Familial Mediterranean Fever and Behçet's Disease

Total Page:16

File Type:pdf, Size:1020Kb

Familial Mediterranean Fever and Behçet's Disease Familial Mediterranean Fever and Behçet’s Disease — Are They Associated? ELDAD BEN-CHETRIT, RONIT COHEN, and TOVA CHAJEK-SHAUL ABSTRACT. Objective. To test whether the coexistence of familial Mediterranean fever (FMF) and Behçet’s disease (BD) is more frequent than expected and whether each disease affects the severity of the other. Methods. We screened 353 charts of patients with FMF to detect individuals with concomitant BD. Of these, 152 patients with FMF over the age of 18 years were also interviewed and examined specif- ically. We also studied 53 patients with BD, looking for FMF and for their MEFV mutations. We compared BD patients with MEFV mutations to those without them. Results. None of 353 patients with FMF was found to have concomitant BD. Sixteen patients with BD bore MEFV mutations, 2 of whom were symptomatic homozygotes and had concomitant FMF. No patient with BD with a single MEFV mutation had FMF. Both BD groups (with or without MEFV mutations) were similar in their clinical manifestations and disease course. Conclusion. BD and FMF are 2 separate entities that have a mild trend toward a higher than expected association. However, there was no mutua1 effect of FMF on BD or vice versa. (J Rheumatol 2002;29:530–4) Key Indexing Terms: FAMILIAL MEDITERRANEAN FEVER BEHÇET’S DISEASE MEFV GENE Familial Mediterranean fever (FMF, recurrent polyserositis) Turkey, the disease is quite common in Japan, Korea, Iran, is an autosomal recessive disease primarily affecting popu- and Saudi Arabia12. lations surrounding the Mediterranean Basin: mainly non- Both diseases are considered rare and share some Ashkenazi Jews, Arabs, Armenians, and Turks1,2. Typically, common symptoms and laboratory findings. FMF and BD it presents as acute episodes of fever, accompanied by patients may have fever, arthritis, abdominal pain, and acute complaints of abdominal pain, chest pain, arthritis, or scrotum due to orchitis or epidydimitis. In both diseases erysipelas-like skin eruptions. Four years ago, the gene increased chemotaxis of neutrophils and elevated serum associated with FMF, MEFV, was mapped and cloned from interleukin 8 have been described13,14. Further, colchicine the short arm of chromosome 16 and about 30 mutations was found to be an effective medication in preventing FMF have been identified3-9. attacks and ameliorating some of the clinical manifestations Behçet’s disease (BD) is an inflammatory disorder with a of BD15. Three years ago, Birlik, et al described a patient genetic background, characterized by oral and genital with FMF and BD16. The authors suggested that both ulcers, uveitis, pustular erythematous cutaneous lesions, diseases may have common etiopathogenetic mechanisms, arthritis, central nervous system involvement, and/or due to their resemblance. Several vasculitic diseases, such vascular manifestations such as venous thrombosis, arteritis as polyarteritis nodosa and Henoch-Schönlein purpura, have and aneurysms10,11. BD is not a chronic persistent inflam- been found in increased rates among FMF patients matory disorder, but rather one consisting of recurrent compared with the normal healthy population17,18. Since BD attacks of acute inflammation. Cases of BD are prevalent is also a type of vasculitic disorder, it was postulated that its along the ancient Silk Road, which extends from Eastern coexistence with FMF is higher than expected19,20. Asia to the Mediterranean Basin. While the highest preva- Nevertheless, in a recent study, Fresko, et al did not find a lence of BD (80 to 370/100,000) has been reported in higher prevalence of FMF in a cohort of 344 patients with BD21. In another study it was found that about 60% of FMF patients with BD bear only a single mutated MEFV gene22. From the Department of Medicine, Hadassah University Hospital, Jerusalem, Israel. The authors suggested that the concomitant presence of BD Supported by a grant for FMF research from the Hadassah Medical in these patients leads to a complete expression of FMF, Relief Association, UK. despite their being heterozygotes. Further, Touitou, et al, E. Ben-Chetrit, MD, Professor of Medicine; R. Cohen, MD, Insructor in who screened a cohort of 114 patients with BD for MEFV Medicine; T. Chajek-Shaul, MD, Professor of Medicine. mutations, found that some of these mutations were more Address reprint requests to Dr. E. Ben-Chetrit, Department of Medicine, Hadassah University Hospital, PO Box 12000, Jerusalem 91120, Israel. frequent in this group, suggesting that they may act as an E-mail: [email protected] additional susceptibility factor in BD23. Submitted April 27, 2001; revision accepted September 11, 2001. We examined whether the frequency of FMF is increased Personal non-commercial use only. The Journal of Rheumatology Copyright © 2002. All rights reserved. 530 The Journal of Rheumatology 2002; 29:3 Downloaded on September 24, 2021 from www.jrheum.org among patients with BD and vice versa. We also compared Statistical analysis. Results are reported as mean ± SD. Fisher’s exact test the severity of BD in patients with and without MEFV muta- (2 sided) was used for comparison of proportions, while nonpaired t test tions to verify whether BD patients heterozygous for a was employed for comparison of means. single MEFV mutation will express symptomatic FMF. RESULTS At the beginning we screened the charts of 353 patients with MATERIALS AND METHODS Patients. In our outpatient clinic at the Hadassah Medical Center we regu- FMF at the Hadassah Medical Center and were unable to larly follow more than 350 patients with FMF. Diagnosis of FMF was based find any patient who suffered concomitantly from BD. Then upon published criteria, including typical clinical manifestations and a we interviewed and examined all the patients over the age of response to colchicine24. We have also looked for a family history of the 18. We found 152 patients whose ages ranged between 18 disease to support the FMF diagnosis, although it is not a diagnostic crite- and 71 years (mean 33.81 ± 12.28); 79 of them were male. rion. The diagnosis of FMF was reassessed in many of these patients (about 120) by genetic analysis using polymerase chain reaction (PCR). More than Their ethnic distribution is shown in Table 1. Five of these 70% of them were either homozygous or compound heterozygous for the patients had aphthous stomatitis, one of whom also had M694V, V726A, M694I, M680I, or E148Q mutations. FMF patients are genital ulcers with no concomitant eye, vascular, or nervous followed regularly every 6 months unless they have uncontrolled attacks. system involvement or positive pathergy test or erythema During each visit we examine them and check complete blood count, serum nodosum. This patient was homozygous for the M694V electrolytes, liver and kidney functions, and urinalysis, in order to exclude proteinuria usually induced by amyloidosis. Fifty-three patients having BD mutation and did not bear the HLA-B51. Two patients had are also routinely followed in our Behçet’s clinic. Diagnosis of BD was uveitis, with no aphthosis or any other clinical feature (not based on the criteria proposed by the International Study Group for even arthritis) suggesting BD. Behçet’s Disease in 199025. All the patients had recurrent aphthous stom- Fifty-three patients with BD were studied; 37 were male atitis and 2 more sites of organ involvement such as genital ulcers, uveitis, and 16 female. Twenty-two were Palestinian Arabs and 31 erythema nodosum, or skin pustulosis. Thirty of them were also positive for the pathergy test. The age of onset was defined as the time of the presenting were Jews from various ethnic groups (Table 2). Their ages symptom of BD, even if it was only aphthosis. ranged from 20 to 73, mean 48.8 ± 11.5 years. Analysis of To estimate the prevalence of BD among patients with FMF, we used their genomic DNA for FMF mutations revealed that 16 the Hadassah Hospital medical archives. We reviewed the charts of 353 bore MEFV gene mutations, 2 of whom were homozygotes patients with FMF for evidence, signs, or criteria suggesting a diagnosis of (Table 3). Most of the patients who had the M694V muta- BD. We then interviewed and examined all FMF patients over the age of 18 (152 patients). Again we looked specifically for any clue suggesting BD tion were Jews of North-African origin. Two patients from (including oral or genital ulcers, vascular, gastrointestinal, ophthalmic, this cohort were homozygous for the V726A and E148Q nervous system involvement, or pathergy phenomenon). We chose this age mutations, and they were symptomatic. They displayed group for several reasons: first, the onset of BD typically occurs during the FMF manifestations, including episodic peritonitis with third or fourth decade of life. Thus by including patients 5–10 years younger, we decrease the chances of overlooking those who have concomi- fever and arthritis. None of the remaining 14 BD patients tant BD with earlier than usual age of onset. Second, we wanted to inter- with a single MEFV mutation had any FMF manifestation view the patients personally and to get clear clinical information from them such as short episodes of fever, polyserositis, or erysipelas- rather than hearing the medical history of younger patients from their like skin lesion. The carrier rate in this BD population was parents. Third, the prevalence of BD among children in Israel is relatively 1:3.2 (16/53). In this study 2 patients out of 53 had BD and low. Therefore, it seems very unlikely that we would overlook BD in patients younger than 18. FMF (symptomatic homozygotes) concomitantly. To assess Concomitantly, all the 53 patients with BD were interviewed and a ques- the effect of the presence of FMF mutations on BD severity tionnaire concerning their demographic background and clinical manifesta- we compared 2 groups. Group 1 consisted of 16 BD patients tions was completed.
Recommended publications
  • Paediatric Rheumatology Are MEFV Mutations Susceptibility Factors In
    Paediatric rheumatology Are MEFV mutations susceptibility factors in enthesitis-related arthritis patients in the eastern Mediterranean? B. Gülhan1, A. Akkuş1, L. Özçakar2, N. Beşbaş1, S. Özen1 1Department of Paediatric Nephrology ABSTRACT ILAR, with an aim to also cover the and Rheumatology, and Objective. Enthesitis-related arthritis previously suggested terms of juvenile 2 Department of Physical and Rehabilitation, (ERA), is a complex genetic disease. spondyloarthropathy and seronegative Hacettepe University Faculty of Medicine, Although HLA-B27 is well established, enthesitis arthritis syndrome (1, 2). The Ankara, Turkey. it does not explain all the genetic load etiopathogenesis of ERA is not certain Bora Gülhan, MD in ERA. Familial Mediterranean fe- however, it is a complex genetic disease Abdulkadir Akkuş, MD Levent Özçakar, MD ver (FMF), caused by mutations in the like the other subtypes of JIA. Genetic Nesrin Beşbaş, MD MEFV gene, is a frequent autoinflam- predisposition has a significant impact Seza Özen, MD matory disorder in the eastern Medi- on ERA, where common single nucleo- Please address correspondence to: terranenan. tide polymorphisms in multiple genes Prof. Seza Özen, Methods. We investigated the clini- are contributory as well, with real but Department of Paediatrics, cal and imaging features of 53 ERA variable environmental components. Faculty of Medicine, patients, as well as the frequency of HLA-B27 accounts for the major Hacettepe University, MEFV gene mutations in those who genetic load and is positive in approxi- 06100 Sıhhiye, Ankara, Turkey. were HLA-B27 negative. E-mail: [email protected] mately 90% of the patients with juve- Results. The mean age of the patients nile ankylosing spondylitis (AS) (3).
    [Show full text]
  • Influence of Serum Amyloid a (SAA1) And
    Influence of Serum Amyloid A (SAA1) and SAA2 Gene Polymorphisms on Renal Amyloidosis, and on SAA/ C-Reactive Protein Values in Patients with Familial Mediterranean Fever in the Turkish Population AYSIN BAKKALOGLU, ALI DUZOVA, SEZA OZEN, BANU BALCI, NESRIN BESBAS, REZAN TOPALOGLU, FATIH OZALTIN, and ENGIN YILMAZ ABSTRACT. Objective. To evaluate the effect of serum amyloid A (SAA) 1 and SAA2 gene polymorphisms on SAA levels and renal amyloidosis in Turkish patients with familial Mediterranean fever (FMF). Methods. SAA1 and SAA2 gene polymorphisms and SAA levels were determined in 74 patients with FMF (39 female, 35 male; median age 11.5 yrs, range 1.0–23.0). All patients were on colchicine therapy. SAA1 and SAA2 gene polymorphisms were analyzed using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). SAA and C-reactive protein (CRP) values were measured and SAA/CRP values were calculated. Results. The median SAA level was 75 ng/ml (range 10.2–1500). SAA1 gene polymorphisms were: α/α genotype in 23 patients (31.1%), α/ß genotype in 30 patients (40.5%), α/γ genotype in one patient (1.4 %), ß/ß genotype in 14 patients (18.9%), ß/γ genotype in 5 patients (6.8 %), and γ/γ geno- type in one patient (1.4%). Of the 23 patients who had α/α genotype for the SAA1 polymorphism, 7 patients had developed renal amyloidosis (30.4%) compared to only one patient without this geno- type (1/51; 2.0%); p < 0.001. SAA2 had no effect on renal amyloidosis. SAA1 and SAA2 genotypes had no significant effect on SAA levels.
    [Show full text]
  • Spectrum of MEFV Variants and Genotypes Among Clinically Diagnosed FMF Patients from Southern Lebanon
    medical sciences Article Spectrum of MEFV Variants and Genotypes among Clinically Diagnosed FMF Patients from Southern Lebanon 1, 1, 1 2 1, Ali El Roz y , Ghassan Ghssein y, Batoul Khalaf , Taher Fardoun and José-Noel Ibrahim * 1 Faculty of Public Health, Lebanese German University (LGU), Sahel Alma 25136, Lebanon; [email protected] (A.E.R.); [email protected] (G.G.); [email protected] (B.K.) 2 Mashrek Medical Diagnostic Center, Tyre 62111, Lebanon; [email protected] * Correspondence: [email protected]; Tel.: +961-70-68-31-79 These authors contributed equally to this work. y Received: 30 May 2020; Accepted: 23 July 2020; Published: 17 August 2020 Abstract: Background: Familial Mediterranean Fever (FMF) is an autosomal recessive auto-inflammatory disease characterized by pathogenic variants in the MEFV gene, with allele frequencies greatly varying between countries, populations and ethnic groups. Materials and methods: In order to analyze the spectrum of MEFV variants and genotypes among clinically diagnosed FMF patients from South Lebanon, data were collected from 332 participants and 23 MEFV variants were screened using a Real-Time PCR Kit. Results: The mean age at symptom onset was 17.31 13.82 years. The most prevalent symptoms were abdominal pain, fever and myalgia. ± MEFV molecular analysis showed that 111 patients (63.79%) were heterozygous, 16 (9.20%) were homozygous, and 47 (27.01%) carried two variants or more. E148Q was the most encountered variant among heterozygous subjects. E148Q/M694V was the most frequent in the compound heterozygous/complex genotype group, while M694I was the most common among homozygous patients.
    [Show full text]
  • MEFV Gene, Full Gene Analysis Autoinflammatory Primary Immunodeficiency
    TEST OBSOLETE Notification Date: May 13, 2019 Effective Date: June 13, 2019 MEFV Gene, Full Gene Analysis Test ID: MEFVZ Explanation: Due to low clinical utility, this test will become obsolete on June 13, 2019. Single gene testing for periodic fevers is not clinically useful given the overlap in phenotype for different conditions; therefore, a panel test is more appropriate. Recommended Alternative Test: Autoinflammatory Primary Immunodeficiency (PID) Gene Panel Test ID: AUTOP Useful for: • Providing a comprehensive genetic evaluation for patients with a personal or family history suggestive of autoinflammatory syndromes and related disorders • Establishing a diagnosis of autoinflammatory disease, and in some cases guiding management and allowing for surveillance of disease features • Identification of pathogenic variants within genes known to be associated with autoinflammatory disorders allowing for predictive testing of at-risk family members Genes Included: This test uses next-generation sequencing to test for variants in the CARD14, IL10RA, IL10RB, IL1RN, IL36RN, ISG15, LPIN2, MEFV, MVK, NLRP12, NLRP3 (CIAS1), NOD2 (CARD15), PLCG2, PSMB8, PSTPIP1 (CD2BP1), RBCK1 (HOIL1), SH3BP2, and TNFRSF1A genes. Reflex Tests: Test ID Reporting Name Available Separately Always Performed FIBR Fibroblast Culture Yes No CRYOB Cryopreserve for Biochem Studies No No Testing Algorithm: For skin biopsy or cultured fibroblast specimens, fibroblast culture and cryopreservation testing will be performed at an additional charge. If viable cells are not obtained, the client will be notified. Methodology: Custom Sequence Capture and Targeted Next-Generation Sequencing followed by Polymerase Chain Reaction (PCR) and Supplemental Sanger Sequencing © Mayo Foundation for Medical Education and Research. All rights reserved. 1 of 3 Specimen Requirements: Submit only 1 of the following specimens: Peripheral blood Cultured Whole Blood mononuclear Skin biopsy Blood spot DNA Fibroblasts cells (PBMCs) Sterile container with any standard cell culture media.
    [Show full text]
  • Developing Caspase-1 Biosensors to Monitor Inflammation in Vitro and in Vivo
    Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 2020 Developing Caspase-1 Biosensors to Monitor Inflammation in Vitro and in Vivo Sarah Talley Follow this and additional works at: https://ecommons.luc.edu/luc_diss Part of the Immunology and Infectious Disease Commons Recommended Citation Talley, Sarah, "Developing Caspase-1 Biosensors to Monitor Inflammation in Vitro and in Vivo" (2020). Dissertations. 3827. https://ecommons.luc.edu/luc_diss/3827 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 2020 Sarah Talley LOYOLA UNIVERSITY CHICAGO DEVELOPING CASPASE-1 BIOSENSORS TO MONITOR INFLAMMATION IN VITRO AND IN VIVO A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY PROGRAM IN INTEGRATIVE CELL BIOLOGY BY SARAH TALLEY CHICAGO, IL AUGUST 2020 TABLE OF CONTENTS LIST OF FIGURES v CHAPTER ONE: INTRODUCTION 1 CHAPTER TWO: REVIEW OF THE LITERATURE 5 Overview 5 Structure of Inflammasomes 6 Function of Inflammasomes 8 NLRP1 8 NLRP3 14 NLRC4 21 AIM2 24 PYRIN 28 Noncanonical Inflammasome Activation and Pyroptosis 31 Inflammatory Caspases 36 Caspase-1 36 Other Inflammatory Caspases 40 Biosensors and Novel Tools to Monitor
    [Show full text]
  • Diagnostic Utility of a Targeted Next-Generation Sequencing Gene Panel in the Clinical Suspicion of Systemic Autoinflammatory Diseases: a Multi-Center Study
    Rheumatology International (2019) 39:911–919 Rheumatology https://doi.org/10.1007/s00296-019-04252-5 INTERNATIONAL GENES AND DISEASE Diagnostic utility of a targeted next-generation sequencing gene panel in the clinical suspicion of systemic autoinflammatory diseases: a multi-center study İlker Karacan1,2 · Ayşe Balamir1 · Serdal Uğurlu3 · Aslı Kireçtepe Aydın1 · Elif Everest1 · Seyit Zor1 · Merve Özkılınç Önen1 · Selçuk Daşdemir4 · Ozan Özkaya5 · Betül Sözeri6 · Abdurrahman Tufan7 · Deniz Gezgin Yıldırım8 · Selçuk Yüksel9 · Nuray Aktay Ayaz10 · Rukiye Eker Ömeroğlu11 · Kübra Öztürk12 · Mustafa Çakan10 · Oğuz Söylemezoğlu13 · Sezgin Şahin14 · Kenan Barut14 · Amra Adroviç14 · Emire Seyahi3 · Huri Özdoğan3 · Özgür Kasapçopur14 · Eda Tahir Turanlı1,2 Received: 21 December 2018 / Accepted: 10 February 2019 / Published online: 19 February 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Systemic autoinflammatory diseases (sAIDs) are a heterogeneous group of disorders, having monogenic inherited forms with overlapping clinical manifestations. More than half of patients do not carry any pathogenic variant in formerly associated disease genes. Here, we report a cross-sectional study on targeted Next-Generation Sequencing (NGS) screening in patients with suspected sAIDs to determine the diagnostic utility of genetic screening. Fifteen autoinflammation/immune-related genes (ADA2-CARD14-IL10RA-LPIN2-MEFV-MVK-NLRC4-NLRP12-NLRP3-NOD2-PLCG2-PSTPIP1-SLC29A3-TMEM173- TNFRSF1A) were used to screen 196 subjects from adult/pediatric clinics, each with an initial clinical suspicion of one or more sAID diagnosis with the exclusion of typical familial Mediterranean fever (FMF) patients. Following the genetic screening, 140 patients (71.4%) were clinically followed-up and re-evaluated. Fifty rare variants in 41 patients (20.9%) were classified as pathogenic or likely pathogenic and 32 of those variants were located on the MEFV gene.
    [Show full text]
  • MEFV Gene MEFV, Pyrin Innate Immunity Regulator
    MEFV gene MEFV, pyrin innate immunity regulator Normal Function The MEFV gene provides instructions for making a protein called pyrin (also known as marenostrin). Although pyrin's function is not fully understood, it likely assists in keeping the inflammation process under control. Inflammation occurs when the immune system sends signaling molecules and white blood cells to a site of injury or disease to fight microbial invaders and facilitate tissue repair. When this has been accomplished, the body stops the inflammatory response to prevent damage to its own cells and tissues. Pyrin is produced in certain white blood cells (neutrophils, eosinophils, and monocytes) that play a role in inflammation and in fighting infection. Pyrin may direct the migration of white blood cells to sites of inflammation and stop or slow the inflammatory response when it is no longer needed. Pyrin also interacts with other molecules to assemble themselves into structures called inflammasomes, which are involved in the process of inflammation. Research indicates that pyrin helps regulate inflammation by interacting with the cytoskeleton, the structural framework that helps to define the shape, size, and movement of a cell. Health Conditions Related to Genetic Changes Familial Mediterranean fever More than 80 MEFV gene variants (also known as mutations) have been found to cause familial Mediterranean fever. A few variants delete small amounts of DNA from the MEFV gene, which can lead to an abnormally small, nonfunctional protein. Most MEFV gene variants, however, change one of the protein building blocks (amino acids) used to make pyrin. The most common variant replaces the amino acid methionine with the amino acid valine at protein position 694 (written as Met694Val or M694V).
    [Show full text]
  • Elucidation of the Functional Consequences of NLRP7 Mutations
    Elucidation of the functional consequences of NLRP7 mutations By: Ebtihaj Bukhari Department of Human Genetics McGill University, Montreal July 2009 A thesis submitted to McGill University in partial fulfillment of the requirement of the Master of Science degree in Human Genetics © Ebtihaj Bukhari, 2009 TABLE OF CONTENTS ABSTRACT............................................................................................................................... 4 RÉSUMÉ ................................................................................................................................... 5 LIST OF ABBREVIATIONS .................................................................................................. 6 LIST OF FIGURES AND TABLES ....................................................................................... 7 ACKNOWLEDGEMENTS ..................................................................................................... 8 CHAPTER 1.............................................................................................................................. 9 1.1 Introduction and Clinical Manifestations of Hydatidiform Moles .............................. 9 1.1.2 Epidemiology of Hydatidiform Moles....................................................................... 10 1.1.3 Karyotype and Genotype of Moles............................................................................ 11 1.1.4 Imprinting and DNA Methylation in Moles .............................................................. 12 1.2 Identification
    [Show full text]
  • Familial Mediterranean Fever (MEFV) Indications for Ordering Age of Onset – Generally Childhood, Rare Onset After Age 30
    Familial Mediterranean Fever (MEFV) Indications for Ordering Age of onset – generally childhood, rare onset after age 30 • To confirm a diagnosis of familial Mediterranean fever Symptoms/diagnostic criteria (FMF) in a symptomatic individual Fever plus at least one major symptom AND one minor • Diagnostic or carrier testing in individuals with a family symptom history of FMF • Major symptoms • Carrier testing for the reproductive partner of an o Abdominal pain individual who is a carrier of, or affected with, FMF . Sudden onset of diffuse pain • To guide appropriate drug therapy (response to colchicine . Occurs in 90-95% of FMF individuals therapy differs for some pathogenic variants) o Chest pain o Joint pain Test Description o Skin eruption o Amyloidosis Bidirectional sequencing of the entire MEFV coding region . Most severe complication and intron/exon boundaries . Leads to end-stage renal disease Tests to Consider • Minor symptoms o Increased ESR Primary test o Leukocytosis Familial Mediterranean Fever (MEFV) Sequencing 2002658 o Elevated serum fibrinogen • Preferred test for suspected FMF Genetics Related tests Initial testing for minor criteria Gene – MEFV • Sedimentation Rate, Westergren (ESR) 0040325 Inheritance – mostly autosomal recessive • Fibrinogen 0030130 • Most affected individuals have two MEFV pathogenic • White Blood Cell Count 0040320 variants Periodic Fever Syndromes Panel, Sequencing and • Some activating variants can cause FMF in a heterozygous Deletion/Duplication 2007370 individual, appearing autosomal dominant
    [Show full text]
  • Periodic Fever Syndromes Panel, Sequencing and Deletion/Duplication
    Periodic Fever Syndromes Panel, Sequencing and Deletion/Duplication Periodic fever syndromes are a varied group of autoinflammatory disorders characterized by recurrent episodes of fever that lack an infectious cause. They include familial Mediterranean fever (FMF), cyclic neutropenia, tumor necrosis factor Tests to Consider receptor associated periodic syndrome (TRAPS), Muckle-Wells syndrome, and Hyper- IgD syndrome (HIDS). Genetic testing can confirm diagnosis or be used to determine Periodic Fever Syndromes Panel, whether individuals with a family history of a periodic fever syndrome may be carriers. Sequencing and Deletion/Duplication 2007370 Method: Massively Parallel Sequencing/Exonic Oligonucleotide-based CGH Microarray Disease Overview Preferred test to confirm a diagnosis of a For specific disease descriptions, refer to the Genes Tested table. periodic fever syndrome. Attacks often begin with a prodromal phase. Predictive diagnostic or carrier testing in individuals with a family history of a Symptoms – fatigue, malaise, headache periodic fever syndrome. Inflammatory symptoms follow prodromal phase. Symptoms – fever, pain, rash Familial Mediterranean Fever (MEFV) Symptoms usually resolve spontaneously. Sequencing 2002658 Individuals are generally asymptomatic between attacks. Method: Polymerase Chain Reaction/Sequencing In some severe cases, inflammatory symptoms may not completely resolve between attacks. Preferred test when clinical symptoms are Depending on specific syndrome, symptoms may be triggered by: suspicious for FMF. Exposure to cold Familial Mutation, Targeted Sequencing Trauma 2001961 Method: Polymerase Chain Indications for Ordering Reaction/Sequencing Confirm diagnosis of a periodic fever syndrome in a symptomatic individual Recommended test for a known familial sequence variant previously identified in a Diagnostic or carrier testing in individuals with a family history of a periodic fever family member.
    [Show full text]
  • Another Disease Associated with MEFV Gene Mutations P.O
    Paediatric rheumatology Chronic non-bacterial osteomyelitis: another disease associated with MEFV gene mutations P.O. Avar-Aydin1, Z.B. Ozcakar1, N. Cakar1, S. Fitoz2, F. Yalcinkaya1 1Department of Paediatric Rheumatology, ABSTRACT Introduction 2Department of Paediatric Radiology, Objective. Chronic non-bacterial os- Chronic non-bacterial osteomyelitis Ankara University Faculty of Medicine, teomyelitis (CNO) is an autoinflamma- (CNO) is an autoinflammatory bone Ankara, Turkey. tory bone disease of unknown aetiolo- disease primarily of children and young Pinar Ozge Avar-Aydin, MD, MBA gy. The relationship between CNO and adults and it is characterised by sterile Zeynep Birsin Ozcakar, MD familial Mediterranean fever (FMF) inflammatory bone lesions. Its multifo- Nilgun Cakar, MD Suat Fitoz, MD is not clearly documented so far. This cal form with frequent relapses is called Fatos Yalcinkaya, MD cross-sectional study aims to evaluate chronic recurrent multifocal osteomy- Please address correspondence: the clinical and laboratory character- elitis (CRMO (1)). The aetiology of the Pinar Ozge Avar-Aydin, istics of a cohort of CNO patients with- disease is still not clear; however, some Department of Paediatric Rheumatology, in the context of its relationship with susceptibility genes and dysregulation Ankara University Faculty of Medicine, FMF and MEFV gene mutations. in the innate immune system have been 06000 Ankara, Turkey. Methods. Demographic and clinical shown (2-4). Persistent or relapsing E-mail: [email protected] data were extracted from electronic and remitting focal bone pain, absence Received on September 23, 2020; accepted medical records of patients with CNO. of constitutional symptoms, multifocal in revised form on November 12, 2020. The MEFV gene analysis was per- bone lesions on imaging with typical Clin Exp Rheumatol 2020; 38 (Suppl.
    [Show full text]
  • Familial Mediterranean Fever
    Familial Mediterranean Fever This test identifies that common mutations associated with Familial Mediterranean Fever (FMF) from DNA isolated from blood specimens. Testing Method and Background The FMF Strip Assay Vienna Lab) covers 12 MEFV mutations. Confirmation of homozygous and compound heterozygous mutations identified by the FMF Strip Assay is performed by restriction fragment length polymorphism (RFLP) or by or sequencing, as appropriate. Familial Mediterranean Fever (FMF) is an autosomal recessive genetic disorder, caused by mutations in the MEFV gene on chromosome 16, characterized by recurrent episodes of fever and inflammation lasting from 1-3 days with intervals between attacks varying from days to months. Most patients will experience some form of abdominal symptoms, and many have pleural attacks. Arthralgias, myalgia and arthritis are common. Attacks may be accompanied by a skin rash. The most serious complication of FMF is the development of amyloidosis, which may affect several organs, particularly the kidney, leading to end-stage renal failure. Symptoms of FMF usually present in childhood, before age 10 in the majority of patients. The disease primarily affects populations of Mediterranean origin. Highlights of Familial Mediterranean Fever Testing Targeted Region MEFV: Genotyping 12 common mutations Accounts for > 90% of MEFV mutations associated with FMF Identifies common mutations in the MEFV gene on chromosome 16. Ordering Information Get started (non-HFHS): Print a Molecular Hematologic Testing requisition form online at www.HenryFord.com/HFCPD Get started (HFHS): Order through Epic using test "FMF" (DNpA2100004) Specimen requirements: Peripheral Blood - 1-3ml in lavender top tube (EDTA) Specimen stability: Ambient - 72 hours; Refrigerated - 1 week Extracted DNA - from a CLIA-certified Laboratory Cause for Rejection: Clotted, hemolyzed, or frozen specimens, improper anticoagulant, tubes not labeled with dual patient identification, non-dedicated tubes.
    [Show full text]