Tyrosine Kinase Activity of the EGF Receptor Is Enhanced by the Expression of Oncogenic 70Z-Cbl

Total Page:16

File Type:pdf, Size:1020Kb

Tyrosine Kinase Activity of the EGF Receptor Is Enhanced by the Expression of Oncogenic 70Z-Cbl Oncogene (1997) 15, 2909 ± 2919 1997 Stockton Press All rights reserved 0950 ± 9232/97 $12.00 Tyrosine kinase activity of the EGF receptor is enhanced by the expression of oncogenic 70Z-Cbl Christine BF Thien and Wallace Y Langdon Department of Pathology, The University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands, Western Australia 6907, Australia The 120 kD product of the c-Cbl oncogene is a signal transduction across the cell membrane into the prominent substrate of protein tyrosine kinases that cytoplasm. Furthermore, Cbl has been found to lacks a known catalytic activity but possesses an array associate constitutively or inductively with many of binding sites for cytoplasmic signalling proteins. An signalling proteins such as the Grb2, Crk and Nck oncogenic form of Cbl was recently identi®ed in the 70Z/ adaptor proteins, members of the Src, Abl and Syk 3 pre-B cell lymphoma which has a small deletion at the tyrosine kinase families, the p85 regulatory subunit of N-terminus of the Ring ®nger domain. This form of Cbl, PI 3-kinase and 14-3-3 proteins (Donovan et al., 1994; termed 70Z-Cbl, exhibits an enhanced level of tyrosine de Jong et al., 1995; Buday et al., 1996; Rivero- phosphorylation compared with c-Cbl. Here we demon- Lezcano et al., 1994; Ribon et al., 1996; Andoniou et strate that the expression of 70Z-Cbl induces a tenfold al., 1994, 1996; Smit et al., 1996; Tanaka et al., 1996; enhancement in the kinase activity of the EGF receptor Tsygankov et al., 1996; Fournel et al., 1996; Ota et al., in serum-starved and EGF-stimulated cells. In serum- 1996; Kim et al., 1995; Meisner et al., 1995; Solto and starved cells this results in EGF receptor autopho- Cantley, 1996; Liu et al., 1996). To date however a sphorylation and the recruitment of Grb2, Shc and Sos1 de®nite function for Cbl has not emerged from these but does not induce a corresponding increase in MAP studies. The most revealing clue about the function of kinase activity. Furthermore the expression of 70Z-Cbl Cbl has come from genetic studies in C. elegans where greatly enhances EGF-induced tyrosine phosphorylation the Cbl homologue, Sli-1, has been identi®ed as a of the protein tyrosine phosphatase SHP-2. We also negative regulator of the Let-23 receptor tyrosine show that the Cbl/EGF receptor complex is predomi- kinase (Jongeward et al., 1995; Yoon et al., 1995). nantly associated with CrkII and is distinct to the Grb2/ Importantly these experiments have demonstrated that Shc/Sos1 complex that associates with the EGF Sli-1 acts at the level of Let-23 and the Sem5 adaptor receptor. These ®ndings therefore demonstrate a bio- (Jongeward et al., 1995), a ®nding consistent with chemical eect of an oncogenic Cbl protein and support mammalian studies that place Cbl at an initiating point predictions from C. elegans that Cbl functions as in tyrosine kinase mediated signal transduction. regulator of receptor tyrosine kinases. Studies of oncogenic forms of Cbl have also provided clues about Cbl function. Cbl can be Keywords: growth factor; oncogene; receptor; signal converted to an oncogenic protein either by a large transduction; tyrosine kinase carboxy truncation that generated v-Cbl, or by a small internal deletion at the amino terminus of the Ring ®nger that was identi®ed in a mutant allele of Cbl from the mouse pre-B cell lymphoma line, 70Z/3 (Figure 1a) Introduction (Langdon et al., 1989; Blake et al., 1991; Andoniou et al., 1994). The v-Cbl truncation removes a large The product of the c-Cbl proto-oncogene has been proline-rich SH3-binding region and the Ring ®nger identi®ed as a ubiquitous substrate of protein tyrosine domain to reveal a novel phosphotyrosine binding kinases. Cbl lacks a de®ned catalytic domain but is (PTB) domain that forms a direct association with the rapidly phosphorylated on tyrosine residues following ZAP-70 tyrosine kinase and the EGF receptor (Lupher the stimulation of a wide range of cell surface receptors et al., 1996; Thien and Langdon, 1997). These studies which include growth factor receptors, immunoglobu- suggest that v-Cbl competes with c-Cbl for binding lin receptors, antigen receptors and integrin receptors sites on activated receptor complexes, and that (Donovan et al., 1994; Tanaka et al., 1995; Galisteo et transformation could involve a dominant negative al., 1995; Bowtell and Langdon, 1995; Odai et al., mechanism that blocks the putative regulatory role of 1995; Marcilla et al., 1995; Wang et al., 1996; Cory et c-Cbl. Indeed we have found that v-Cbl transformation al., 1995; Panchamoorthy et al., 1996; Kontani et al., is dependent on the expression of this protein at high 1996; Ota et al., 1996; Ojaniemi et al., 1997). Indeed in levels (WL, unpublished). In contrast, transformation many cell types Cbl appears to be one of the most by 70Z-Cbl appears to involve a positive signalling prominent and rapidly phosphorylated substrates of mechanism. This protein exhibits a markedly enhanced protein tyrosine kinases (Andoniou et al., 1994; level of tyrosine phosphorylation under conditions of Donovan et al., 1994; Panchamoorthy et al., 1996). minimal growth factor stimulation, and has the This suggests a pivotal role in early events following capability to transform ®broblasts at protein levels where v-Cbl transformation is not evident (Andoniou et al., 1994; Bowtell and Langdon, 1995). Recently the Correspondence: WY Langdon eects of 70Z-Cbl on the transcriptonal activation of Received 2 June1997; revised 1 August 1997; accepted 1 August 1997 nuclear factor of activated T cells (NFAT) were 70Z-Cbl enhancement of EGF receptor kinase activity CBF Thien and WY Langdon 2910 The mechanism by which 70Z-Cbl mediates fibro- a blast transformation and Ras-dependent activation of NFAT remains to be resolved. However the elevated level of tyrosine phosphorylation of 70Z-Cbl protein compared to c-Cbl has provided direction for further investigation. We originally hypothesized that the enhanced tyrosine phosphorylation was due to an intrinsic property of 70Z-Cbl which increased its accessibility to tyrosine kinases (Andoniou et al., 1994). In this study we have further investigated the mechanism of 70Z-Cbl tyrosine phosphorylation using b NIH3T3 ®broblasts expressing the human epidermal growth factor receptor (EGFR). The ®ndings presented here show that the 70Z-Cbl protein markedly enhances the kinase activity of the EGFR and that this results in an increase in the tyrosine phosphorylation of the EGFR, Shc, Cbl and SHP-2. Results Tyrosine phosphorylation of 70Z-Cbl in serum-starved cells To determine the mechanism for the enhanced tyrosine phosphorylation of 70Z-Cbl we examined NIH3T3 cells that co-express the EGFR and HA-tagged constructs of c-Cbl, 70Z-Cbl or v-Cbl (Figure 1a). The morphology of these cells is shown in Figure 1b c d where cells with no introduced Cbl (a), or cells overexpressing HA-c-Cbl (b) exhibit a ¯at morphol- -- c-Cbl 70Z-Cbl v-Cbl -- c-Cbl 70Z-Cbl v-Cbl -- c-Cbl 70Z-Cbl v-Cbl -- c-Cbl 70Z-Cbl v-Cbl ogy, and cells expressing HA-70Z-Cbl (c) and HA-v- EGF : – – – – + + + + EGF : – – – – + + + + Cbl (d) are refractile and rounded in appearance 202 – – EGFR consistent with a transformed phenotype. These cells were grown to *90% con¯uency in complete media – c-Cbl – c-Cbl 103 – before replacement with media containing 0.5% FCS for 24 h. The cells were either left quiescent or were 68 – stimulated with 1 ng/ml of EGF for 2 min at 378C before lysis and immunoprecipitation with anti-HA antibodies. The immunoprecipitated proteins were 44 – – v-Cbl separated by SDS polyacrylamide gel electrophoresis and immunoblotted with anti-phosphotyrosine or anti- I.P. : Anti-HA I.P. : Anti-HA Blot : Anti-HA Blot : Anti-P-Tyr HA antibodies. The anti-HA immunoblot in Figure 1c shows the expression of the tagged Cbl proteins and Figure 1 (a) Diagrammatic representation of the HA-tagged c- reveals that 70Z-Cbl has the lowest level of protein Cbl, 70Z-Cbl and v-Cbl constructs used in this study. (b) Morphology of NIH3T3 cells expressing the human EGFR with expression. The anti-phosphotyrosine blot of these (a) no introduced Cbl; (b) HA-c-Cbl; (c) HA-70Z-Cbl and (d) HA- samples shows that in quiescent cells (Figure 1d, v-Cbl. (c) and (d) Enhanced tyrosine phosphorylation of 70Z-Cbl EGF7) the 70Z-Cbl protein has a markedly higher in serum-starved cells. NIH3T3 cells expressing the human EGFR level of tyrosine phosphorylation compared to c-Cbl and HA-tagged c-Cbl, 70Z-Cbl or v-Cbl constructs were grown in media containing 0.5% FCS for 24 h. Cells were left quiescent protein, even though it is expressed at a lower level, (EGF7) or were stimulated with 1 ng/ml of EGF for 2 min at and that it is associated with tyrosine phosphorylated 378C (EGF+) before lysis and immunoprecipitation with anti-HA EGFR. These results are consistent with our previous antibodies. The immunoprecipitated proteins were separated by reports that have shown a high level of 70Z-Cbl SDS polyacrylamide gel electrophoresis and immunoblotted with tyrosine phosphorylation in minimally stimulated cells anti-HA antibodies (c) or anti-phosphotyrosine antibodies (d). NIH3T3 cells expressing the human EGFR but with no (Andoniou et al., 1994; Bowtell and Langdon, 1995). introduced form of Cbl is represented by ± Following EGF stimulation there is a large increase in the amount of tyrosine phosphorylated c-Cbl protein and this protein is recruited to the activated EGFR (Figure 1d,EGF+). There is also a slight increase in investigated in Jurkat T cells. Transient expression of 70Z-Cbl tyrosine phosphorylation, however the 70Z-Cbl, but not c-Cbl or v-Cbl, was found to induce amount of immunoprecipitated protein was markedly an increase in the basal activity of NFAT which was reduced after EGF stimulation since it was not further enhanced by calcium ionophore (Liu et al., detected with anti-HA antibodies.
Recommended publications
  • Intersectin 1 Forms Complexes with SGIP1 and Reps1 in Clathrin-Coated
    Biochemical and Biophysical Research Communications 402 (2010) 408–413 Contents lists available at ScienceDirect Biochemical and Biophysical Research Communications journal homepage: www.elsevier.com/locate/ybbrc Intersectin 1 forms complexes with SGIP1 and Reps1 in clathrin-coated pits ⇑ Oleksandr Dergai a, ,1, Olga Novokhatska a,1, Mykola Dergai a, Inessa Skrypkina a, Liudmyla Tsyba a, Jacques Moreau b, Alla Rynditch a a Department of Functional Genomics, Institute of Molecular Biology and Genetics, NASU, 150 Zabolotnogo Street, 03680 Kyiv, Ukraine b Molecular Mechanisms of Development, Jacques Monod Institute, Development and Neurobiology Program, UMR7592 CNRS – Paris Diderot University, 15 rue Hélène Brion, 75205 Paris Cedex 13, France article info abstract Article history: Intersectin 1 (ITSN1) is an evolutionarily conserved adaptor protein involved in clathrin-mediated endo- Received 7 October 2010 cytosis, cellular signaling and cytoskeleton rearrangement. ITSN1 gene is located on human chromosome Available online 12 October 2010 21 in Down syndrome critical region. Several studies confirmed role of ITSN1 in Down syndrome pheno- type. Here we report the identification of novel interconnections in the interaction network of this endo- Keywords: cytic adaptor. We show that the membrane-deforming protein SGIP1 (Src homology 3-domain growth Endocytosis factor receptor-bound 2-like (endophilin) interacting protein 1) and the signaling adaptor Reps1 (RalBP Adaptor proteins associated Eps15-homology domain protein) interact with ITSN1 in vivo. Both interactions are mediated Intersectin 1 by the SH3 domains of ITSN1 and proline-rich motifs of protein partners. Moreover complexes compris- Protein interactions SGIP1 ing SGIP1, Reps1 and ITSN1 have been identified. We also identified new interactions between SGIP1, Reps1 Reps1 and the BAR (Bin/amphiphysin/Rvs) domain-containing protein amphiphysin 1.
    [Show full text]
  • CRKL As a Lung Cancer Oncogene and Mediator Of
    views in The spotliGhT CRKL as a Lung Cancer Oncogene and Mediator of Acquired Resistance to eGFR inhibitors: is it All That it is Cracked Up to Be? Marc Ladanyi summary: Cheung and colleagues demonstrate that amplified CRKL can function as a driver oncogene in lung adeno- carcinoma, activating both RAS and RAP1 to induce mitogen-activated protein kinase signaling. In addition, they show that CRKL amplification may be another mechanism for primary or acquired resistance to epidermal growth factor re- ceptor kinase inhibitors. Cancer Discovery; 1(7); 560–1. ©2011 AACR. Commentary on Cheung et al., p. 608 (1). In this issue of Cancer Discovery, Cheung and colleagues (1) mutual exclusivity. Cheung and colleagues (1) report that present extensive genomic and functional data supporting focal CRKL amplification is mutually exclusive with EGFR focal amplification of the CRKL gene at 22q11.21 as a driver mutation and EGFR amplification. However, of the 6 lung oncogene in lung adenocarcinoma. The report expands on cancer cell lines found in this study to have focal gains of data previously presented by Kim and colleagues (2). CRKL CRKL, 2 contain other major driver oncogenes (KRAS G13D is a signaling adaptor protein that contains SH2 and SH3 in HCC515, BRAF G469A in H1755; refs. 7, 8). Interestingly, domains that mediate protein–protein interactions linking both cell lines demonstrated clear dependence on CRKL in tyrosine-phosphorylated upstream signaling molecules (e.g., functional assays. Perhaps CRKL amplification is more akin BCAR1, paxillin, GAB1) to downstream effectors (e.g., C3G, to PIK3CA mutations, which often, but not always, are con- SOS) (3).
    [Show full text]
  • Effects and Mechanisms of Eps8 on the Biological Behaviour of Malignant Tumours (Review)
    824 ONCOLOGY REPORTS 45: 824-834, 2021 Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review) KAILI LUO1, LEI ZHANG2, YUAN LIAO1, HONGYU ZHOU1, HONGYING YANG2, MIN LUO1 and CHEN QING1 1School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500; 2Department of Gynecology, Yunnan Tumor Hospital and The Third Affiliated Hospital of Kunming Medical University; Kunming, Yunnan 650118, P.R. China Received August 29, 2020; Accepted December 9, 2020 DOI: 10.3892/or.2021.7927 Abstract. Epidermal growth factor receptor pathway substrate 8 1. Introduction (Eps8) was initially identified as the substrate for the kinase activity of EGFR, improving the responsiveness of EGF, which Malignant tumours are uncontrolled cell proliferation diseases is involved in cell mitosis, differentiation and other physiological caused by oncogenes and ultimately lead to organ and body functions. Numerous studies over the last decade have demon- dysfunction (1). In recent decades, great progress has been strated that Eps8 is overexpressed in most ubiquitous malignant made in the study of genes and signalling pathways in tumours and subsequently binds with its receptor to activate tumorigenesis. Eps8 was identified by Fazioli et al in NIH-3T3 multiple signalling pathways. Eps8 not only participates in the murine fibroblasts via an approach that allows direct cloning regulation of malignant phenotypes, such as tumour proliferation, of intracellular substrates for receptor tyrosine kinases (RTKs) invasion, metastasis and drug resistance, but is also related to that was designed to study the EGFR signalling pathway. Eps8 the clinicopathological characteristics and prognosis of patients.
    [Show full text]
  • Noonan Syndrome and Related Disorders Sos1, Raf1, Kras & Shoc2 Gene Sequencing
    Molecular Diagnostic Laboratory 1600 Rockland Road, Wilmington, DE 19803 302.651.6775 email: [email protected] NOONAN SYNDROME AND RELATED DISORDERS SOS1, RAF1, KRAS & SHOC2 GENE SEQUENCING Noonan syndrome (OMIM 163950) is an autosomal dominant disorder due to mutations in several genes that are involved in the Ras-mitogen-activated protein kinase (RAS/MapK) pathway. Specifically, Noonan syndrome is caused by mutations in PTPN11* (OMIM 176876), SOS1 (OMIM 182530), RAF1 (OMIM 164760), and KRAS (OMIM 190070). Noonan syndrome is characterized by heart defects including hypertrophic cardiomyopathy and pulmonic valve stenosis, facial dysmorphology, short stature, chest wall deformities, and developmental delay. Noonan syndrome-like disorder with loose anagen hair (OMIM 607721) is a closely related disorder characterized by the above features as well as actively growing hair that is sparse, easy to pluck, thin, and slow-growing. This related disorder is due to mutations in SHOC2 (OMIM 602775), which is also involved in the RAS/MapK pathway. PTPN11* and RAF1 are also associated with LEOPARD syndrome (OMIM 151100). LEOPARD syndrome is an acronym for multiple lentigines, electrocardiogram abnormalities, ocular hypertelorism, pulmonic valvular stenosis, abnormalities of genitalia, retardation of growth, and sensorineural deafness. LEOPARD syndrome is an autosomal dominant disorder, and can present much like Noonan syndrome with additional features. * Please note: We are no longer able to offer diagnostic testing for the PTPN11 gene due to patent restrictions enforced by U.S. Patent 7,335,469. Testing: Testing can be performed in tiers, moving to the next tier only if the preceding test is negative. Testing can also be performed concurrently or in any order requested.
    [Show full text]
  • Intersectin-1S Deficiency in Pulmonary Pathogenesis Niranjan Jeganathan1*, Dan Predescu2 and Sanda Predescu3
    Jeganathan et al. Respiratory Research (2017) 18:168 DOI 10.1186/s12931-017-0652-4 REVIEW Open Access Intersectin-1s deficiency in pulmonary pathogenesis Niranjan Jeganathan1*, Dan Predescu2 and Sanda Predescu3 Abstract Intersectin-1s (ITSN-1s), a multidomain adaptor protein, plays a vital role in endocytosis, cytoskeleton rearrangement and cell signaling. Recent studies have demonstrated that deficiency of ITSN-1s is a crucial early event in pulmonary pathogenesis. In lung cancer, ITSN-1s deficiency impairs Eps8 ubiquitination and favors Eps8-mSos1 interaction which activates Rac1 leading to enhanced lung cancer cell proliferation, migration and metastasis. Restoring ITSN-1s deficiency in lung cancer cells facilitates cytoskeleton changes favoring mesenchymal to epithelial transformation and impairs lung cancer progression. ITSN-1s deficiency in acute lung injury leads to impaired endocytosis which leads to ubiquitination and degradation of growth factor receptors such as Alk5. This deficiency is counterbalanced by microparticles which, via paracrine effects, transfer Alk5/TGFβRII complex to non-apoptotic cells. In the presence of ITSN-1s deficiency, Alk5-restored cells signal via Erk1/2 MAPK pathway leading to restoration and repair of lung architecture. In inflammatory conditions such as pulmonary artery hypertension, ITSN-1s full length protein is cleaved by granzyme B into EHITSN and SH3A-EITSN fragments. The EHITSN fragment leads to pulmonary cell proliferation via activation of p38 MAPK and Elk-1/c-Fos signaling. In vivo, ITSN-1s deficient mice transduced with EHITSN plasmid develop pulmonary vascular obliteration and plexiform lesions consistent with pathological findings seen in severe pulmonary arterial hypertension. These novel findings have significantly contributed to understanding the mechanisms and pathogenesis involved in pulmonary pathology.
    [Show full text]
  • Genomic and Functional Analysis Identifies CRKL As an Oncogene
    Oncogene (2010) 29, 1421–1430 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 $32.00 www.nature.com/onc ORIGINAL ARTICLE Genomic and functional analysis identifies CRKL as an oncogene amplified in lung cancer YH Kim1,7, KA Kwei1,7, L Girard2, K Salari1,3, J Kao1, M Pacyna-Gengelbach4, P Wang5, T Hernandez-Boussard3, AF Gazdar2, I Petersen6, JD Minna2 and JR Pollack1 1Department of Pathology, Stanford University, Stanford, CA, USA; 2Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; 3Department of Genetics, Stanford University, Stanford, CA, USA; 4Institute of Pathology, University Hospital Charite´, Berlin, Germany; 5Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA and 6Institute of Pathology, Universita¨tsklinikum Jena, Jena, Germany DNA amplifications, leading to the overexpression of related mortality (Jemal et al., 2008). Nearly 80% oncogenes, are a cardinal feature of lung cancer and of lung cancers diagnosed are non-small-cell lung directly contribute to its pathogenesis. To uncover such cancers (NSCLCs), which are classified into three main novel alterations, we performed an array-based compara- histological subtypes: adenocarcinoma, squamous cell tive genomic hybridization survey of 128 non-small-cell carcinoma and large cell carcinoma. Despite the lung cancer cell lines and tumors. Prominent among our advancement of surgical, cytotoxic and radiological findings, we identified recurrent high-level amplification at treatment options over the years, lung cancer therapy cytoband 22q11.21 in 3% of lung cancer specimens, with remains largely ineffective from a clinical standpoint, another 11% of specimens exhibiting low-level gain spanning as evidenced by a low 5-year survival rate (o15%), that locus.
    [Show full text]
  • PTPN11, SOS1, KRAS, and RAF1 Gene Analysis, and Genotype–Phenotype Correlation in Korean Patients with Noonan Syndrome
    J Hum Genet (2008) 53:999–1006 DOI 10.1007/s10038-008-0343-6 ORIGINAL ARTICLE PTPN11, SOS1, KRAS, and RAF1 gene analysis, and genotype–phenotype correlation in Korean patients with Noonan syndrome Jung Min Ko Æ Jae-Min Kim Æ Gu-Hwan Kim Æ Han-Wook Yoo Received: 30 July 2008 / Accepted: 27 October 2008 / Published online: 20 November 2008 Ó The Japan Society of Human Genetics and Springer 2008 Abstract After 2006, germline mutations in the KRAS, KRAS (1.7%), and RAF1 (5.1%) genes. Three novel SOS1, and RAF1 genes were reported to cause Noonan mutations (T59A in PTPN11, K170E in SOS1, S259T in syndrome (NS), in addition to the PTPN11 gene, and now RAF1) were identified. The patients with PTPN11 muta- we can find the etiology of disease in approximately tions showed higher prevalences of patent ductus 60–70% of NS cases. The aim of this study was to assess arteriosus and thrombocytopenia. The patients with SOS1 the correlation between phenotype and genotype by mutations had a lower prevalence of delayed psychomotor molecular analysis of the PTPN11, SOS1, KRAS, and development. All patients with RAF1 mutations had RAF1 genes in 59 Korean patients with NS. We found hypertrophic cardiomyopathy. Typical facial features and disease-causing mutations in 30 (50.8%) patients, which auxological parameters were, on statistical analysis, not were located in the PTPN11 (27.1%), SOS1 (16.9%), significantly different between the groups. The molecular defects of NS are genetically heterogeneous and involve several genes other than PTPN11 related to the RAS- MAPK pathway. Electronic supplementary material The online version of this article (doi:10.1007/s10038-008-0343-6) contains supplementary material, which is available to authorized users.
    [Show full text]
  • Author's Personal Copy
    Author's personal copy Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This article was originally published in the book Encyclopedia of Immunobiology, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution's administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial From Myers, D.R., Roose, J.P., 2016. Kinase and Phosphatase Effector Pathways in T Cells. In: Ratcliffe, M.J.H. (Editor in Chief), Encyclopedia of Immunobiology, Vol. 3, pp. 25–37. Oxford: Academic Press. Copyright © 2016 Elsevier Ltd. unless otherwise stated. All rights reserved. Academic Press Author's personal copy Kinase and Phosphatase Effector Pathways in T Cells Darienne R Myers and Jeroen P Roose, University of California, San Francisco (UCSF), San Francisco, CA, USA Ó 2016 Elsevier Ltd. All rights reserved. Abstract Multiple interconnected effector pathways mediate the activation of T cells following recognition of cognate antigen. These kinase and phosphatase pathways link proximal T cell receptor (TCR) signaling to changes in gene expression and cell physiology.
    [Show full text]
  • Expression of NEDD9 in Hepatocellular Carcinoma and Its Clinical Significance
    ONCOLOGY REPORTS 33: 2375-2383, 2015 Expression of NEDD9 in hepatocellular carcinoma and its clinical significance PENG LU1,2*, ZHI-PENG WANG3*, ZHENG DANG4*, ZHI-GANG ZHENG1*, XIAO LI1, LIANG ZHOU5, RUI DING1, SHU-QIANG YUE1 and KE-FENG DOU1 1Department of Hepatobiliary and Pancreaticosplenic Surgery, Xijing Hospital, The Fourth Military Medical University; 2Department of General Surgery, The 518 Central Hospital of PLA; 3Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shanxi; 4Department of Hepatobiliary Surgery, Lanzhou General Hospital of PLA, Lanzhou, Gansu; 5Department of General Surgery, The 155 Central Hospital of PLA, Kaifeng, He'nan, P.R. China Received December 1, 2014; Accepted January 22, 2015 DOI: 10.3892/or.2015.3863 Abstract. Neural precursor cell expressed, developmentally metastasis, intrahepatic venous invasion and high UICC TNM downregulated 9 (NEDD9) plays an integral role in natural and stages in HCC patients. Patients with high NEDD9 expression pathological cell biology. Overexpression of NEDD9 protein levels exhibited poorer recurrence-free and overall survival has been correlated with poor prognosis in various types of than those with a low NEDD9 expression. Additionally, cancer. However, few available data address the precise func- NEDD9 expression status was an independent prognostic tion of the NEDD9 gene in hepatocellular carcinoma (HCC). factor for survival. This correlation remained significant in In the present study, we investigated NEDD9 expression patients with early-stage HCC or with normal serum AFP in 40 primary human HCC tissues compared with matched levels. The results of this study suggest that NEDD9 may be a adjacent non-tumor hepatic tissues using RT-qPCR and valuable prognostic biomarker for HCC, including early-stage western blot analysis.
    [Show full text]
  • Investigation of the Role of Cbl-B in Leukemogenesis and Migration
    INVESTIGATION OF THE ROLE OF CBL-B IN LEUKEMOGENESIS AND MIGRATION by Karla Michelle Badger-Brown A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Medical Biophysics University of Toronto © Copyright by Karla Michelle Badger-Brown (2009) Investigation of the Role of CBL-B in Leukemogenesis and Migration Doctor of Philosophy, 2009 Karla Michelle Badger-Brown Department of Medical Biophysics University of Toronto ABSTRACT CBL proteins are E3 ubiquitin ligases and adaptor proteins. The mammalian homologs – CBL, CBL-B and CBL-3 show broad tissue expression; accordingly, the CBL proteins play roles in multiple cell types. We have investigated the function of the CBL-B protein in hematopoietic cells and fibroblasts. The causative agent of chronic myeloid leukemia (CML) is BCR-ABL. This oncogenic fusion down-modulates CBL-B protein levels, suggesting that CBL-B regulates either the development or progression of CML. To assess the involvement of CBL-B in CML, bone marrow transduction and transplantation (BMT) studies were performed. Recipients of BCR-ABL-infected CBL-B(-/-) cells succumbed to a CML-like myeloproliferative disease with a longer latency than the wild-type recipients. Peripheral blood white blood cell numbers were reduced, as were splenic weights. Yet despite the reduced leukemic burden, granulocyte numbers were amplified throughout the animals. As well, CBL- B(-/-) bone marrow (BM) cells possessed defective BM homing capabilities. From these results we concluded that CBL-B negatively regulates granulopoiesis and that prolonged latency in our CBL-B(-/-) BMT animals was a function of perturbed homing. To develop an in vitro model to study CBL-B function we established mouse embryonic fibroblasts (MEFs) deficient in CBL-B expression.
    [Show full text]
  • Fucoidan–Fucoxanthin Ameliorated Cardiac Function Via IRS1/GRB2/ SOS1, Gsk3β/CREB Pathways and Metabolic Pathways in Senescent Mice
    marine drugs Article Fucoidan–Fucoxanthin Ameliorated Cardiac Function via IRS1/GRB2/ SOS1, GSK3β/CREB Pathways and Metabolic Pathways in Senescent Mice Po-Ming Chang, Kuan-Lun Li and Yen-Chang Lin * Graduate Institute of Biotechnology, Chinese Culture University, Taipei 11114, Taiwan; [email protected] (P.-M.C.); [email protected] (K.-L.L.) * Correspondence: [email protected] or [email protected]; Tel.: +886-02-2861-0511 (ext. 31832); Fax: +886-02-2861-8266 Received: 3 November 2018; Accepted: 18 January 2019; Published: 21 January 2019 Abstract: The effects of low molecular weight fucoidan (LMWF) in combination with high-stability fucoxanthin (HSFUCO) on cardiac function and the metabolic pathways of aging mice (Mus musculus) were investigated. We demonstrated that LMWF and HSFUCO could improve cardiac function in aging mice. Aging mice were treated with LMWF and HSFUCO, either on their own or in combination, on 28 consecutive days. Electrocardiography and whole-cell patch-clamp were used to measure QT interval and action potential duration (APD) of the subjects. Cardiac tissue morphology, reactive oxygen species, and Western blot were also applied. Ultra-high-performance liquid chromatography–quadrupole time-of-flight (UPLC-QTOF) mass spectrometry was used for investigating metabolic alterations. The use of LMWF and HSFUCO resulted in improvements in both ventricular rhythms (QT and APD). Treatment with fucoidan and fucoxanthin reduced the expression levels of SOS1 and GRB2 while increasing GSK3β, CREB and IRS1 proteins expression in the aging process. Three main metabolic pathways, namely the TCA cycle, glycolysis, and steroid hormone biosynthesis, were highly enriched in the pathway enrichment analysis.
    [Show full text]
  • Fc of Myeloid High Affinity Fc Receptor for Igg Tyrosine-Based Activation
    Differential Interaction of Crkl with Cbl or C3G, Hef-1, and γ Subunit Immunoreceptor Tyrosine-Based Activation Motif in Signaling of Myeloid High Affinity Fc Receptor for IgG This information is current as (Fc γRI) of September 27, 2021. Wade T. Kyono, Ron de Jong, Rae Kil Park, Yenbou Liu, Nora Heisterkamp, John Groffen and Donald L. Durden J Immunol 1998; 161:5555-5563; ; http://www.jimmunol.org/content/161/10/5555 Downloaded from References This article cites 55 articles, 39 of which you can access for free at: http://www.jimmunol.org/content/161/10/5555.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1998 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Differential Interaction of Crkl with Cbl or C3G, Hef-1, and g Subunit Immunoreceptor Tyrosine-Based Activation Motif in Signaling of Myeloid High Affinity Fc Receptor for IgG (FcgRI)1 Wade T.
    [Show full text]