PROTON RADIUS PUZZLE and LARGE EXTRA DIMENSIONS 1. Introduction the Charge Radius of the Proton Has Drawn a Lot of Theoretical
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Symmetry and Gravity
universe Article Making a Quantum Universe: Symmetry and Gravity Houri Ziaeepour 1,2 1 Institut UTINAM, CNRS UMR 6213, Observatoire de Besançon, Université de Franche Compté, 41 bis ave. de l’Observatoire, BP 1615, 25010 Besançon, France; [email protected] or [email protected] 2 Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking GU5 6NT, UK Received: 05 September 2020; Accepted: 17 October 2020; Published: 23 October 2020 Abstract: So far, none of attempts to quantize gravity has led to a satisfactory model that not only describe gravity in the realm of a quantum world, but also its relation to elementary particles and other fundamental forces. Here, we outline the preliminary results for a model of quantum universe, in which gravity is fundamentally and by construction quantic. The model is based on three well motivated assumptions with compelling observational and theoretical evidence: quantum mechanics is valid at all scales; quantum systems are described by their symmetries; universe has infinite independent degrees of freedom. The last assumption means that the Hilbert space of the Universe has SUpN Ñ 8q – area preserving Diff.pS2q symmetry, which is parameterized by two angular variables. We show that, in the absence of a background spacetime, this Universe is trivial and static. Nonetheless, quantum fluctuations break the symmetry and divide the Universe to subsystems. When a subsystem is singled out as reference—observer—and another as clock, two more continuous parameters arise, which can be interpreted as distance and time. We identify the classical spacetime with parameter space of the Hilbert space of the Universe. -
The MUSE Experiment and the Proton Radius
Introduction Resolutions to the Puzzle MUSE - MUon Scattering Experiment The MUSE experiment and the Proton Radius Cristina Collicott SPIN 2016 Cristina Collicott SPIN 2016 1/17 Introduction Resolutions to the Puzzle MUSE - MUon Scattering Experiment The Proton Radius Puzzle How big is the proton? Easy question to ask, not so easy to answer! Currently an unanswered problem in physics Cristina Collicott SPIN 2016 2/17 Introduction Resolutions to the Puzzle MUSE - MUon Scattering Experiment The Proton Radius Puzzle What is the proton radius puzzle? The proton charge radius, measured via muonic hydrogen spectroscopy, is 4% smaller than results from hydrogen spectroscopy and elastic electron proton scattering experiments. Cristina Collicott SPIN 2016 3/17 Introduction Resolutions to the Puzzle MUSE - MUon Scattering Experiment The Proton Radius Puzzle - scattering Rosenbluth scattering: 2 2 2 2 dσ dσ GE (Q )+ xGM (Q ) 2 2 2 θ = + 2xGM (Q ) tan dΩ dΩ (point.) 1 + x 2 Sach's form factors (F1,F2 Dirac and Pauli FFs) 2 2 2 GE (Q ) = F1(Q ) − xF2(Q ) 2 2 2 GE (Q ) = F1(Q ) − xF2(Q ) hq 2 x = 2Mc Cristina Collicott SPIN 2016 4/17 Introduction Resolutions to the Puzzle MUSE - MUon Scattering Experiment The Proton Radius Puzzle - scattering Rosenbluth scattering: 2 2 2 2 dσ dσ GE (Q )+ xGM (Q ) 2 2 2 θ = + 2xGM (Q ) tan dΩ dΩ (point.) 1 + x 2 Derivative in the Q2 ! 0 limit 2 2 dGE (Q ) < rE >= −6 2 dQ Q2!0 We expect identical results for hq 2 experiments with ep and µp x = 2Mc scattering.. -
Arxiv:2103.17101V1 [Physics.Hist-Ph] 29 Mar 2021 1/2 1/2 Are Equal, While That of 2P3/2 Is Higher by About 40 Μev; This Is the fine Structure (FS), Fig
April 1, 2021 0:46 WSPC Proceedings - 9in x 6in protonr page 1 1 THE QUEST FOR THE PROTON CHARGE RADIUS ISTVAN´ ANGELI Institute of Experimental Physics, University of Debrecen, Hungary A slight anomaly in optical spectra of the hydrogen atom led Willis E. Lamb to the search for the proton size. As a result, he found the shift of the 2S1/2 level, the first experimental demonstration of quantum electrodynamics (QED). In return, a modern test of QED yielded a new value of the charge radius of the proton. This sounds like Baron M¨unchausen's tale: to pull oneself out from the marsh by seizing his own hair. An independent method was necessary. Muonic hydrogen spectroscopy came to the aid. However, the high-precision result significantly differed from the previous { electronic { values: this is (was?) the proton radius puzzle (2010-2020?). This puzzle produced a decade-long activity both in experimental work and in theory. Even if the puzzle seems to be solved, the precise determination of the proton charge radius requires further efforts in the future. 1. The Dirac equation; anomalies in hydrogen spectra (1928{1938) In 1928, P.A.M. Dirac published his relativistic wave equation implying two important consequences: (1) The electron has an intrinsic magnetic dipole moment µe = 1 × µB (µB: Bohr magneton) in agreement with the experiment (1925: George Uhlenbeck, Samuel Goudsmit). (2) If in the hydrogen atom the electron moves in the field of a Coulomb potential V (r) ∼ 1=r, then its energy E(n; j) is determined by the principal quantum number n and the total angular momentum quan- tum number j, but not by the orbital angular momentum l and spin s, separately. -
The Proton Radius Puzzle Μ
The proton radius puzzle µ A. Antognini Paul Scherrer Institute ETH, Zurich Switzerland CREMA collaboration Laser spectroscopy of muonic atoms µ 2P 2S-2P Laser excitation Energy 2S 1S μ • 2S-2P p From 2S-2P • 2S-2P μd ꔄ charge radii • 2S-2P μ3He, μ4He Aldo Antognini Rencontres de Moriond 19.03.2017 2 Three ways to the proton radius p p e- H 2 e- µ- e--p scattering H spectroscopy µp spectroscopy 6.7 σ CODATA-2010 µp 2013 scatt. JLab µp 2010 scatt. Mainz H spectroscopy 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 Proton charge radius [fm] Pohl et al., Nature 466, 213 (2010) Antognini et al., Science 339, 417 (2013) Pohl et al., Science 353, 669 (2016) Aldo Antognini Rencontres de Moriond 19.03.2017 3 Extracting the proton radius from 훍p Measure 2S-2P splitting (20 ppm) 8.4 meV 2P F=2 and compare with theory 3/2 F=1 2P1/2 F=1 → proton radius F=0 ∆Eth . − . r2 . 2P −2S = 206 0336(15) 5 2275(10) p +00332(20) [meV] 206 meV 50 THz 6 µm fin. size: 3.8 meV F=1 2π(Zα) 2 2 2S ∆Esize = r |Ψnl(0)| 1/2 m ≈ 200m 3 p 23 meV µ e 4 2(Zα) 3 2 F=0 3 m r δl = 3n r p 0 Aldo Antognini Rencontres de Moriond 19.03.2017 4 Principle of the µp 2S-2P experiment Produce many µ− at keV energy − Form µp by stopping µ in 1 mbar H2 gas Fire laser to induce the 2S-2P transition Measure the 2 keV X-rays from 2P-1S decay µp formation Laser excitation Plot number of X-rays vs laser frequency ] n~14 2 P -4 7 Laser 6 1 % 99 % 2 S 5 2 P 4 2 S 3 2 keV 2 keV γ γ 2 delayed / prompt events [10 1 0 1 S 49.75 49.8 49.85 49.9 49.95 1 S laser frequency [THz] Aldo Antognini Rencontres de Moriond 19.03.2017 5 The setup at the Paul Scherrer Institute Aldo Antognini Rencontres de Moriond 19.03.2017 6 The first 훍p resonance (2010) Discrepancy: 5.0 σ ↔ 75 GHz ↔ δν/ν =1.5 × 10−3 ] -4 7 CODATA-06 our value 6 e-p scattering H2O 5 calib. -
TASI Lectures on Extra Dimensions and Branes
hep-ph/0404096 TASI Lectures on Extra Dimensions and Branes∗ Csaba Cs´aki Institute of High Energy Phenomenology, Newman Laboratory of Elementary Particle Physics, Cornell University, Ithaca, NY 14853 [email protected] Abstract This is a pedagogical introduction into theories with branes and extra dimensions. We first discuss the construction of such models from an effective field theory point of view, and then discuss large extra dimensions and some of their phenomenological consequences. Various possible phenomena (split fermions, mediation of supersym- metry breaking and orbifold breaking of symmetries) are discussed next. The second arXiv:hep-ph/0404096v1 9 Apr 2004 half of this review is entirely devoted to warped extra dimensions, including the con- struction of the Randall-Sundrum solution, intersecting branes, radius stabilization, KK phenomenology and bulk gauge bosons. ∗Lectures at the Theoretical Advanced Study Institute 2002, University of Colorado, Boulder, CO June 3-28, 2002. Contents 1 Introduction 2 2 Large Extra Dimensions 2 2.1 Matching the higher dimensional theory to the 4D effectivetheory..... 3 2.2 What is a brane and how to write an effective theory for it? . ....... 7 2.3 Coupling of SM fields to the various graviton components . ......... 11 2.4 Phenomenology with large extra dimensions . ...... 16 3 Various Models with Flat Extra Dimensions 21 3.1 Split fermions, proton decay and flavor hierarchy . ......... 21 3.2 Mediation of supersymmetry breaking via extra dimensions (gaugino mediation) 26 3.3 Symmetry breaking via orbifolds . .... 33 3.3.1 Breaking of the grand unified gauge group via orbifolds in SUSY GUT’s 35 3.3.2 Supersymmetry breaking via orbifolds . -
Probing the Minimal Length Scale by Precision Tests of the Muon G − 2
Physics Letters B 584 (2004) 109–113 www.elsevier.com/locate/physletb Probing the minimal length scale by precision tests of the muon g − 2 U. Harbach, S. Hossenfelder, M. Bleicher, H. Stöcker Institut für Theoretische Physik, J.W. Goethe-Universität, Robert-Mayer-Str. 8-10, 60054 Frankfurt am Main, Germany Received 25 November 2003; received in revised form 20 January 2004; accepted 21 January 2004 Editor: P.V. Landshoff Abstract Modifications of the gyromagnetic moment of electrons and muons due to a minimal length scale combined with a modified fundamental scale Mf are explored. First-order deviations from the theoretical SM value for g − 2 due to these string theory- motivated effects are derived. Constraints for the fundamental scale Mf are given. 2004 Elsevier B.V. All rights reserved. String theory suggests the existence of a minimum • the need for a higher-dimensional space–time and length scale. An exciting quantum mechanical impli- • the existence of a minimal length scale. cation of this feature is a modification of the uncer- tainty principle. In perturbative string theory [1,2], Naturally, this minimum length uncertainty is re- the feature of a fundamental minimal length scale lated to a modification of the standard commutation arises from the fact that strings cannot probe dis- relations between position and momentum [6,7]. Ap- tances smaller than the string scale. If the energy of plication of this is of high interest for quantum fluc- a string reaches the Planck mass mp, excitations of the tuations in the early universe and inflation [8–16]. string can occur and cause a non-zero extension [3]. -
Photon Mixing in Universes with Large Extra–Dimensions
CORE Photon mixing in universes with large extra{dimensionsMetadata, citation and similar papers at core.ac.uk Provided by CERN Document Server C´edric Deffayet1 and Jean–Philippe Uzan1,2 (1) Laboratoire de Physique Th´eorique∗, Universit´e Paris XI, B^at. 210 F{91405 Orsay Cedex (France). (2) D´epartement de Physique Th´eorique, Universit´edeGen`eve, 24 quai E. Ansermet, CH{1211 Gen`eve 4 (Switzerland). (February 17, 2000) In presence of a magnetic field, photons can mix with any particle having a two{photon vertex. In theories with large compact extra{dimensions, there exists a hierachy of massive Kaluza{Klein gravitons that couple to any photon entering a magnetic field. We study this mixing and show that, in comparison with the four dimensional situation where the photon couples only to the massless graviton, the oscillation effect may be enhanced due to the existence of a large number of Kaluza{ Klein modes. We give the conditions for such an enhancement and then investigate the cosmological and astrophysical consequences of this phenomenon; we also discuss some laboratory experiments. Axions also couple to photons in the same way; we discuss the effect of the existence of bulk axions in universes with large extra{dimensions. The results can also be applied to neutrino physics with extra{dimensions. Preprint numbers: UGVA{DPT 99/10-1053, LPT{ORSAY 99/104 I. INTRODUCTION It is well known [1,2] that photons can be converted into gravitons by a magnetic field in a standard four dimensional spacetime. The propagation eigenstates are then mixtures of photon and graviton interaction eigenstates. -
The Proton Radius Puzzle-Why We All Should Care
SNSN-323-63 September 27, 2018 The Proton Radius Puzzle- Why We All Should Care Gerald A. Miller1 Physics Department, University of Washington, Seattle, Washington 98195-1560, USA The status of the proton radius puzzle (as of the date of the Confer- ence) is reviewed. The most likely potential theoretical and experimental explanations are discussed. Either the electronic hydrogen experiments were not sufficiently accurate to measure the proton radius, the two- photon exchange effect was not properly accounted for, or there is some kind of new physics. I expect that upcoming experiments will resolve this issue within the next year or so. PRESENTED AT Conference on the Intersections between particle and nuclear physics, arXiv:1809.09635v1 [physics.atom-ph] 25 Sep 2018 Indian Wells, USA, May 29{ June 3, 2018 1This work was supported by the U. S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FG02-97ER-41014,. This title is chosen because understanding of the proton radius puzzle requires knowledge of atomic, nuclear and particle physics. The puzzle began with the pub- lication of the results of the 2010 muon-hydrogen experiment in 2010 [1] and its confirmation [2]. The proton radius (r2 = 1=6G0 (Q2 = 0) was measured to be p − E rp = 0:84184(67) fm, which contrasted with the value obtained from electron spec- troscopy rp = 0:8768(69) fm. This difference of about 4% has become known as the proton radius puzzle [3]. We use the technical terms: the radius 0.87 fm is denoted as large, and the one of 0.84 fm as small. -
Abdus Salam United Nations Educational, Scientific and Cultural International XA0101583 Organization Centre
the 1(72001/34 abdus salam united nations educational, scientific and cultural international XA0101583 organization centre international atomic energy agency for theoretical physics NEW DIMENSIONS NEW HOPES Utpal Sarkar Available at: http://www.ictp.trieste.it/-pub-off IC/2001/34 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS NEW DIMENSIONS NEW HOPES Utpal Sarkar1 Physics Department, Visva Bharati University, Santiniketan 731235, India and The Abdus Salam Insternational Centre for Theoretical Physics, Trieste, Italy. Abstract We live in a four dimensional world. But the idea of unification of fundamental interactions lead us to higher dimensional theories. Recently a new theory with extra dimensions has emerged, where only gravity propagates in the extra dimension and all other interactions are confined in only four dimensions. This theory gives us many new hopes. In earlier theories unification of strong, weak and the electromagnetic forces was possible at around 1016 GeV in a grand unified theory (GUT) and it could get unified with gravity at around the Planck scale of 1019 GeV. With this new idea it is possible to bring down all unification scales within the reach of the next generation accelerators, i.e., around 104 GeV. MIRAMARE - TRIESTE May 2001 1 Regular Associate of the Abdus Salam ICTP. E-mail: [email protected] 1 Introduction In particle physics we try to find out what are the fundamental particles and how they interact. This is motivated from the belief that there must be some fundamental law that governs ev- erything. -
Large Extra Dimensions: Implications for the Strong CP Problem Keith R
Large Extra Dimensions: Implications for the Strong CP Problem Keith R. Dienes∗ Department of Physics, University of Arizona, Tucson Emilian Dudas† LPT, Bât. 210, Univ. Paris-Sud Tony Gherghetta‡ IPT, University of Lausanne In this talk, we summarize some of the novel effects that arise when the QCD axion is placed in the “bulk” of large extra spacetime dimensions. First, we find that the mass of the axion can become independent of the energy scale associated with the breaking of the Peccei–Quinn symmetry. This implies that the mass of the axion can be adjusted independently of its couplings to ordinary matter, a feature which is not possible in four dimensions and which may contribute to axion invisibility. Second, we discuss the new phenomenon of laboratory axion oscillations (analogous to neutrino os- cillations), and show that these oscillations cause laboratory axions to “decohere” extremely rapidly as a result of Kaluza–Klein mixing. This decoherence may also be a contributing factor to axion invisibility. Finally, we show that under certain circumstances, the presence of an infinite tower of Kaluza–Klein axion modes can significantly accelerate the dissipation of the energy associated with cosmological relic axion oscillations, thereby enabling the Peccei–Quinn symmetry-breaking scale to exceed the usual four-dimensional relic oscillation bounds. Together, these ideas provide new ways of obtaining an “invisible” axion within the context of higher-dimensional theories with large-radius compactifications. Over the past few years, the possibility that large extra spacetime dimensions might exist has received considerable attention. The main attraction of this idea is the observation that large extra dimensions have the potential to lower the fundamental energy scales of physics such as the Planck scale [1], the GUT scale [2], and the string scale [3]. -
The Proton Radius Puzzle and the Electro-Strong Interaction
The Proton Radius Puzzle and the Electro-Strong Interaction The resolution of the Proton Radius Puzzle is the diffraction pattern, giving another wavelength in case of muonic hydrogen oscillation for the proton than it is in case of normal hydrogen because of the different mass rate. Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions. Contents Preface ................................................................................................................................... 2 The Proton Radius Puzzle ......................................................................................................... 2 Asymmetry in the interference occurrences of oscillators ............................................................ 2 Spontaneously broken symmetry in the Planck distribution law .................................................... 4 The structure of the proton ...................................................................................................... 6 The weak interaction ............................................................................................................... 6 The Strong Interaction - QCD .................................................................................................... 7 Confinement -
An Introduction to Effective Field Theory
An Introduction to Effective Field Theory Thinking Effectively About Hierarchies of Scale c C.P. BURGESS i Preface It is an everyday fact of life that Nature comes to us with a variety of scales: from quarks, nuclei and atoms through planets, stars and galaxies up to the overall Universal large-scale structure. Science progresses because we can understand each of these on its own terms, and need not understand all scales at once. This is possible because of a basic fact of Nature: most of the details of small distance physics are irrelevant for the description of longer-distance phenomena. Our description of Nature’s laws use quantum field theories, which share this property that short distances mostly decouple from larger ones. E↵ective Field Theories (EFTs) are the tools developed over the years to show why it does. These tools have immense practical value: knowing which scales are important and why the rest decouple allows hierarchies of scale to be used to simplify the description of many systems. This book provides an introduction to these tools, and to emphasize their great generality illustrates them using applications from many parts of physics: relativistic and nonrelativistic; few- body and many-body. The book is broadly appropriate for an introductory graduate course, though some topics could be done in an upper-level course for advanced undergraduates. It should interest physicists interested in learning these techniques for practical purposes as well as those who enjoy the beauty of the unified picture of physics that emerges. It is to emphasize this unity that a broad selection of applications is examined, although this also means no one topic is explored in as much depth as it deserves.