated conic bundle in terms of the geometry of its discriminant locus. The original ma- terial has been published in the collaborative research papers [ABBvB-19, ABBvB-18]. After introducing Voisin’s degeneration method and its various refine- ments, we explain the envisaged application strategy, which relies on the interaction between Chow-theoretic properties (like existence of a decom- position of the diagonal and universal triviality of zero-cycles) and other invariants; particular regard is given to the Brauer group, whose prime-to-p torsion part is universally trivial for a smooth universally CH0-trivial variety defined over fields of characteristic p. In Chapter 4 we improve this result, proving that this holds for the p-primary part as well (Theorem 4.1.1), thus extending the applicability of the Brauer group to degenerations where non- trivial classe have torsion order not coprime with the characteristic of the ground field.. We focus on studying applications of these techniques to conic bundles over fields of characteristic 6= 2 in Chapter 3: in particular, after recalling the construction of residue maps and unramified Brauer groups for low degrees, we give a geometric interpretation of these maps in terms of the discriminant locus of a conic bundle and finally prove a formula for the unramified Brauer group of a conic bundle (Theorem 3.4.15), attributed to Colliot-Thélène but not explicitly present in the literature. Furthermore, in Section 3.5 we perform a direct computation on a general conic bundle with quintic discriminant, showing that its unramified Brauer group is even trivial. This shows formally that one cannot prove stable irrationality of cubic threefold hypersurfaces with such strategy. Finally, we extend these techniques to the case of conic bundles defined over fields of characteristic 2. After explaining how residue maps need to be re-defined in this case, we mirror the work done in Chapter 3, providing a geometric interpretation of residue maps in terms of the geometry of the discriminant locus and then establishing a formula for the unramified Brauer group in this case (Theorem 5.4.1). As an application, we run our full strategy on a particular conic bundle threefold, showing that it is not stably rational (Theorem 5.5.1) in the last Section. vii Introduction. This thesis investigates stable rationality of a class of rationally connec- ted varieties that admit a structure of conic bundle through application of a degeneration-type argument introduced by Claire Voisin in 2013. In this respect, much of the effort is devoted to develop computable invariants that obstruct a Chow-theoretic property included in this degeneration method; this is achieved through a number of techniques stemming from disparate areas of algebra, arithmetic and K-theory; we also highlight our original contribution in the particular case of degenerations to conic bundles defined over fields of characteristic 2. Some of these conic bundles might be not unirational either. The rela- tionship between unirationality (and more generally rational connectedness), stable rationality and rationality has been studied since the second half of the XIX century, the first milestone of the problem dating back to the proof of the famous Lüroth’s Theorem, which in modern language establishes the equivalence of rationality and unirationality for algebraic varieties of dimen- sion 1. The efforts of the Italian school of algebraic geometry to replicate the result for varieties of dimension 2 were successful thanks to the work of Castelnuovo and Enriques but did not manage to give a satisfactory an- swer for higher dimensional varieties, whose geometry was too sophisticated for the heuristic arguments of the era: some incorrect attempts by Fano and Enriques are recorded in [Roth-55, Chapter V, Section 9]; nonetheless, Roth himself also proposed a new counter-example which was later proved to be invalid. It was only in the years 1971-72 that three indisputable classes of counter-examples finally appeared: these are described in the influential papers [AM-72, CG-72, IM-71] and were obtained with three different techniques. However, it was soon clear that each of these techniques was only effective if applied to very specific examples and either gave little in- formation in more general settings (the Artin-Mumford invariant), or it was not generalisable to higher dimensions (the intermediate Jacobian by Clem- ens and Griffiths), or it was extremely hard to work with (the birational rigidity approach by Iskovskikh and Manin). The mathematical community began therefore to examine more closely the intermediate notion of stable rationality, giving rise to the so-called stable Lüroth problem − that is to say, distinguishing unirational, stably rational varieties from those which are unirational but not stably rational. The ix x INTRODUCTION. motivation came from the promising Artin and Mumford example of unir- ational threefold which is not only irrational, but even stably irrational; the invariant used to show stable irrationality of a (smooth) variety X was the torsion subgroup in the third singular cohomology, which has to vanish for any stably rational variety. It was clear at the time that this subgroup could be identified with the Brauer group of X itself, which in turn embeds into the Brauer group of the function field k(X); this latter object elicited much interest for various reasons: first of all, it was much easier to ma- nipulate, since it could be identified with some Galois cohomology group − an abelian group. And, on a second instance, if it were possible to charac- terise the image of Br(X) inside Br k(X) in function-field theoretic terms, such characterisation would have been already invariant up to birational isomorphism.
Recommended publications
  • 'Models of Brauer-Severi Surface Bundles'
    MODELS OF BRAUER-SEVERI SURFACE BUNDLES ANDREW KRESCH AND YURI TSCHINKEL 1. Introduction This paper is motivated by the study of rationality properties of Mori fiber spaces. These are algebraic varieties, naturally occurring in the min- imal model program, typically via contractions along extremal rays; they are fibrations with geometrically rational generic fiber. Widely studied are conic bundles π : X S, when the generic fiber is a conic. According to the Sarkisov program→ [60], there exists a birational modification X ❴❴❴ / X π˜ π e S / S such that: (i) the general fiber ofπ ˜ is a smooth conic, (ii) the discriminant divisor ofπ ˜ is a simple normal crossinge divisor, (iii) generally along the discriminant divisor, the fiber is a union of two lines, and (iv) over the singular locus of the discriminant divisor, the fiber is a double line in the plane. Rationality of conic bundles over surfaces has been classically stud- ied by Artin and Mumford [11], who produced examples of nonrational unirational threefolds of this type, computing their Brauer groups and using its nontriviality as an obstruction to rationality. This was gen- eralized to higher-dimensional quadric bundles in [20], bringing higher unramified cohomology into the subject and providing further examples arXiv:1708.06277v1 [math.AG] 21 Aug 2017 of nonrational varieties based on these new obstructions. The specialization method, introduced by Voisin [64] and developed further by Colliot-Th´el`ene–Pirutka [21], emerged as a powerful tool in the study of stable rationality. It allows to relate the failure of stable rationality of a very general member of a flat family to the existence of special fibers with nontrivial unramified cohomology and mild singular- ities; see also [13], [63].
    [Show full text]
  • Unramified Brauer Groups of Conic Bundle Threefolds in Characteristic Two
    UNRAMIFIED BRAUER GROUPS OF CONIC BUNDLE THREEFOLDS IN CHARACTERISTIC TWO ASHER AUEL, ALESSANDRO BIGAZZI, CHRISTIAN BOHNING,¨ AND HANS-CHRISTIAN GRAF VON BOTHMER Abstract. We establish a formula for computing the unramified Brauer group of tame conic bundle threefolds in characteristic 2. The formula depends on the arrangement and residue double covers of the discriminant components, the latter being governed by Artin{Schreier theory (instead of Kummer theory in characteristic not 2). We use this to give new examples of threefold conic bundles defined over Z that are not stably rational over C. 1. Introduction Motivated by the rationality problem in algebraic geometry, we compute new obstructions to the universal triviality of the Chow group of 0-cycles of smooth projective varieties in characteristic p > 0, related to ideas coming from crystalline cohomology (see [CL98] for a survey): the p-torsion in the unramified Brauer group. In [ABBB18], we proved that p-torsion Brauer classes do obstruct the universal triv- iality of the Chow group of 0-cycles; here we focus on computing these obstructions in the case of conic bundles. In particular, we provide a formula to compute the two torsion in the unramified Brauer group of conic bundle threefolds in character- istic 2. We provide some applications showing that one can obtain results with this type of obstruction that one cannot by other means: there exist conic bundles over P2, defined over Z, that are smooth over Q and whose reduction modulo p has (1) nontrivial two torsion in the unramified Brauer group and a universally CH0-trivial resolution for p = 2, and (2) irreducible discriminant, hence trivial Brauer group, for all p > 2.
    [Show full text]
  • Igor R. Shafarevich Varieties in Projective Space Third Edition
    Igor R. Shafarevich Basic Algebraic Geometry 1 Varieties in Projective Space Third Edition Basic Algebraic Geometry 1 Igor R. Shafarevich Basic Algebraic Geometry 1 Varieties in Projective Space Third Edition Igor R. Shafarevich Translator Algebra Section Miles Reid Steklov Mathematical Institute Mathematics Institute of the Russian Academy of Sciences University of Warwick Moscow, Russia Coventry, UK ISBN 978-3-642-37955-0 ISBN 978-3-642-37956-7 (eBook) DOI 10.1007/978-3-642-37956-7 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2013945284 Mathematics Subject Classification (2010): 14-01 Translation of the 3rd Russian edition entitled “Osnovy algebraicheskoj geometrii”. MCCME, Moscow 2007, originally published in Russian in one volume © Springer-Verlag Berlin Heidelberg 1977, 1994, 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • Igor R. Shafarevich Varieties in Projective Space Third Edition
    Igor R. Shafarevich Basic Algebraic Geometry 1 Varieties in Projective Space Third Edition Basic Algebraic Geometry 1 Igor R. Shafarevich Basic Algebraic Geometry 1 Varieties in Projective Space Third Edition Igor R. Shafarevich Translator Algebra Section Miles Reid Steklov Mathematical Institute Mathematics Institute of the Russian Academy of Sciences University of Warwick Moscow, Russia Coventry, UK ISBN 978-3-642-37955-0 ISBN 978-3-642-37956-7 (eBook) DOI 10.1007/978-3-642-37956-7 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2013945284 Mathematics Subject Classification (2010): 14-01 Translation of the 3rd Russian edition entitled “Osnovy algebraicheskoj geometrii”. MCCME, Moscow 2007, originally published in Russian in one volume © Springer-Verlag Berlin Heidelberg 1977, 1994, 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • Topics in Algebraic Geometry II. Rationality of Algebraic Varieties
    Math 732: Topics in Algebraic Geometry II Rationality of Algebraic Varieties Mircea Mustat¸˘a∗ Winter 2017 Course Description A fundamental problem in algebraic geometry is to determine which varieties are rational, that is, birational to the projective space. Several important developments in the field have been motivated by this question. The main goal of the course is to describe two recent directions of study in this area. One approach goes back to Iskovskikh and Manin, who proved that smooth, 3-dimensional quartic hypersurfaces are not rational. This relies on ideas and methods from higher-dimensional birational geometry. The second approach, based on recent work of Claire Voisin and many other people, relies on a systematic use of decomposition of the diagonal and invariants such as Chow groups, Brauer groups, etc. to prove irrationality. Both directions will give us motivation to introduce and discuss some important concepts and results in algebraic geometry. The following is a rough outline of the course: Introduction 1. Rationality in dimension 2 (Castelnuovo's criterion). Part I 2. Introduction to Chow groups and intersection theory. 3. Decomposition of the diagonal and non-stable-rationality. 4. Examples of classes on non-stably-rational varieties. Part II 5. Introduction to singularities of pairs and vanishing theorems. 6. Birational rigidity of Fano hypersurfaces of index 1. Mircea Mustat¸˘a'sown lecture notes are available at: http://www-personal.umich.edu/~mmustata/lectures_rationality.html Contents 1 January 5 5 1.1 The L¨urothproblem and its solution for curves..........................5 1.2 Birational invariance of plurigenera.................................7 2 January 10 9 2.1 Birational invariance of plurigenera (continued)..........................9 2.2 Other properties close to rationality...............................
    [Show full text]
  • 'Stable Rationality and Conic Bundles'
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2016 Stable rationality and conic bundles Hassett, Brendan ; Kresch, Andrew ; Tschinkel, Yuri Abstract: We study stable rationality properties of conic bundles over rational surfaces. DOI: https://doi.org/10.1007/s00208-015-1292-y Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-128400 Journal Article Accepted Version Originally published at: Hassett, Brendan; Kresch, Andrew; Tschinkel, Yuri (2016). Stable rationality and conic bundles. Math- ematische Annalen, 365(3-4):1201-1217. DOI: https://doi.org/10.1007/s00208-015-1292-y STABLE RATIONALITY AND CONIC BUNDLES BRENDAN HASSETT, ANDREW KRESCH, AND YURI TSCHINKEL Abstract. We study stable rationality properties of conic bundles over rational surfaces. 1. Introduction Let k be an algebraically closed field, X a smooth projective variety over k. We say X is stably rational if X × Pn is rational for some n ∈ N. A breakthrough in the problem of addressing the stable rationality of varieties was achieved by Voisin [45], who gave a remarkably powerful sufficient criterion for the very general member of a family of varieties to fail to be stably rational. Working over the complex numbers, she shows that the double cover of P3 branched along a very general quartic surface is not stably rational. The degeneration aspects of Voisin’s method were generalized and simplified by Colliot-Th´el`ene and Pirutka and applied to quartic threefolds and to cyclic covers of projective space of prime degree [18, 19].
    [Show full text]
  • Moduli Spaces of Coherent Sheaves on Multiples Curves
    Trends in Mathematics Trends in Mathematics is a series devoted to the publication of volumes arising from conferences and lecture series focusing on a particular topic from any area of mathematics. Its aim is to make current developments available to the community as rapidly as possible without compromise to quality and to archive these for reference. Proposals for volumes can be sent to the Mathematics Editor at either Birkhäuser Verlag P.O. Box 133 CH-4010 Basel Switzerland or Birkhäuser Boston Inc. 675 Massachusetts Avenue Cambridge, MA 02139 USA Material submitted for publication must be screened and prepared as follows: All contributions should undergo a reviewing process similar to that carried out by journals and be checked for correct use of language which, as a rule, is English. Articles without SURRIVRUZKLFKGRQRWFRQWDLQDQ\VLJQL½FDQWO\QHZUHVXOWVVKRXOGEHUHMHFWHG+LJK quality survey papers, however, are welcome. We expect the organizers to deliver manuscripts in a form that is essentially ready for GLUHFWUHSURGXFWLRQ$Q\YHUVLRQRI7H;LVDFFHSWDEOHEXWWKHHQWLUHFROOHFWLRQRI½OHVPXVW EHLQRQHSDUWLFXODUGLDOHFWRI7H;DQGXQL½HGDFFRUGLQJWRVLPSOHLQVWUXFWLRQVDYDLODEOH from Birkhäuser. Furthermore, in order to guarantee the timely appearance of the proceedings it is essential WKDWWKH½QDOYHUVLRQRIWKHHQWLUHPDWHULDOEHVXEPLWWHGQRODWHUWKDQRQH\HDUDIWHUWKH FRQIHUHQFH7KHWRWDOQXPEHURISDJHVVKRXOGQRWH[FHHG7KH½UVWPHQWLRQHGDXWKRU of each article will receive 25 free offprints. To the participants of the congress the book will be offered at a special rate. Algebraic Cycles, Sheaves, Shtukas, and Moduli Impanga Lecture Notes Piotr Pragacz Editor Birkhäuser Basel · Boston · Berlin Editor: Piotr Pragacz Institute of Mathematics of the Polish Academy of Sciences ul. Sniadeckich 8 P.O. Box 21 00-956 Warszawa Poland e-mail: [email protected] 0DWKHPDWLFDO6XEMHFW&ODVVL½FDWLRQ14-02 Library of Congress Control Number: 2007939751 Bibliographic information published by Die Deutsche Bibliothek.
    [Show full text]
  • Math.AG] 7 Jun 2018
    Épijournal de Géométrie Algébrique epiga.episciences.org Volume 2 (2018), Article Nr. 5 Stable rationality of higher dimensional conic bundles Hamid Ahmadinezhad and Takuzo Okada n 1 Abstract. We prove that a very general nonsingular conic bundle X P − embedded in a n 1 ! projective vector bundle of rank 3 over P − is not stably rational if the anti-canonical divisor of X is not ample and n 3. ≥ Keywords. Stable Rationality; conic Bundles 2010 Mathematics Subject Classification. 14E08 [Français] Titre. Rationalité stable des fibrés en coniques de grande dimension n 1 Résumé. Nous démontrons qu’un fibré en coniques non-singulier très général X P − plongé n 1 ! dans le projectivisé d’un fibré vectoriel de rang 3 au dessus de P − n’est pas stablement rationnel lorsque le diviseur anti-canonique de X n’est pas ample et n 3. ≥ arXiv:1612.04206v5 [math.AG] 7 Jun 2018 Received by the Editors on February 7, 2018, and in final form on April 25, 2018. Accepted on May 21, 2018. Hamid Ahmadinezhad Department of Mathematical Sciences, Loughborough University, LE11 3TU, United Kingdom e-mail: [email protected] Takuzo Okada Department of Mathematics, Faculty of Science and Engineering, Saga University, Saga 840-8502 Japan e-mail: [email protected] © by the author(s) This work is licensed under http://creativecommons.org/licenses/by-sa/4.0/ 2 1. Introduction Contents 1. Introduction ................................................ 2 2. Embedded conic bundles ........................................ 3 3. Stable non-rationality .......................................... 7 1. Introduction An important question in algebraic geometry is to determine whether an algebraic variety is rational; that is, birational to projective space.
    [Show full text]
  • Arxiv:1712.05564V6 [Math.AG] 3 Apr 2018 Nttt O Ahmtc Bn) Ewudlk Otakthe Thank Visiting to Like Was Condition
    THE RATIONALITY PROBLEM FOR CONIC BUNDLES YURI PROKHOROV Abstract. This expository paper is concerned with the ratio- nality problems for three-dimensional algebraic varieties with a conic bundle structure. We discuss the main methods of this the- ory. We sketch the proofs of certain principal results, and present some recent achievements. Many open problems are also stated. Contents 1. Introduction 1 2. Preliminaries 4 3. Conic bundles 6 4. Sarkisov category 15 5. Surfaces over non-closed fields 18 6. The Artin-Mumford invariant 23 7. Intermediate Jacobians and Prym varieties 26 8. Birationaltransformations 30 9. Conic bundles over minimal surfaces 41 10. Q-conic bundles 44 11. Examples of Sarkisov links on Q-conic bundles 51 12. Birational transformations of Q-conic bundles, I 56 13. Birational transformations of Q-conic bundles, II 59 14. Some related results and open problems 68 arXiv:1712.05564v6 [math.AG] 3 Apr 2018 References 77 1. Introduction We basically work over the field C of complex numbers. In this paper we deal with algebraic varieties having a structure of conic bundle over surfaces. A motivation for the study above is that conic bundles This work was partially supported by the Russian Academic Excellence Project “5-100”. The paper was written while the author was visiting the Max Planck Institute for Mathematics (Bonn). He would like to thank the institute for the invitation and excellent working condition. Submitted to Uspeshi Mat. Nauk = Russian Math. Surveys. 1 occur in the birational classification of threefolds of negative Kodaira dimension. According to the minimal model program [Mor88], [BCHM10] every uniruled algebraic projective variety Y is birationally equivalent to a projective variety X with at most Q-factorial terminal singularities that admits a contraction π : X → S to a lower-dimensional normal projective variety S such that the anticanonical divisor −KX is π- ample and Pic(X)= π∗ Pic(S) ⊕ Z.
    [Show full text]
  • Unramified Brauer Groups of Conic Bundles in Characteristic
    UNRAMIFIED BRAUER GROUPS OF CONIC BUNDLES OVER RATIONAL SURFACES IN CHARACTERISTIC TWO ASHER AUEL, ALESSANDRO BIGAZZI, CHRISTIAN BOHNING,¨ AND HANS-CHRISTIAN GRAF VON BOTHMER Abstract. We establish a formula for computing the unramified Brauer group of tame conic bundle threefolds in characteristic 2. The formula depends on the arrangement and residue double covers of the discriminant components, the latter being governed by Artin{Schreier theory (instead of Kummer theory in characteristic not 2). We use this to give new examples of threefold conic bundles defined over Z that are not stably rational over C. 1. Introduction Motivated by the rationality problem in algebraic geometry, we compute new obstructions to the universal triviality of the Chow group of 0-cycles of smooth projective varieties in characteristic p > 0, related to ideas coming from crystalline cohomology (see [CL98] for a survey): the p-torsion in the unramified Brauer group. In [ABBB18], we proved that p-torsion Brauer classes do obstruct the universal triv- iality of the Chow group of 0-cycles; here we focus on computing these obstructions in the case of conic bundles. In particular, we provide a formula to compute the two torsion in the unramified Brauer group of conic bundle threefolds in character- istic 2. We provide some applications showing that one can obtain results with this type of obstruction that one cannot by other means: there exist conic bundles over P2, defined over Z, that are smooth over Q and whose reduction modulo p has (1) nontrivial two torsion in the unramified Brauer group and a universally CH0-trivial resolution for p = 2, and (2) irreducible discriminant, hence trivial Brauer group, for all p > 2.
    [Show full text]
  • STABLE RATIONALITY and CONIC BUNDLES 1. Introduction Let K Be
    STABLE RATIONALITY AND CONIC BUNDLES BRENDAN HASSETT, ANDREW KRESCH, AND YURI TSCHINKEL Abstract. We study stable rationality properties of conic bundles over rational surfaces. 1. Introduction Let k be an algebraically closed field, X a smooth projective variety over k. We say X is stably rational if X × Pn is rational for some n 2 N. A breakthrough in the problem of addressing the stable rationality of varieties was achieved by Voisin [41], who gave a remarkably powerful sufficient criterion for the very general member of a family of varieties to fail to be stably rational. Working over the complex numbers, she shows that the double cover of P3 branched along a very general quartic surface is not stably rational. The degeneration aspects of Voisin's method were generalized and simplified by Colliot-Th´el`eneand Pirutka [17]. These techniques have been applied to other families of double covers by Beauville [11, 12]; using a mixed characteristic version, introduced in [17], and an idea of Koll´ar[23], Totaro proved that many hypersurfaces in Pn are not stably rational [40]. The problem of rationality of conic bundles has a long history; see, e.g., [9] [22, Conjecture I] [37]. See also [39, Main Thm.] for rationality criteria. An obvious necessary condition for (stable) rationality is unirationality. We recall, X is unirational if there exists a dominant rational map from a projective space to X. Some cases of conic bundles, known to be unirational, are identified in [28], e.g., those with smooth branch locus in P2 of degree ≤ 8. In this paper we address the question of stable rationality of conic bundles over rational surfaces.
    [Show full text]