Jimmunol.1701048.Full.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Jimmunol.1701048.Full.Pdf Cyclic GMP−AMP Synthase Is the Cytosolic Sensor of Plasmodium falciparum Genomic DNA and Activates Type I IFN in Malaria This information is current as Carolina Gallego-Marin, Jacob E. Schrum, Warrison A. of September 29, 2021. Andrade, Scott A. Shaffer, Lina F. Giraldo, Alvaro M. Lasso, Evelyn A. Kurt-Jones, Katherine A. Fitzgerald and Douglas T. Golenbock J Immunol published online 6 December 2017 http://www.jimmunol.org/content/early/2017/12/20/jimmun Downloaded from ol.1701048 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 29, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published December 27, 2017, doi:10.4049/jimmunol.1701048 The Journal of Immunology Cyclic GMP–AMP Synthase Is the Cytosolic Sensor of Plasmodium falciparum Genomic DNA and Activates Type I IFN in Malaria Carolina Gallego-Marin,*,†,1 Jacob E. Schrum,*,1 Warrison A. Andrade,* Scott A. Shaffer,‡,x Lina F. Giraldo,† Alvaro M. Lasso,† Evelyn A. Kurt-Jones,* Katherine A. Fitzgerald,*,2 and Douglas T. Golenbock*,2 Innate immune receptors have a key role in the sensing of malaria and initiating immune responses. As a consequence of infection, systemic inflammation emerges and is directly related to signs and symptoms during acute disease. We have previously reported that plasmodial DNA is the primary driver of systemic inflammation in malaria, both within the phagolysosome and in the cytosol of effector cells. In this article, we demonstrate that Plasmodium falciparum genomic DNA delivered to the cytosol of human Downloaded from monocytes binds and activates cyclic GMP–AMP synthase (cGAS). Activated cGAS synthesizes 2939-cGAMP, which we subse- quently can detect using liquid chromatography–tandem mass spectrometry. 2939-cGAMP acts as a second messenger for STING activation and triggers TBK1/IRF3 activation, resulting in type I IFN production in human cells. This induction of type I IFN was independent of IFI16. Access of DNA to the cytosolic compartment is mediated by hemozoin, because incubation of purified malaria pigment with DNase abrogated IFN-b induction. Collectively, these observations implicate cGAS as an important cytosolic sensor of P. falciparum genomic DNA and reveal the role of the cGAS/STING pathway in the induction of type I IFN http://www.jimmunol.org/ in response to malaria parasites. The Journal of Immunology, 2018, 200: 000–000. alaria remains a major cause of morbidity and mortality disease, the problems associated with malaria eradication remain worldwide. The World Health Organization has esti- significant. These include the increasing resistance of insect vec- M mated that there were ∼212 million cases of malaria tors to insecticides and the emerging resistance of Plasmodium globally in 2016 and ∼429,000 deaths, primarily (∼70%) occurring to the most efficacious antimalarial drugs (2). Current evidence in children under age 5 y (1). Despite many gains against the indicates that drug resistance to artemisinin derivatives, the last- generation treatment for asexual blood-stage infection, has de- by guest on September 29, 2021 veloped in Southeast Asia and Africa (3–5). Despite these *Program in Innate Immunity, Division of Infectious Diseases and Immunology, setbacks, efforts continue with the objective of achieving the Department of Medicine, University of Massachusetts Medical School, Worcester, global elimination of malaria. MA 01605; †Centro Internacional de Entrenamiento e Investigaciones Medicas, Cali 760001, Colombia; ‡Proteomics and Mass Spectrometry Facility, University Our understanding of the pathogenesis of malaria is still limited (6). of Massachusetts Medical School, Shrewsbury, MA 01545; and xDepartment of Therefore, a top priority in basic research is to dissect the mecha- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical nisms involved in malaria disease development and provide new School, Worcester, MA 01605 approaches for therapeutic and prophylactic interventions. An im- 1 C.G.-M. and J.E.S. contributed equally to this work. portant component of the pathogenesis of malaria is the host innate 2 K.A.F. and D.T.G. contributed equally to this work. immune response to the parasite. The activation of innate immune ORCIDs: 0000-0001-7018-830X (C.G.-M.); 0000-0002-5264-3257 (S.A.S.); 0000-0002- cells and the associated systemic inflammationleadtotheinitial 3558-7249 (L.F.G.); 0000-0002-1230-6707 (A.M.L); 0000-0003-4669-2084 (E.A.K.-J.); 0000-0002-2447-2358 (D.T.G.). signs and symptoms of disease and can influence the development of Received for publication July 20, 2017. Accepted for publication November 6, 2017. severe disease (7). Inflammatory mediators during malaria infection are produced as a result of direct recognition of plasmodial pathogen- This work was supported by National Institute of Allergy and Infectious Dis- eases Grants R21AI124171 (to E.A.K.-J., D.T.G., and C.G.-M.) and associated molecular patterns (PAMPs) by innate immune receptors, R01AI079293 (to K.A.F. and D.T.G.). A.M.L. and L.F.G. were supported by including TLRs (7), Nod-like receptors (NLRs), and nucleic acid Departamento de Ciencia y Tecnologia – Colciencias Grants 0234-2014 and 0552-2015 (to C.G.-M.) and by National Institutes of Health/Fogarty International sensors (8). Concomitant with TLR activation, expression of sensor Center Training Grant D43TW006589. proteins, including NLRs, is augmented, and NLR inflammasomes Address correspondence and reprint requests to Dr. Douglas T. Golenbock, Univer- are assembled. Proinflammatory cytokines and mediators like TNF-a, sity of Massachusetts Medical School, LRB, Room 328, 364 Plantation Street, IL-12, caspase-1, and IL-1b are then released (9). Elevated expres- Worcester, MA 01605. E-mail address: [email protected] sion of IFN-stimulated genes in innate immune cells is also charac- Abbreviations used in this article: AT-rich ODN, adenine thymine–rich oligodeoxy- teristic during Plasmodium infection (8, 10). nucleotide; BMDM, bone marrow–derived macrophage; cGAMP, cyclic GMP–AMP; cGAS, cyclic GMP–AMP synthase; gDNA, genomic DNA; Hz, hemozoin; IFI16, The recognition of microbial DNA by the immune system IFN-g–inducible protein 16; iRBC, infected RBC; IRF, IFN regulatory factor; ISD, provides a general mechanism for the detection of pathogens immunostimulatory DNA; KO, knockout; LC-MS/MS, liquid chromatography– tandem mass spectrometry; MDM, monocyte-derived macrophage; NLR, Nod-like (11, 12). Delivery of foreign or self-DNA into the cytoplasm receptor; PAMP, pathogen-associated molecular pattern; p(dA:dT), poly(deoxyadenylic- (which is largely free of self-DNA) through microbial infection deoxythymidylic) acid; SeV, Sendai virus; STING, stimulator of IFN genes; TBK1, activates innate cytosolic nucleic acid sensors (13). Plasmodial tank-binding kinase 1; uRBC, uninfected RBC; WT, wild-type. DNA represents a major trigger of innate immunity during Copyright Ó 2017 by The American Association of Immunologists, Inc. 0022-1767/17/$35.00 infection (7, 8, 14). The plasmodial genome contains highly www.jimmunol.org/cgi/doi/10.4049/jimmunol.1701048 2 cGAS IS THE CYTOSOLIC SENSOR OF P. FALCIPARUM DNA stimulatory CpG motifs, which are thought to activate TLR9 when extracted with phenol/chloroform/isoamyl alcohol and centrifuged at carried into the phagolysosomal compartment by the malaria 10,000 3 g for 10 min. The parasite DNA was precipitated overnight with 2 pigment hemozoin (Hz) (15–17). However, CpG-rich motifs are NaOAc and absolute ethanol at 80˚C, washed with 70% ethanol, and suspended in nuclease- and endotoxin-free water. The DNA concentration relatively rare in Plasmodium falciparum. In contrast, AT-rich was estimated by measuring absorption at 260 nm, and P. falciparum DNA motifs are abundant and induce type I IFN via a pathway gDNA was stored at 220˚C. The purity of P. falciparum gDNA was that is independent of TLRs, DNA-dependent activator of IFN- confirmed by PCR using primers for Plasmodium 18S RNA, as described regulatory factors, RNA polymerase III, and IFN-g–inducible pro- previously (29), and human TLR7 genes. tein 16 (IFI16/p204) but dependent on stimulator of IFN genes Cell culture and stimulation (STING) (18, 19), tank-binding kinase 1 (TBK1) (20, 21), and IFN PBMCs from healthy donors were obtained, as described previously, using regulatory factor (IRF)3 and IRF7 (8, 22). + Ficoll gradient separation (10). Human primary CD14 monocytes were The enzyme cyclic GMP–AMP synthase (cGAS) has been iden- purified from PBMCs using the Pan Monocyte Isolation Kit (Miltenyi tified as a cytosolic DNA sensor whose activation results in the Biotec) and MACS, according to the manufacturer’s instructions. subsequent activation of STING (23, 24). Specifically, in the presence Monocyte-derived macrophages (MDMs) were obtained by adherence and + of cytosolic dsDNA, cGAS catalyzes the synthesis of 2939–cyclic differentiation of CD14 monocytes in RPMI 1640–10% FBS medium for 7 d. Human promonocyte THP-1 cells (wild-type [WT], cGAS+/+, GMP–AMP (cGAMP) from ATP and GTP. 2939-cGAMP then cGAS2/2, IFI16+/+, and IFI162/2) were generated as previously described functions as a second messenger that binds to and activates STING. (30). WT and knockout (KO) THP-1 cells were grown in RPMI 1640/ Activated STING leads to IRF3 phosphorylation, type I IFN pro- glutamine supplemented with 10% FBS. Primary bone marrow–derived 2/2 2/2 duction, and expression of IFN-stimulated genes (12, 25).
Recommended publications
  • Intracellular Penetration and Effects of Antibiotics On
    antibiotics Review Intracellular Penetration and Effects of Antibiotics on Staphylococcus aureus Inside Human Neutrophils: A Comprehensive Review Suzanne Bongers 1 , Pien Hellebrekers 1,2 , Luke P.H. Leenen 1, Leo Koenderman 2,3 and Falco Hietbrink 1,* 1 Department of Surgery, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; [email protected] (S.B.); [email protected] (P.H.); [email protected] (L.P.H.L.) 2 Laboratory of Translational Immunology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; [email protected] 3 Department of Pulmonology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands * Correspondence: [email protected] Received: 6 April 2019; Accepted: 2 May 2019; Published: 4 May 2019 Abstract: Neutrophils are important assets in defense against invading bacteria like staphylococci. However, (dysfunctioning) neutrophils can also serve as reservoir for pathogens that are able to survive inside the cellular environment. Staphylococcus aureus is a notorious facultative intracellular pathogen. Most vulnerable for neutrophil dysfunction and intracellular infection are immune-deficient patients or, as has recently been described, severely injured patients. These dysfunctional neutrophils can become hide-out spots or “Trojan horses” for S. aureus. This location offers protection to bacteria from most antibiotics and allows transportation of bacteria throughout the body inside moving neutrophils. When neutrophils die, these bacteria are released at different locations. In this review, we therefore focus on the capacity of several groups of antibiotics to enter human neutrophils, kill intracellular S. aureus and affect neutrophil function. We provide an overview of intracellular capacity of available antibiotics to aid in clinical decision making.
    [Show full text]
  • Characterisation of Aspergillus Fumigatus Endocytic Trafficking Within Airway Epithelial Cells Using High-Resolution Automated Q
    Journal of Fungi Article Characterisation of Aspergillus fumigatus Endocytic Trafficking within Airway Epithelial Cells Using High-Resolution Automated Quantitative Confocal Microscopy Nagwa Ben-Ghazzi 1,2, Sergio Moreno-Velásquez 1,3, Constanze Seidel 1, Darren Thomson 1 , David W. Denning 1, Nick D. Read 1,†, Paul Bowyer 1,* and Sara Gago 1,* 1 Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, 2nd Floor, 46 Grafton Street, Manchester M13 9NT, UK; [email protected] (N.B.-G.); [email protected] (S.M.-V.); [email protected] (C.S.); [email protected] (D.T.); [email protected] (D.W.D.); [email protected] (N.D.R.) 2 Faculty of Medical Technology-Benghazi, National Board for Technical & Vocational Education, Libyan Ministry of Higher Education and Scientific Research, Al-Salmani, Benghazi 17091, Libya 3 Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany * Correspondence: [email protected] (P.B.); [email protected] (S.G.) † Deceased. Citation: Ben-Ghazzi, N.; Abstract: The precise characterization of the mechanisms modulating Aspergillus fumigatus survival Moreno-Velásquez, S.; Seidel, C.; within airway epithelial cells has been impaired by the lack of live-cell imaging technologies and Thomson, D.; Denning, D.W.; Read, user-friendly quantification approaches. Here we described the use of an automated image analysis N.D.; Bowyer, P.; Gago, S. pipeline to estimate the proportion of A. fumigatus spores taken up by airway epithelial cells, those Characterisation of Aspergillus contained within phagolysosomes or acidified phagosomes, along with the fungal factors contributing fumigatus Endocytic Trafficking to these processes.
    [Show full text]
  • Download Download
    2724 Indian Journal of Forensic Medicine & Toxicology, July-September 2021, Vol. 15, No. 3 The Dynamics of Macrophage Function in Reparation of Natural Immune System in Tuberculosis Disease Christina Destri1, Jusak Nugraha2, Muhammad Amin3, Djoko Agus Purwanto4 1 Doctoral Student. Doctoral Program of Medical Science, Faculty of Medicine, Airlangga University, Indonesia, 2Professsor, Department of Clinical Patology, Faculty of Medicine, Airlangga University, Indonesia, 3Professsor, Department of Internal Medicine, Faculty of Medicine, Airlangga University, Indonesia, 4Professsor, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, Indonesia Abstract Macrophages related with pathogen was involved the ability of Mycobacterium tuberculosis (Mtb) to developing mechanisms to prevent macrophage attacks and the aim of this study was to find the relationship between specific role of macrophages in natural immune system in tuberculosis (TB) disease. The research design of this study used literature reviews from various journals and it was accessed in Google Scholar and various medical science websites who bublessed less than 10 years. Localization of mycobacteria in granulomas form and activation of macrophages ability to kill and eliminate pathogens also the movement of M1 to M2 polarization as an important part for the host to prevent widespread tissue damage. However, the loss of the immune system suppression by M1 and Th1 molecules will give benefit to fertility development of Mtb in the environment of immunity M2 / Th2. The results of this study showed that the dynamics of macrophages in tuberculosis disease is a balance of Mtb’s ability to escape from the immune system. The effectiveness of anti-TB treatment repair the immune system and eliminate Mtb.
    [Show full text]
  • The Roles of Host Lipids in the Clearance of Pathogenic Fungi
    Journal of Fungi Review The Squeaky Yeast Gets Greased: The Roles of Host Lipids in the Clearance of Pathogenic Fungi Gaelen Guzman 1, Patrick Niekamp 1,2 and Fikadu Geta Tafesse 1,* 1 Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA; [email protected] (G.G.); [email protected] (P.N.) 2 Biology & Chemistry Department, University of Osnabrück, Fachbereich Biologie/Chemie, Barbarastrasse 13, 49076 Osnabrück, Germany * Correspondence: [email protected] Received: 30 December 2019; Accepted: 26 January 2020; Published: 31 January 2020 Abstract: Fungal infections remain a global health threat with high morbidity and mortality. The human immune system must, therefore, perpetually defend against invasive fungal infections. Phagocytosis is critical for the clearance of fungal pathogens, as this cellular process allows select immune cells to internalize and destroy invading fungal cells. While much is known about the protein players that enable phagocytosis, the various roles that lipids play during this fundamental innate immune process are still being illuminated. In this review, we describe recent discoveries that shed new light on the mechanisms by which host lipids enable the phagocytic uptake and clearance of fungal pathogens. Keywords: phagocytosis; phagolysosomal maturation; fungal pathogens; sphingolipids; phosphoniositides 1. Introduction Humans must maintain a balletic coexistence with a variety of environmental fungi, such as Candida albicans, which are ubiquitous in the environment and common commensal members of the human microbiome but are primed for opportunistic pathogenicity. Alongside Candida, the genera Aspergillus and Cryptococcus continuously challenge the human immune system. Resultantly, a host of innate immune mechanisms act in concert to sense and combat fungal infections.
    [Show full text]
  • Investigating Phagosome Dynamics of Microbial Pathogens
    Investigating phagosome dynamics of microbial pathogens By Leanne May Smith A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Biosciences College of Life and Environmental Sciences University of Birmingham September 2014 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Many miCrobial pathogens are able to evade Killing by phagoCytes of the innate immune system. This thesis focuses on two pathogens: the fungal pathogen Cryptococcus neoformans and the bacterial pathogen Streptococcus agalactiae. C. neoformans causes severe cryptocoCCal meningitis in mostly immunoCompromised hosts, suCh as those with HIV infeCtion. In contrast, S. agalactiae is the leading cause of neonatal sepsis and meningitis. The interaCtion between maCrophages and these pathogens is likely to be CritiCal in determining dissemination and outCome of disease in both instanCes. A ColleCtion of S. agalactiae CliniCal isolates, ranging in origin from Colonisation Cases to severe infection cases, were tested for their ability to persist with a maCrophage Cell line. Surprisingly, persistenCe within maCrophages was a charaCteristiC shared by all of the isolates tested. Furthermore, by investigating the Streptococcus-Containing phagosome, it was revealed that streptoCoCCi are able to manipulate the aCidifiCation of maCrophage phagosomes.
    [Show full text]
  • Direct Measurement of Oxidative and Nitrosative Stress Dynamics in Salmonella Inside Macrophages
    Direct measurement of oxidative and nitrosative stress dynamics in Salmonella inside macrophages Joris van der Heijdena,b, Else S. Bosmana, Lisa A. Reynoldsa, and B. Brett Finlaya,b,c,1 aMichael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4; and Departments of bMicrobiology and Immunology, and cBiochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3 Edited by Ralph R. Isberg, Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, MA, and approved December 8, 2014 (received for review July 30, 2014) Many significant bacterial pathogens have evolved virulence mecha- a type III secretion system (T3SS). A specific set of type III nisms to evade degradation and exposure to reactive oxygen (ROS) effectors associated with a Salmonella pathogenicity island (SPI), and reactive nitrogen species (RNS), allowing them to survive and known as SPI-2 effectors, have been implicated in ROS and RNS replicate inside their hosts. Due to the highly reactive and short-lived evasion strategies (5, 6); however, the relationship between SPI-2 nature of ROS and RNS, combined with limitations of conventional and oxidative stress evasion is a contentious topic after a recent detection agents, the mechanisms underlying these evasion strategies study concluded that the contribution of SPI-2 to Salmonella remain poorly understood. In this study, we describe a system that pathogenesis is unrelated to its interaction with oxidative stress uses redox-sensitive GFP to nondisruptively measure real-time fluctu- (7). Inadequate analytic tools for directly measuring ROS/RNS ations in the intrabacterial redox environment. Using this system and rapid fluctuations due to the short-lived nature of ROS/RNS coupled with high-throughput microscopy, we report the intra- have also contributed to poor reproducibility in the studies of bacterial redox dynamics of Salmonella enterica Typhimurium ROS and RNS evasion strategies (1, 8, 9).
    [Show full text]
  • Phagocytosis and Comparative Innate Immunity: Learning on the Fly
    REVIEWS Phagocytosis and comparative innate immunity: learning on the fly Lynda M. Stuart* and R. Alan Ezekowitz § Abstract | Phagocytosis, the engulfment of material by cells, is a highly conserved process that arose before the development of multicellularity. Phagocytes have a key role in embryogenesis and also guard the portals of potential pathogen entry. They discriminate between diverse particles through the array of receptors expressed on their surface. In higher species, arguably the most sophisticated function of phagocytes is the processing and presentation of antigens derived from internalized material to stimulate lymphocytes and long-lived specific immunity. Central to these processes is the generation of a phagosome, the organelle that forms around internalized material. As we discuss in this Review, over the past two decades important insights into phagocytosis have been gleaned from studies in the model organism Drosophila melanogaster. 2,3 Phagocytes Phagocytosis is the process by which particles are recog- stage 11 of embryogenesis is essential for development . Cells such as macrophages and nized, bound to the surface of cells and internalized into a Likewise, in mice, macrophages populate remodelling neutrophils that internalize ‘phagosome’, the organelle that forms around the engulfed tissues early during embryogenesis and remove dying particulate material in an actin- material (FIG. 1). This carefully orchestrated cascade of cells4,5. During pathogen invasion, phagocytosis is also dependent manner. Derived from the greek phagein (to eat) events begins with the engagement of phagocytic receptors the cornerstone of the early innate immune response and 6 and kytos (cell). that activate numerous signalling pathways. These signals host-defence mechanisms of many species .
    [Show full text]
  • Conidial Melanin of the Human Pathogenic Fungus Aspergillus
    bioRxiv preprint doi: https://doi.org/10.1101/730879; this version posted August 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Conidial melanin of the human pathogenic fungus Aspergillus 2 fumigatus disrupts cell autonomous defenses in amoebae 3 4 5 Iuliia Ferling1,2, Joe Dan Dunn3, Alexander Ferling4, Thierry Soldati3, and Falk Hillmann1# 6 7 8 Short title: Fungal pigment delays phagosome maturation in amoebae 9 10 1Junior Research Group Evolution of Microbial Interaction, Leibniz Institute for Natural 11 Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany 12 2 Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany 13 3 Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, 14 Switzerland 15 4 Heid-Tech, Technische Schule Heidenheim, Germany 16 17 #Address correspondence to Falk Hillmann, [email protected] 18 Phone / Fax: +49-3641-532-1445 / +49-3641-532-2445 1 bioRxiv preprint doi: https://doi.org/10.1101/730879; this version posted August 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Abstract 20 The human pathogenic fungus Aspergillus fumigatus is a ubiquitous saprophyte that 21 causes fatal infections in immunocompromised individuals. Following inhalation, conidia 22 are ingested by innate immune cells and can arrest phagolysosome maturation. How 23 such general virulence traits could have been selected for in natural environments is 24 unknown.
    [Show full text]
  • Carbon Metabolism in the Macrophage Leishmania Phagolysosome
    F1000Research 2015, 4(F1000 Faculty Rev):938 Last updated: 02 OCT 2015 REVIEW Leishmania carbon metabolism in the macrophage phagolysosome- feast or famine? [version 1; referees: 3 approved] Malcolm J. McConville, Eleanor C. Saunders, Joachim Kloehn, Michael J. Dagley Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Flemington Rd, Parkville, 3010, Australia First published: 01 Oct 2015, 4(F1000 Faculty Rev):938 (doi: Open Peer Review v1 10.12688/f1000research.6724.1) Latest published: 01 Oct 2015, 4(F1000 Faculty Rev):938 (doi: 10.12688/f1000research.6724.1) Referee Status: Abstract Invited Referees A number of medically important microbial pathogens target and proliferate 1 2 3 within macrophages and other phagocytic cells in their mammalian hosts. While the majority of these pathogens replicate within the host cell cytosol or version 1 non-hydrolytic vacuolar compartments, a few, including protists belonging to published the genus Leishmania, proliferate long-term within mature lysosome 01 Oct 2015 compartments. How these parasites achieve this feat remains poorly defined. In this review, we highlight recent studies that suggest that Leishmania virulence is intimately linked to programmed changes in the growth rate and 1 Syamal Roy, Indian Institute of Chemical carbon metabolism of the obligate intra-macrophage stages. We propose that Biology India activation of a slow growth and a stringent metabolic response confers 2 Marilyn Parsons, Seattle Biomedical resistance to multiple stresses (oxidative, temperature, pH), as well as both nutrient limitation and nutrient excess within this niche. These studies highlight Research Institute USA the importance of metabolic processes as key virulence determinants in 3 Norma Andrews, University of Maryland Leishmania.
    [Show full text]
  • Macrophages Use a Bet-Hedging Strategy for Antimicrobial Activity in Phagolysosomal Acidification
    The Journal of Clinical Investigation RESEARCH ARTICLE Macrophages use a bet-hedging strategy for antimicrobial activity in phagolysosomal acidification Quigly Dragotakes,1 Kaitlin M. Stouffer,1 Man Shun Fu,1 Yehonatan Sella,2 Christine Youn,3 Olivia Insun Yoon,4 Carlos M. De Leon-Rodriguez,1 Joudeh B. Freij,1 Aviv Bergman,2,5 and Arturo Casadevall1 1Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA. 2Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, USA. 3Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA. 4Johns Hopkins University, Krieger School of Arts and Sciences, Baltimore, Maryland, USA. 5Santa Fe Institute, Santa Fe, New Mexico, USA. Microbial ingestion by a macrophage results in the formation of an acidic phagolysosome but the host cell has no information on the pH susceptibility of the ingested organism. This poses a problem for the macrophage and raises the fundamental question of how the phagocytic cell optimizes the acidification process to prevail. We analyzed the dynamical distribution of phagolysosomal pH in murine and human macrophages that had ingested live or dead Cryptococcus neoformans cells, or inert beads. Phagolysosomal acidification produced a range of pH values that approximated normal distributions, but these differed from normality depending on ingested particle type. Analysis of the increments of pH reduction revealed no forbidden ordinal patterns, implying that the phagosomal acidification process was a stochastic dynamical system. Using simulation modeling, we determined that by stochastically acidifying a phagolysosome to a pH within the observed distribution, macrophages sacrificed a small amount of overall fitness to gain the benefit of reduced variation in fitness.
    [Show full text]
  • Virulence of Leishmania Major in Macrophages and Mice Requires the Gluconeogenic Enzyme Fructose-1,6-Bisphosphatase
    Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase Thomas Naderer*, Miriam A. Ellis*, M. Fleur Sernee*, David P. De Souza*, Joan Curtis†, Emanuela Handman†, and Malcolm J. McConville*‡ *Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia; and †The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia Edited by John J. Mekalanos, Harvard Medical School, Boston, MA, and approved February 8, 2006 (received for review October 20, 2005) Leishmania are protozoan parasites that replicate within mature phagolysosomes of mammalian macrophages. To define the bio- chemical composition of the phagosome and carbon source re- quirements of intracellular stages of L. major, we investigated the role and requirement for the gluconeogenic enzyme fructose-1,6- bisphosphatase (FBP). L. major FBP was constitutively expressed in both extracellular and intracellular stages and was primarily tar- geted to glycosomes, modified peroxisomes that also contain glycolytic enzymes. A L. major FBP-null mutant was unable to grow in the absence of hexose, and suspension in glycerol-containing medium resulted in rapid depletion of internal carbohydrate re- serves. L. major ⌬fbp promastigotes were internalized by macro- phages and differentiated into amastigotes but were unable to replicate in the macrophage phagolysosome. Similarly, the mutant persisted in mice but failed to generate normal lesions. The data suggest that Leishmania amastigotes reside in a glucose-poor Fig. 1. Hexose metabolism in L. major. Hexoses are required for glycolysis, the pentose phosphate shunt (PP-shunt), and the biosynthesis of intracellular phagosome and depend heavily on nonglucose carbon sources.
    [Show full text]
  • 7058.Full.Pdf
    The Journal of Immunology Antiviral Antibodies Target Adenovirus to Phagolysosomes and Amplify the Innate Immune Response1 Anne K. Zaiss,2* Akosua Vilaysane,† Matthew J. Cotter,3† Sharon A. Clark,† H. Christopher Meijndert,‡ Pina Colarusso,‡ Robin M. Yates,§ Virginie Petrilli,¶ Jurg Tschopp,¶ and Daniel A. Muruve4† Adenovirus is a nonenveloped dsDNA virus that activates intracellular innate immune pathways. In vivo, adenovirus-immunized mice displayed an enhanced innate immune response and diminished virus-mediated gene delivery following challenge with the adenovirus vector AdLacZ suggesting that antiviral Abs modulate viral interactions with innate immune cells. Under naive serum conditions in vitro, adenovirus binding and internalization in macrophages and the subsequent activation of innate immune mechanisms were inefficient. In contrast to the neutralizing effect observed in nonhematopoietic cells, adenovirus infection in the presence of antiviral Abs significantly increased FcR-dependent viral internalization in macrophages. In direct correlation with the increased viral internalization, antiviral Abs amplified the innate immune response to adenovirus as determined by the expression of NF-␬B-dependent genes, type I IFNs, and caspase-dependent IL-1␤ maturation. Immune serum amplified TLR9- independent type I IFN expression and enhanced NLRP3-dependent IL-1␤ maturation in response to adenovirus, confirming that antiviral Abs specifically amplify intracellular innate pathways. In the presence of Abs, confocal microscopy demonstrated in- creased targeting of adenovirus to LAMP1-positive phagolysosomes in macrophages but not epithelial cells. These data show that antiviral Abs subvert natural viral tropism and target the adenovirus to phagolysosomes and the intracellular innate immune system in macrophages. Furthermore, these results illustrate a cross-talk where the adaptive immune system positively regulates the innate immune system and the antiviral state.
    [Show full text]