Hardware Security Implications of Reliability, Remanence, and Recovery in Embedded Memory

Total Page:16

File Type:pdf, Size:1020Kb

Hardware Security Implications of Reliability, Remanence, and Recovery in Embedded Memory Journal of Hardware and Systems Security https://doi.org/10.1007/s41635-018-0050-5 Hardware Security Implications of Reliability, Remanence, and Recovery in Embedded Memory Sergei Skorobogatov1 Received: 9 July 2018 /Accepted: 27 September 2018 # The Author(s) 2018 Abstract Secure semiconductor devices usually destroy key material on tamper detection. However, data remanence effect in SRAM and Flash/EEPROM makes secure erasure process more challenging. On the other hand, data integrity of the embedded memory is essential to mitigate fault attacks and Trojan malware. Data retention issues could influence the reliability of embedded systems. Some examples of such issues in industrial and automotive applications are presented. When it comes to the security of semiconductor devices, both data remanence and data retention issues could lead to possible data recovery by an attacker. This paper introduces a new power glitching technique that reduces the data remanence time in embedded SRAM from seconds to microseconds at almost no cost. This would definitely help in designing systems with better secret key guarding. Data remanence in non-volatile memory could be influenced in the same way. The effect of data remanence and data retention on hardware security is discussed and possible countermeasures are suggested. This should raise awareness among the designers of secure embedded systems. Keywords Data remanence . Data retention . SRAM . EEPROM . Flash . Glitching . Hardware security . PUF . PRNG 1 Introduction industrial equipment, etc. It seems that a serious reliability issue was overlooked, and we might see more systems and Semiconductor memory in the form of static RAM (SRAM) devices starting to behave unpredictably or stop working. If it was introduced in the 1960s. It was later found to have data is a toaster or microwave oven, you can cope, but what about remanence problems similar to magnetic media with reliable old electronics equipment used in cars, aircrafts, and industrial data deletion [1–4]. Reprogrammable non-volatile memory infrastructure? Previous research on car systems showed how (NVM) was first introduced as EEPROM in the late 1970s the malfunction of certain car modules could pose a serious and then as Flash in the 1980s. They were also found to be threat to passengers [7, 8]. In this research, possible cause of affected by data remanence [5, 6]. As a result, there is possi- embedded system sporadic failures was found and this could bility that some information can still be extracted from previ- have very serious consequences. ously erased memory. This could create problems with secure In the 1980s, it was realised that low temperatures can devices where designers assumed that all sensitive informa- increase the data retention time of SRAM to many seconds tion is gone once the memory is erased. If the passwords or or even minutes. With the devices available at that time, it was secret keys can be extracted afterwards, it could affect confi- found that increased data retention started at about − 20 °C dentiality of the previously encrypted information. and increased as temperature fell further [2]. Some devices are Reliability of data storage is paramount for modern embed- therefore designed with temperature sensors; any drop below ded systems. Many people have come across situations when − 20 °C is treated as a tampering event and results in immedi- some microcontroller-based systems started behaving odd or ate memory zeroisation [9, 10]. The experiments described in stopped working. This might be home appliances, cars, this paper are set to measure the data remanence in modern microcontrollers to see if the low temperature data remanence still exists in embedded devices. * Sergei Skorobogatov Usually, the data remanence problem is tackled by wrap- [email protected] ping the device into tamper protection enclosure with temper- 1 Department of Computer Science and Technology, University of ature sensors to prevent freezing and tamper sensors to detect Cambridge, Cambridge, UK intrusion [9–11]. This gives enough time to safely wipe secret J Hardw Syst Secur key off the memory contents. However, designing a device 2.1 Data Remanence with embedded SRAM having a low data remanence comes at a cost. This often requires modifying the SRAM cells to in- Security engineers are interested in the period of time for corporate an additional destruction signal [12]. On practice, which an SRAM device will retain data once the power has this means that developers have very narrow choice of been removed. This is because many products do crypto- microcontrollers and system-on-chip (SoC) devices with such graphic and other security-related computations using secret capability. For example, Maxim Integrated (former Dallas keys or other variables that the equipment’soperatormustnot Semiconductor) offers secure microcontroller DS5250 with be able to read out or alter. The usual solution is for the secret two self-destruct inputs which on activation wipe off the data to be kept in volatile memory inside a tamper-sensing memory contents within microseconds [13]. Data remanence enclosure. On detection of a tampering event, the volatile in NVM is usually defeated by several cycles of erasing and memory chips are powered down or even shorted to ground. overwriting operations [6]. However, this cannot be accom- If the data retention time exceeds the time required by an plished in a short time especially for devices with a large opponent to open the device and power up the memory, then memory size. the protection mechanisms can be defeated. Chip manufacturers do not publish information about On power up, the symmetric SRAM cells are tend to go remanence effects in their chips. Of course, a developer more likely into one of the states 0 or 1. Each chip has unique can run data remanence tests on a selected batch of and uncontrollable biases for each memory cell that depends suitable chips. But this would take time and add cost on the intrinsic properties of semiconductor production. This to the design. The outcome of this research can be used helps to distinguish between each individual chip as well as to improve the protection of secure systems which use use this for each device having unique PUF key for encryp- SRAM as a source of randomness and unique keys. tion. However, data remanence imposes some limitations on First is used in pseudorandom number generators the time between each initialisation. Otherwise, either random (PRNG) employed in many cryptographic protocols. number will be predictable or the data used in PUF will always Others are used to derive unique keys from physical be the same making cloning much easier. unclonable functions (PUF). By reducing the data rem- Another important thing to keep in mind is that security anence time, the contents of the SRAM can be information could be restored even if part of the memory is refreshed more often and with higher randomness. The corrupted. If an attacker has correctly restored only 90% of the research presented in this paper demonstrates that 128-bit key, he will have to search through n!/(m!(n–m)!) = SRAM data remanence problem still exists in modern 128!/(115!13!) = 2.12 × 1017 ~258 possible keys. This is fea- microcontrollers and like before deteriorates at low tem- sible to calculate in an hour with a medium-size cluster of peratures. This paper offers a low-cost solution to computers or by using special hardware key cracker device. completely eliminate the data remanence problem at al- If only 80% of the information is known, an attacker will need most no cost. It also demonstrates that Flash/EEPROM 2.51 × 1026 ~288 searches. Having even 100 times the capa- can be affected in the same way, and this could have bility, the attacker will spend more than a million years influence on the security of embedded systems. searching for the key. To simplify data remanence time calcu- Data retention can affect reliability of automotive and in- lations, we assume that if 50% of information is lost, then the dustrial systems. The results of this research should be of key cannot be recovered anymore. considerable concern to the developers of secure devices. Unlike SRAM, which has only two stable logic states, This paper makes the following contributions: it demon- EPROM, EEPROM, and Flash cells store analogue values in strates that data remanence effect is present in embedded the form of a charge on the floating gate of a MOS transistor. SRAM; it suggests a solution to significantly reduce data rem- The floating-gate charge shifts the threshold voltage of the cell anence time; it reveals that negative power glitching affects transistor, and this is detected with a sense amplifier when the the security of some microcontrollers; it exposes security is- cell is read. sues related to short data retention time of embedded EEPROM. 2.2 Data Retention Programmed floating-gate memories cannot store information 2 Background forever. Up until the late 1990s, these cells were not robust enough and usually held the charge for only 10–20 years. The Embedded systems are often based on microcontrollers— failure mechanisms of EEPROM and Flash memory cells are small integrated circuits with SRAM, ROM, EEPROM, and well known. Various processes, such as field-assisted electron Flash on a single silicon die. Two opposite effects were eval- emission, de-trapping of electrons, and ionic contamination, uated in this paper—data remanence and data retention. cause the floating gate to lose its charge, and this increases at J Hardw Syst Secur higher temperatures [14]. Flash memory inherited similar data engineer, it would be natural to overlook the important param- retention problems associated with the nature of data storage eters omitted by the manufacturer. The consequences could be on a floating gate from the EEPROM. The failure rate doubles devastating especially for high-risk applications.
Recommended publications
  • Hybrid Drowsy SRAM and STT-RAM Buffer Designs for Dark-Silicon
    This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1 Hybrid Drowsy SRAM and STT-RAM Buffer Designs for Dark-Silicon-Aware NoC Jia Zhan, Student Member, IEEE, Jin Ouyang, Member, IEEE,FenGe,Member, IEEE, Jishen Zhao, Member, IEEE, and Yuan Xie, Fellow, IEEE Abstract— The breakdown of Dennard scaling prevents us MCMC MC from powering all transistors simultaneously, leaving a large fraction of dark silicon. This crisis has led to innovative work on Tile link power-efficient core and memory architecture designs. However, link link RouterRouter the research for addressing dark silicon challenges with network- To router on-chip (NoC), which is a major contributor to the total chip NI power consumption, is largely unexplored. In this paper, we Core link comprehensively examine the network power consumers and L1-I$ L2 L1-D$ the drawbacks of the conventional power-gating techniques. To overcome the dark silicon issue from the NoC’s perspective, we MCMC MC propose DimNoC, a dim silicon scheme, which leverages recent drowsy SRAM design and spin-transfer torque RAM (STT-RAM) Fig. 1. 4 × 4 NoC-based multicore architecture. In each node, the local technology to replace pure SRAM-based NoC buffers. processing elements (core, L1, L2 caches, and so on) are attached to a router In particular, we propose two novel hybrid buffer architectures: through an NI. Routers are interconnected through links to form an NoC. 1) a hierarchical buffer architecture, which divides the input Four memory controllers are attached at the four corners, which will be used buffers into a set of levels with different power states and 2) a for off-chip memory access.
    [Show full text]
  • An Analysis of Data Corruption in the Storage Stack
    An Analysis of Data Corruption in the Storage Stack Lakshmi N. Bairavasundaram∗, Garth R. Goodson†, Bianca Schroeder‡ Andrea C. Arpaci-Dusseau∗, Remzi H. Arpaci-Dusseau∗ ∗University of Wisconsin-Madison †Network Appliance, Inc. ‡University of Toronto {laksh, dusseau, remzi}@cs.wisc.edu, [email protected], [email protected] Abstract latent sector errors, within disk drives [18]. Latent sector errors are detected by a drive’s internal error-correcting An important threat to reliable storage of data is silent codes (ECC) and are reported to the storage system. data corruption. In order to develop suitable protection Less well-known, however, is that current hard drives mechanisms against data corruption, it is essential to un- and controllers consist of hundreds-of-thousandsof lines derstand its characteristics. In this paper, we present the of low-level firmware code. This firmware code, along first large-scale study of data corruption. We analyze cor- with higher-level system software, has the potential for ruption instances recorded in production storage systems harboring bugs that can cause a more insidious type of containing a total of 1.53 million disk drives, over a pe- disk error – silent data corruption, where the data is riod of 41 months. We study three classes of corruption: silently corrupted with no indication from the drive that checksum mismatches, identity discrepancies, and par- an error has occurred. ity inconsistencies. We focus on checksum mismatches since they occur the most. Silent data corruptionscould lead to data loss more of- We find more than 400,000 instances of checksum ten than latent sector errors, since, unlike latent sector er- mismatches over the 41-month period.
    [Show full text]
  • Understanding Real World Data Corruptions in Cloud Systems
    Understanding Real World Data Corruptions in Cloud Systems Peipei Wang, Daniel J. Dean, Xiaohui Gu Department of Computer Science North Carolina State University Raleigh, North Carolina {pwang7,djdean2}@ncsu.edu, [email protected] Abstract—Big data processing is one of the killer applications enough to require attention, little research has been done to for cloud systems. MapReduce systems such as Hadoop are the understand software-induced data corruption problems. most popular big data processing platforms used in the cloud system. Data corruption is one of the most critical problems in In this paper, we present a comprehensive study on the cloud data processing, which not only has serious impact on characteristics of the real world data corruption problems the integrity of individual application results but also affects the caused by software bugs in cloud systems. We examined 138 performance and availability of the whole data processing system. data corruption incidents reported in the bug repositories of In this paper, we present a comprehensive study on 138 real world four Hadoop projects (i.e., Hadoop-common, HDFS, MapRe- data corruption incidents reported in Hadoop bug repositories. duce, YARN [17]). Although Hadoop provides fault tolerance, We characterize those data corruption problems in four aspects: our study has shown that data corruptions still seriously affect 1) what impact can data corruption have on the application and system? 2) how is data corruption detected? 3) what are the the integrity, performance, and availability
    [Show full text]
  • Data & Computer Recovery Guidelines
    Data & Computer Recovery Guidelines Data & Computer Recovery Guidelines This document contains general guidelines for restoring computer operating following certain types of disasters. It should be noted these guidelines will not fit every type of disaster or every organization and that you may need to seek outside help to recover and restore your operations. This document is divided into five parts. The first part provides general guidelines which are independent of the type of disaster, the next three sections deal with issues surrounding specific disaster types (flood/water damage, power surge, and physical damage). The final section deals with general recommendations to prepare for the next disaster. General Guidelines 2. Your first step is to restore the computing equipment. These are general guidelines for recovering after any type If you do try to power on the existing equipment, it of disaster or computer failure. If you have a disaster is best to remove the hard drive(s) first to make sure recovery plan, then you should be prepared; however, the system will power on. Once you have determined there may be things that were not covered to help the system powers on, you can reinstall the hard drive you recover. This section is divided into two sections and power the system back on. Hopefully, everything (computer system recovery, data recovery) works at that point. Note: this should not be tried in the case of a water or extreme heat damage. Computer System Recovery 3. If the computer will not power on then you can either The first step is to get your physical computer systems try to fix the computer or in many cases it is easier, running again.
    [Show full text]
  • Data Remanence in Non-Volatile Semiconductor Memory (Part I)
    Data remanence in non-volatile semiconductor memory (Part I) Security Group Sergei Skorobogatov Web: www.cl.cam.ac.uk/~sps32/ Email: [email protected] Introduction Data remanence is the residual physical representation of data that has UV EPROM EEPROM Flash EEPROM been erased or overwritten. In non-volatile programmable devices, such as UV EPROM, EEPROM or Flash, bits are stored as charge in the floating gate of a transistor. After each erase operation, some of this charge remains. It shifts the threshold voltage (VTH) of the transistor which can be detected by the sense amplifier while reading data. Microcontrollers use a ‘protection fuse’ bit that restricts unauthorized access to on-chip memory if activated. Very often, this fuse is embedded in the main memory array. In this case, it is erased simultaneously with the memory. Better protection can be achieved if the fuse is located close to the memory but has a separate control circuit. This allows it to be permanently monitored as well as hardware protected from being erased too early, thus making sure that by the time the fuse is reset no data is left inside the memory. In some smartcards and microcontrollers, a password-protected boot- Structure, cross-section and operation modes for different memory types loader restricts firmware updates and data access to authorized users only. Usually, the on-chip operating system erases both code and data How much residual charge is left inside the memory cells memory before uploading new code, thus preventing any new after a standard erase operation? Is it possible to recover data application from accessing previously stored secrets.
    [Show full text]
  • Databridge ETL Solution Datasheet
    DATASHEET Extract and Transform MCP Host Data for Improved KEY FEATURES Client configuration tool for Analysis and Decision Support easy customization of table layout. Fast, well-informed business decisions require access to your organization’s key performance Dynamic before-and-after indicators residing on critical database systems. But the prospect of exposing those systems images (BI-AI) based on inevitably raises concerns around security, data integrity, cost, and performance. key change. 64-bit clients. For organizations using the Unisys ClearPath MCP server and its non-relational DMSII • Client-side management database, there’s an additional challenge: Most business intelligence tools support only console. relational databases. • Ability to run the client as a service or a daemon. The Only True ETL Solution for DMSII Data • Multi-threaded clients to That’s why businesses like yours are turning to Attachmate® DATABridge™. It’s the only increase processing speed. true Extract, Transform, Load (ETL) solution that securely integrates Unisys MCP DMSII • Support for Windows Server and non-DMSII data into a secondary system. 2012. • Secure automation of Unisys With DATABridge, you can easily integrate production data into a relational database or MCP data replication. another DMSII database located on an entirely different Unisys host system. And because • Seamless integration of DATABridge clients for Oracle and Microsoft SQL Server support a breadth of operating both DMSII and non-DMSII environments (including Windows 7, Windows Server 2012, Windows Server 2008, UNIX, data with Oracle, Microsoft SQL, and other relational AIX, SUSE Linux, and Red Hat Linux), DATABridge solutions fit seamlessly into your existing databases. infrastructure.
    [Show full text]
  • MRAM Technology Status
    National Aeronautics and Space Administration MRAM Technology Status Jason Heidecker Jet Propulsion Laboratory Pasadena, California Jet Propulsion Laboratory California Institute of Technology Pasadena, California JPL Publication 13-3 2/13 National Aeronautics and Space Administration MRAM Technology Status NASA Electronic Parts and Packaging (NEPP) Program Office of Safety and Mission Assurance Jason Heidecker Jet Propulsion Laboratory Pasadena, California NASA WBS: 104593 JPL Project Number: 104593 Task Number: 40.49.01.09 Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91109 http://nepp.nasa.gov i This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by the National Aeronautics and Space Administration Electronic Parts and Packaging (NEPP) Program. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology. ©2013. California Institute of Technology. Government sponsorship acknowledged. ii TABLE OF CONTENTS 1.0 Introduction ............................................................................................................................................................ 1 2.0 MRAM Technology ................................................................................................................................................ 2 2.1
    [Show full text]
  • The Effects of Repeated Refresh Cycles on the Oxide Integrity of EEPROM Memories at High Temperature by Lynn Reed and Vema Reddy Tekmos, Inc
    The Effects of Repeated Refresh Cycles on the Oxide Integrity of EEPROM Memories at High Temperature By Lynn Reed and Vema Reddy Tekmos, Inc. 4120 Commercial Center Drive, #400, Austin, TX 78744 [email protected], [email protected] Abstract Data retention in stored-charge based memories, such as Flash and EEPROMs, decreases with increasing temperature. Compensation for this shortening of retention time can be accomplished by refreshing the data using periodic erase-write refresh cycles, although the number of these cycles is limited by oxide integrity. An alternate approach is to use refresh cycles consisting of a rewrite only cycles, without the prior erase cycle. The viability of this approach requires that this refresh cycle induces less damage than an erase-write cycle. This paper studies the effects of repeated refresh cycles on oxide integrity in a high temperature environment and makes comparisons to the damage caused by erase-write cycles. The experiment consisted of running a large number of refresh cycles on a selected byte. The control group was other bytes which were not subjected to refresh only cycles. The oxide integrity was checked by performing repeated erase-write cycles on each of the two groups to determine if the refresh cycles decreased the number of erase-write cycles before failure. Data was collected from multiple parts, with different numbers of refresh cycles, and at temperatures ranging from 25C to 190C. The experiment was conducted on microcontrollers containing embedded EEPROM memories. The microcontrollers were programmed to test and measure their own memories, and to report the results to an external controller.
    [Show full text]
  • Database Analyst Ii
    Recruitment No.: 20.186 Date Opened: 5/25/2021 DATABASE ANALYST II SALARY: $5,794 to $8,153 monthly (26 pay periods annually) FINAL FILING DATE: We are accepting applications until closing at 5 pm, June 8, 2021 IT IS MANDATORY THAT YOU COMPLETE THE SUPPLEMENTAL QUESTIONNAIRE. YOUR APPLICATION WILL BE REJECTED IF YOU DO NOT PROVIDE ALL NECESSARY INFORMATION. THE POSITION The Human Resources Department is accepting applications for the position of Database Analyst II. The current opening is for a limited term, benefitted and full-time position in the Information Technology department, but the list may be utilized to fill future regular and full- time vacancies for the duration of the list. The term length for the current vacancy is not guaranteed but cannot exceed 36 months. The normal work schedule is Monday through Friday, 8 – 5 pm; a flex schedule may be available. The Information Technology department is looking for a full-time, limited-term Database Analyst I/II to develop and manage the City’s Open Data platform. Initiatives include tracking city council goals, presenting data related to capital improvement projects, and measuring budget performance. This position is in the Data Intelligence Division. Our team sees data as more than rows and columns, it tells stories that yield invaluable insights that help us solve problems, make better decisions, and create solutions. This position is responsible for building and maintaining systems that unlock the power of data. The successful candidate will be able to create data analytics & business
    [Show full text]
  • On the Effects of Data Corruption in Files
    Just One Bit in a Million: On the Effects of Data Corruption in Files Volker Heydegger Universität zu Köln, Historisch-Kulturwissenschaftliche Informationsverarbeitung (HKI), Albertus-Magnus-Platz, 50968 Köln, Germany [email protected] Abstract. So far little attention has been paid to file format robustness, i.e., a file formats capability for keeping its information as safe as possible in spite of data corruption. The paper on hand reports on the first comprehensive research on this topic. The research work is based on a study on the status quo of file format robustness for various file formats from the image domain. A controlled test corpus was built which comprises files with different format characteristics. The files are the basis for data corruption experiments which are reported on and discussed. Keywords: digital preservation, file format, file format robustness, data integ- rity, data corruption, bit error, error resilience. 1 Introduction Long-term preservation of digital information is by now and will be even more so in the future one of the most important challenges for digital libraries. It is a task for which a multitude of factors have to be taken into account. These factors are hardly predictable, simply due to the fact that digital preservation is something targeting at the unknown future: Are we still able to maintain the preservation infrastructure in the future? Is there still enough money to do so? Is there still enough proper skilled manpower available? Can we rely on the current legal foundation in the future as well? How long is the tech- nology we use at the moment sufficient for the preservation task? Are there major changes in technologies which affect the access to our digital assets? If so, do we have adequate strategies and means to cope with possible changes? and so on.
    [Show full text]
  • Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid-State Drives
    ERRORS, MITIGATION, AND RECOVERY IN FLASH MEMORY SSDS 1 Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid-State Drives Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu Abstract—NAND flash memory is ubiquitous in everyday life The transistor traps charge within its floating gate, which dic- today because its capacity has continuously increased and cost has tates the threshold voltage level at which the transistor turns on. continuously decreased over decades. This positive growth is a The threshold voltage level of the floating gate is used to de- result of two key trends: (1) effective process technology scaling, termine the value of the digital data stored inside the transistor. and (2) multi-level (e.g., MLC, TLC) cell data coding. Unfortu- When manufacturing process scales down to a smaller tech- nately, the reliability of raw data stored in flash memory has also nology node, the size of each flash memory cell, and thus the continued to become more difficult to ensure, because these two trends lead to (1) fewer electrons in the flash memory cell (floating size of the transistor, decreases, which in turn reduces the gate) to represent the data and (2) larger cell-to-cell interference amount of charge that can be trapped within the floating gate. and disturbance effects. Without mitigation, worsening reliability Thus, process scaling increases storage density by enabling can reduce the lifetime of NAND flash memory. As a result, flash more cells to be placed in a given area, but it also causes relia- memory controllers in solid-state drives (SSDs) have become bility issues, which are the focus of this article.
    [Show full text]
  • EEPROM Emulation
    ...the world's most energy friendly microcontrollers EEPROM Emulation AN0019 - Application Note Introduction This application note demonstrates a way to use the flash memory of the EFM32 to emulate single variable rewritable EEPROM memory through software. The example API provided enables reading and writing of single variables to non-volatile flash memory. The erase-rewrite algorithm distributes page erases and thereby doing wear leveling. This application note includes: • This PDF document • Source files (zip) • Example C-code • Multiple IDE projects 2013-09-16 - an0019_Rev1.09 1 www.silabs.com ...the world's most energy friendly microcontrollers 1 General Theory 1.1 EEPROM and Flash Based Memory EEPROM stands for Electrically Erasable Programmable Read-Only Memory and is a type of non- volatile memory that is byte erasable and therefore often used to store small amounts of data that must be saved when power is removed. The EFM32 microcontrollers do not include an embedded EEPROM module for byte erasable non-volatile storage, but all EFM32s do provide flash memory for non-volatile data storage. The main difference between flash memory and EEPROM is the erasable unit size. Flash memory is block-erasable which means that bytes cannot be erased individually, instead a block consisting of several bytes need to be erased at the same time. Through software however, it is possible to emulate individually erasable rewritable byte memory using block-erasable flash memory. To provide EEPROM functionality for the EFM32s in an application, there are at least two options available. The first one is to include an external EEPROM module when designing the hardware layout of the application.
    [Show full text]