Variograms and Kriging in the Analysis of Spatial Data

Total Page:16

File Type:pdf, Size:1020Kb

Variograms and Kriging in the Analysis of Spatial Data Edith Cowan University Research Online Theses: Doctorates and Masters Theses 1-1-1996 Variograms and kriging in the analysis of spatial data Suresh Tripathi Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/theses Part of the Applied Mathematics Commons Recommended Citation Tripathi, S. (1996). Variograms and kriging in the analysis of spatial data. https://ro.ecu.edu.au/theses/ 970 This Thesis is posted at Research Online. https://ro.ecu.edu.au/theses/970 Edith Cowan University Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author’s moral rights contained in Part IX of the Copyright Act 1968 (Cth). Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth). Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. USE OF THESIS The Use of Thesis statement is not included in this version of the thesis. VARIOGRAMS AND KRIGING IN THE ANALYSIS OF SPATIAL DATA by Suresh Tripathi A thesis submitted in partial fulfilmentof the requirements for the award of Master of Science : Mathematics and Planning Department of Mathematics Edith Cowan University. June 1996 EDITH COWAN UNIVERSITY UBRARY TABLE OF CONTENTS DECLARATION VI ACKNOWLEDGMENTS VII ABSTRACT VIII 1. INTRODUCTION I 1.1. Background and Significance I 1.2. Regionalized Variables 2 1.3. Notation and Stationarity Assumptions 3 1.4. Probability Model 6 2. EXPLORATORY DATA ANALYSIS 8 2.1. Overview 8 2.2. Stem-and-Leaf Plots 10 2.3. Box Plots 12 2.4. Surface and Contour Plots 12 2.5. Post Plots 14 2.6. Bivariate Plots 15 2.7. Row and Column Means and Medians Plots 15 2.8. Median Polish 18 3. V ARIOGRAMS 20 3.1. Overview 20 3.2. V ariogram Models 22 3.3. Sample Variograms 25 iii 3.4. Fitting a Variogram Model 31 3.5. Anisotropy 36 3.6. Relative Variograms 49 4. KRIGING 50 4.1. Overview 50 4.2. Ordinary Kriging 52 4.3. Universal Kriging 58 4.4. Median Polish Kriging 60 4.5. Indicator Kriging 63 4.6. Cross Validation 67 5. MULTIVARIATE GEOSTATISTICS 69 5.1. Overview 69 5.2. Principal Component Analysis 70 5.3. Cross Covariograms and Cross Variograms 71 5.4. Analysis of the Correlation Structure 73 5.5. Ordinary Cokriging 75 5.6. Linear Model of Coregionalization 77 iv 80 6. APPLICATIONS 80 6.1. Overview 6.2. Available Phosphate Analysis 81 98 6.4. Potassium Analysis 119 6.5. Banksia Analysis 7. CONCLUSION 129 8. REFERENCES 132 9. APPENDICES 143 143 9.1. Appendix A 149 9.2. Appendix B 169 9 .3. Appendix C V Declaration I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any institution of higher education; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text. Signature vi Acknowledgments First and foremost I wish to express my profound gratitude to my supervisor Dr Lyn Bloom for her patience, guidance, enthusiasm, support and encouragement. I wish to thank also the Chairperson of the Mathematics Department Dr David McDougall for ,:r providing me with some financial support in the way of sessional teaching during my study. I am also grateful to Associate Professor Byron Lamont and Dr Lyn Bloom for providing me respectively with the Banksia data and the Soil data analysed in this thesis. I am deeply indebted to my friend Andrew Mehnert, my family and other colleagues for their support and words of encouragement. Finally I thank my father for providing me with continuous moral support, love and ceaseless encouragement during my study. vii Abstract This research is in the area of geostatistics and consists essentially of two parts. The first is an investigation of the variogram and cross variogram and the associated kriging and cokriging methods of spatial prediction and the second is an application of these in the analysis of two ( original) data sets. In the first part (chapter 1 to chapter 5), the focus is on summarising and illustrating the various techniques of Exploratory Data Analysis (EDA) and some methods used to estimate and model the experimental variograms and cross variograms fora given data set, together with some of the geostatistical methods of kriging and cokriging used for prediction purposes. The research also illustrates some of the many applications of this theory in the earth and environmental sciences. The second part of the thesis (chapter 6) is an application of these geostatistical techniques to the analysis of two (new) data sets. The first data set consists of the Available Phosphate (in ppm) and Potassium (in ppm) from two fields (one cropped and one uncropped) in the Jimperding Brook area of Western Australia. The second data set consists of the number of species of Banksia at various locations within a region of Southwestern Australia. viii 1. INTRODUCTION 1.1. Background and Significance The term Geostatistics was first introduced by Matheron ( 1962) in connection with the analysis of problems arising in the mining industry. It was subsequently extended to geology (Matheron 1963a, 1963b, 197 la) in general and to other earth sciences such as geography (Boots and Dufournaud 1994) and soil science (McBratney and Webster 1986 ; Yost et al 1982). However the theory involved is now being applied in a wide variety of other areas. These include hydrology (de Kwaadsteniet 1990), pollution control (Wartenberg, Uchrin, and Coogan 1991), and atmospheric science (Hass 1990). Some of the ideas introduced by Matheron had appeared earlier in other forms. For instance, what Matheron refersto as the variogram was called a structure function in physics by Kolmorogov (1941 ), in probability by Yaglom ( 1962), and in meteorology by Gandin ( 1963), and a mean-squared difference by Jowett ( 1952) in time series. However it is Matheron's terminology that has persisted and which will be used throughout this thesis. The name kriging was introduced by Matheron in honour of the South African mining engineer D. G. Krige who (Krige 1951, 1966) developed methods for determining the true ore-grade distributions from the distributions based on the sampled ore grades. However the formulation of spatial linear prediction did not come from Krige's work. The contributions of Weiner (1949), Wold (1938), and Kolmogorov (1941) all contain optimal linear prediction methods. In geostatistics one is dealing with spatial data, where the locations of the samples, as well as their values, are important. Such data frequently exhibit spatial autocorrelation, which, loosely speaking, means that nearby values will be more alike than values located far away from one another. One is interested in obtaining a profile of the distribution of the data values and in using this to predict the value at a particular location. The variogram is an important tool in modelling the spatial continuity (the spatial dependence) of the data while kriging is the method, or more accurately methods, of spatial interpolation used for prediction purposes. The type of kriging used depends on the nature of the data and the underlying assumptions of the mathematical model to be used. One advantage of this approach is that it is possible, via the kriging variance, to obtain an idea of the accuracy of such predictions. When multivariate data are analysed, methods of co-kriging are sometimes used as the prediction accuracy of one variable can often be improved by knowledge of values of another variable measuredat the same locations. 1.2. Regionalized Variables Matheron (1962, 1971b, 1973) introduced the term regionalized variable z(s) where the location index s is assumed to vary continuously over the domain D, a fixed subset of d-dimensional Euclidean Space Rd . Regionalized variables and their relevant applications in constructing models are very important in geostatistics. A regionalized variable is simply a random variable where the values vary with temporal or spatial location, defined in space-time to exhibit certain types of spatial or temporal 2 characteristics. A regionalized variable exhibits two main features, one of which is a structure aspect, and other is a random aspect. The first is based on theoretical grounds which express structural and geometrical properties in an adequate form, and the second is based on practical grounds which solves the problem of estimation of a regionalized variable from fragmentary sampling data. These two purposes are related to each other because the error of estimation depends on the structural characteristics; for example, the error of estimation becomes greater when the regionalized variable is more discontinuous. Regionalized variable theory focusses attention on means and variances of the variables under consideration. In paiticular, under the intrinsic stationarity assumptions, increments between all pairs of points, situated at a given distance h, have a mean zero and a finite variance that remains the same in the various parts of the area under study.
Recommended publications
  • Spatial Diversification, Dividend Policy, and Credit Scoring in Real
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2006 Spatial diversification, dividend policy, and credit scoring in real estate Darren Keith Hayunga Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Finance and Financial Management Commons Recommended Citation Hayunga, Darren Keith, "Spatial diversification, dividend policy, and credit scoring in real estate" (2006). LSU Doctoral Dissertations. 2954. https://digitalcommons.lsu.edu/gradschool_dissertations/2954 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. SPATIAL DIVERSIFICATION, DIVIDEND POLICY, AND CREDIT SCORING IN REAL ESTATE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Interdepartmental Program in Business Administration (Finance) by Darren K. Hayunga B.S., Western Illinois University, 1988 M.B.A., The College of William and Mary, 1997 August 2006 Table of Contents ABSTRACT....................................................................................................................................iv
    [Show full text]
  • An Introduction to Spatial Autocorrelation and Kriging
    An Introduction to Spatial Autocorrelation and Kriging Matt Robinson and Sebastian Dietrich RenR 690 – Spring 2016 Tobler and Spatial Relationships • Tobler’s 1st Law of Geography: “Everything is related to everything else, but near things are more related than distant things.”1 • Simple but powerful concept • Patterns exist across space • Forms basic foundation for concepts related to spatial dependency Waldo R. Tobler (1) Tobler W., (1970) "A computer movie simulating urban growth in the Detroit region". Economic Geography, 46(2): 234-240. Spatial Autocorrelation (SAC) – What is it? • Autocorrelation: A variable is correlated with itself (literally!) • Spatial Autocorrelation: Values of a random variable, at paired points, are more or less similar as a function of the distance between them 2 Closer Points more similar = Positive Autocorrelation Closer Points less similar = Negative Autocorrelation (2) Legendre P. Spatial Autocorrelation: Trouble or New Paradigm? Ecology. 1993 Sep;74(6):1659–1673. What causes Spatial Autocorrelation? (1) Artifact of Experimental Design (sample sites not random) Parent Plant (2) Interaction of variables across space (see below) Univariate case – response variable is correlated with itself Eg. Plant abundance higher (clustered) close to other plants (seeds fall and germinate close to parent). Multivariate case – interactions of response and predictor variables due to inherent properties of the variables Eg. Location of seed germination function of wind and preferred soil conditions Mechanisms underlying patterns will depend on study system!! Why is it important? Presence of SAC can be good or bad (depends on your objectives) Good: If SAC exists, it may allow reliable estimation at nearby, non-sampled sites (interpolation).
    [Show full text]
  • Statistical Analysis of NSI Data Chapter 2
    Statistical and geostatistical analysis of the National Soil Inventory SP0124 CONTENTS Chapter 2 Statistical Methods........................................................................................2 2.1 Statistical Notation and Summary.......................................................................2 2.1.1 Variables .......................................................................................................2 2.1.2 Notation........................................................................................................2 2.2 Descriptive statistics ............................................................................................2 2.3 Transformations ...................................................................................................3 2.3.1 Logarithmic transformation. .........................................................................3 2.3.2 Square root transform...................................................................................3 2.4 Exploratory data analysis and display.................................................................3 2.4.1 Histograms....................................................................................................3 2.4.2 Box-plots.......................................................................................................3 2.4.3 Spatial aspects...............................................................................................4 2.5 Ordination............................................................................................................4
    [Show full text]
  • To Be Or Not to Be... Stationary? That Is the Question
    Mathematical Geology, 11ol. 21, No. 3, 1989 To Be or Not to Be... Stationary? That Is the Question D. E. Myers 2 Stationarity in one form or another is an essential characteristic of the random function in the practice of geostatistics. Unfortunately it is a term that is both misunderstood and misused. While this presentation will not lay to rest all ambiguities or disagreements, it provides an overview and attempts to set a standard terminology so that all practitioners may communicate from a common basis. The importance of stationarity is reviewed and examples are given to illustrate the distinc- tions between the different forms of stationarity. KEY WORDS: stationarity, second-order stationarity, variograms, generalized covariances, drift. Frequent references to stationarity exist in the geostatistical literature, but all too often what is meant is not clear. This is exemplified in the recent paper by Philip and Watson (1986) in which they assert that stationarity is required for the application of geostatistics and further assert that it is manifestly inappro- priate for problems in the earth sciences. They incorrectly interpreted station- arity, however, and based their conclusions on that incorrect definition. A sim- ilar confusion appears in Cliffand Ord (198t); in one instance, the authors seem to equate nonstationarity with the presence of a nugget effect that is assumed to be due to incorporation of white noise. Subsequently, they define "spatially stationary," which, in fact, is simply second-order stationarity. Both the role and meaning of stationarity seem to be the source of some confusion. For that reason, the editor of this journal has asked that an article be written on the subject.
    [Show full text]
  • Optimization of a Petroleum Producing Assets Portfolio
    OPTIMIZATION OF A PETROLEUM PRODUCING ASSETS PORTFOLIO: DEVELOPMENT OF AN ADVANCED COMPUTER MODEL A Thesis by GIZATULLA AIBASSOV Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2007 Major Subject: Petroleum Engineering OPTIMIZATION OF A PETROLEUM PRODUCING ASSETS PORTFOLIO: DEVELOPMENT OF AN ADVANCED COMPUTER MODEL A Thesis by GIZATULLA AIBASSOV Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, W. John Lee Committee Members, Duane A. McVay Maria A. Barrufet Head of Department, Stephen A. Holditch December 2007 Major Subject: Petroleum Engineering iii ABSTRACT Optimization of a Petroleum Producing Assets Portfolio: Development of an Advanced Computer Model. (December 2007) Gizatulla Aibassov, B.Sc., Kazakh National University, Kazakhstan Chair of Advisory Committee: Dr. W. John Lee Portfolios of contemporary integrated petroleum companies consist of a few dozen Exploration and Production (E&P) projects that are usually spread all over the world. Therefore, it is important not only to manage individual projects by themselves, but to also take into account different interactions between projects in order to manage whole portfolios. This study is the step-by-step representation of the method of optimizing portfolios of risky petroleum E&P projects, an illustrated method based on Markowitz’s Portfolio Theory. This method uses the covariance matrix between projects’ expected return in order to optimize their portfolio. The developed computer model consists of four major modules.
    [Show full text]
  • A Tutorial Guide to Geostatistics: Computing and Modelling Variograms and Kriging
    Catena 113 (2014) 56–69 Contents lists available at ScienceDirect Catena journal homepage: www.elsevier.com/locate/catena A tutorial guide to geostatistics: Computing and modelling variograms and kriging M.A. Oliver a,R.Websterb,⁎ a Soil Research Centre, Department of Geography and Environmental Science, University of Reading, Reading RG6 6DW, Great Britain, United Kingdom b Rothamsted Research, Harpenden AL5 2JQ, Great Britain, United Kingdom article info abstract Article history: Many environmental scientists are analysing spatial data by geostatistical methods and interpolating from sparse Received 4 June 2013 sample data by kriging to make maps. They recognize its merits in providing unbiased estimates with minimum Received in revised form 18 September 2013 variance. Several statistical packages now have the facilities they require, as do some geographic information sys- Accepted 22 September 2013 tems. In the latter kriging is an option for interpolation that can be done at the press of a few buttons. Unfortu- nately, the ease conferred by this allows one to krige without understanding and to produce unreliable and Keywords: even misleading results. Crucial for sound kriging is a plausible function for the spatial covariances or, more wide- Geostatistics Sampling ly, of the variogram. The variogram must be estimated reliably and then modelled with valid mathematical func- Variogram tions. This requires an understanding of the assumptions in the underlying theory of random processes on which Model fitting geostatistics is based. Here we guide readers through computing the sample variogram and modelling it by Trend weighted least-squares fitting. We explain how to choose the most suitable functions by a combination of Kriging graphics and statistical diagnostics.
    [Show full text]
  • A Generalized Convolution Model and Estimation for Non-Stationary Random Functions Francky Fouedjio, Nicolas Desassis, Jacques Rivoirard
    A Generalized Convolution Model and Estimation for Non-stationary Random Functions Francky Fouedjio, Nicolas Desassis, Jacques Rivoirard To cite this version: Francky Fouedjio, Nicolas Desassis, Jacques Rivoirard. A Generalized Convolution Model and Esti- mation for Non-stationary Random Functions. 2014. hal-01090354 HAL Id: hal-01090354 https://hal-mines-paristech.archives-ouvertes.fr/hal-01090354 Preprint submitted on 3 Dec 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Generalized Convolution Model and Estimation for Non-stationary Random Functions F. Fouedjio, N. Desassis, J. Rivoirard Equipe´ G´eostatistique- Centre de G´eosciences,MINES ParisTech 35, rue Saint-Honor´e,77305 Fontainebleau, France Abstract Standard geostatistical models assume second order stationarity of the underlying Random Function. In some in- stances, there is little reason to expect the spatial dependence structure to be stationary over the whole region of interest. In this paper, we introduce a new model for second order non-stationary Random Functions as a convo- lution of an orthogonal random measure with a spatially varying random weighting function. This new model is a generalization of the common convolution model where a non-random weighting function is used.
    [Show full text]
  • Variogram Tutorial
    Variogram Tutorial Variogram Tutorial Randal Barnes Golden Software, Inc. Golden Software, Inc. 1 Variogram Tutorial Table of Contents 1 – Introduction 3 2 – What does a variogram represent? 4 3 – What is a variogram? 6 4 – The variogram grid 7 5 – Modeling the omni-directional variogram 9 6 – Modeling the variogram anisotropy 12 7 – Rules of thumb 15 8 – Frequently asked questions 16 9 – Some geostatistical references 21 Golden Software, Inc. 2 Variogram Tutorial 1 Introduction The variogram characterizes the spatial continuity or roughness of a data set. Ordinary one- dimensional statistics for two data sets may be nearly identical, but the spatial continuity may be quite different. Refer to Section 2 for a partial justification of the variogram. Variogram analysis consists of the experimental variogram calculated from the data and the variogram model fitted to the data. The experimental variogram is calculated by averaging one- half the difference squared of the z-values over all pairs of observations with the specified separation distance and direction. It is plotted as a two-dimensional graph. Refer to Section 3 for details about the mathematical formulas used to calculate the experimental variogram. The variogram model is chosen from a set of mathematical functions that describe spatial relationships. The appropriate model is chosen by matching the shape of the curve of the experimental variogram to the shape of the curve of the mathematical function. Refer to the Surfer User's Guide and the topic Variogram Model Graphics in the Surfer Help for graphs illustrating the curve shapes for each function. To account for geometric anisotropy (variable spatial continuity in different directions), separate experimental and model variograms can be calculated for different directions in the data set.
    [Show full text]
  • Tutorial and Manual for Geostatistical Analyses with the R Package Georob
    Tutorial and Manual for Geostatistical Analyses with the R package georob Andreas Papritz June 4, 2021 Contents 1 Summary 3 2 Introduction 3 2.1 Model ...................................... 3 2.2 Estimation .................................... 4 2.3 Prediction .................................... 5 2.4 Functionality .................................. 5 3 Model-based Gaussian analysis of zinc, data set meuse 7 3.1 Exploratory analysis .............................. 7 3.2 Fitting a spatial linear model by Gaussian (RE)ML ............. 13 3.3 Computing Kriging predictions ........................ 20 3.3.1 Lognormal point Kriging ........................ 20 3.3.2 Lognormal block Kriging ........................ 22 4 Robust analysis of coalash data 27 4.1 Exploratory analysis .............................. 27 4.2 Fitting a spatial linear model robust REML ................. 33 4.3 Computing robust Kriging predictions .................... 44 4.3.1 Point Kriging .............................. 44 4.3.2 Block Kriging .............................. 46 5 Details about parameter estimation 50 5.1 Implemented variogram models ........................ 50 5.2 Estimating parameters of power function variogram ............. 50 5.3 Estimating parameters of geometrically anisotropic variograms ....... 50 5.4 Estimating variance of micro-scale variation ................. 51 5.5 Estimating variance parameters by Gaussian (RE)ML ............ 51 5.6 Constraining estimates of variogram parameters ............... 52 5.7 Computing robust initial estimates of parameters for robust REML .... 52 5.8 Estimating parameters of “nested” variogram models ............ 53 5.9 Controlling georob() by the function control.georob() .......... 53 5.9.1 Gaussian (RE)ML estimation ..................... 53 5.9.2 Robust REML estimation ....................... 54 1 5.9.3 Approximation of covariances of fixed and random effects and residuals 54 5.9.4 Transformations of variogram parameters for (RE)ML estimation . 55 5.9.5 Miscellaneous arguments of control.georob() ..........
    [Show full text]
  • Variogram Calculation and Interpretation
    Reservoir Modeling with GSLIB Variogram Calculation and Interpretation • Spatial Statistics • Coordinate and Data Transformation • Define the Variogram • How to Calculate Variograms • “Visual Calibration” • Variogram Interpretation • Show Expected Behavior • Work Through Some Examples • Test Your Understanding Centre for Computational Geostatistics - University of Alberta - Edmonton, Alberta - Canada Spatial Statistics • Spatial variability/continuity depends on the detailed distribution of the petrophysical attribute; our measure must be customized for each field and each attribute (φ,Κ) • Depending on the level of diagenesis, the spatial variability may be similar within similar depositional environments. The recognition of this has led to outcrop studies. Centre for Computational Geostatistics - University of Alberta - Edmonton, Alberta - Canada Data Transformation Why do we need to worry about data transformation? • Attributes, such as permeability, with highly skewed data distributions present problems in variogram calculation; the extreme values have a significant impact on the variogram. • One common transform is to take logarithms, y = log10 ( z ) perform all statistical analyses on the transformed data, and back transform at the end → back transform is sensitive • Many geostatistical techniques require the data to be transformed to a Gaussian or normal distribution. The Gaussian RF model is unique in statistics for its extreme analytical simplicity and for being the limit distribution of many analytical theorems globally known
    [Show full text]
  • The VARIOGRAM Procedure
    Chapter 70 The VARIOGRAM Procedure Chapter Table of Contents OVERVIEW ...................................3643 Introduction to Spatial Prediction . ......................3643 GETTING STARTED ..............................3644 PreliminarySpatialDataAnalysis.......................3644 PreliminaryVariogramAnalysis........................3648 SampleVariogramComputationandPlots...................3653 SYNTAX .....................................3656 PROC VARIOGRAM Statement . ......................3657 COMPUTEStatement.............................3658 COORDINATES Statement ...........................3661 DIRECTIONSStatement............................3662 VARStatement.................................3662 DETAILS .....................................3662 TheoreticalSemivariogramModels......................3662 TheoreticalandComputationalDetailsoftheSemivariogram.........3664 OutputDataSets................................3669 ComputationalResources............................3673 EXAMPLE ....................................3674 Example70.1ABoxPlotoftheSquareRootDifferenceCloud........3674 REFERENCES ..................................3677 3642 Chapter 70. The VARIOGRAM Procedure SAS OnlineDoc: Version 8 Chapter 70 The VARIOGRAM Procedure Overview The VARIOGRAMprocedure computes sample or empirical measures of spatial con- tinuity for two-dimensional spatial data. These continuity measures are the regular semivariogram, a robust version of the semivariogram, and the covariance. The con- tinuity measures are written to an output data set, allowing
    [Show full text]
  • UNIVERSITY of CALIFORNIA Los Angeles a Data-Driven Building Seismic Response Prediction Framework
    UNIVERSITY OF CALIFORNIA Los Angeles A Data-driven Building Seismic Response Prediction Framework: from Simulation and Recordings to Statistical Learning A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Civil Engineering by Han Sun 2019 © Copyright by Han Sun 2019 ABSTRACT OF THE DISSERTATION A Data-driven Building Seismic Response Prediction Framework: from Simulation and Recordings to Statistical Learning by Han Sun Doctor of Philosophy in Civil Engineering University of California, Los Angeles, 2019 Professor John Wright Wallace, Chair Structural seismic resilience society has been grown rapidly in the past three decades. Extensive probabilistic techniques have been developed to address uncertainties from ground motions and building systems to reduce structural damage, economic loss and social impact of buildings subjected to seismic hazards where seismic structural responses are essential and often are retrieved through Nonlinear Response History Analysis. This process is largely limited by accuracy of model and computational effort. An alternative data-driven framework is proposed to reconstruct structure responses through machine learning techniques from limited available sources which may potentially benefit for “real-time” interpolating monitoring data to enable rapid damage assessment and reducing computational effort for regional seismic hazard assessment. It also provides statistical insight to understand uncertainties of seismic building responses from both structural and earthquake engineering perspective. ii The dissertation of Han Sun is approved. Henry J. Burton Ali Mosleh Jonathan Paul Stewart John Wright Wallace, Committee Chair University of California, Los Angeles, 2019 2019 iii To my parents … For their encouragement on science iv Table of Contents ACKNOWLEDGEMENT ...............................................................................................
    [Show full text]