Strategies for a Semantified Uniform Access to Large And

Total Page:16

File Type:pdf, Size:1020Kb

Strategies for a Semantified Uniform Access to Large And Strategies for a Semantified Uniform Access to Large and Heterogeneous Data Sources Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn von Mohamed Nadjib Mami aus Médéa - Algeria Bonn, 20.07.2020 Dieser Forschungsbericht wurde als Dissertation von der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Bonn angenommen und ist auf dem Hochschulschriftenserver der ULB Bonn https://nbn-resolving.org/urn:nbn:de:hbz:5-61180 elektronisch publiziert. 1. Gutachter: Prof. Dr. Sören Auer 2. Gutachter: Prof. Dr. Jens Lehmann Tag der Promotion: 28.01.2021 Erscheinungsjahr: 2021 Acknowledgments "Who does not thank people does not thank God." Prophet Muhammad PBUH To the two humans who brought me to existence and afforded life’s most severe scarifies so I can stand today in dignity and pride, to my dear mother Yamina and my father Zakariya. There is no amount of words that can suffice to thank you. I am eternally in your debt. To my two heroines, my two sisters Sarah and Mounira, I cannot imagine living my life without you, thank you for the enormous unconditional love that you overwhelmed me with. To my wife, to my self, Soumeya, to the pure soul that held me straight and high during my tough times. You were and continue to be a great source of hope and regeneration. To my non- biological brother and life-mate Oussama Mokeddem, it has been such a formidable journey together. To my other brother, Mohamed Amine Mouhoub, I’ve lost count of your favors to me in easing the transition to the European continent. I am so grateful for having met both of you. To the person who gave me the opportunity that changed the course of my life. The person who provided me with every possible facility so I can pursue this lifelong dream. Both in your words and silence wisdom, I learned so much from you; to you my supervisor Prof. Dr. Sören Auer, a thousand Thank You! To my co-supervisor who supported me from the very first day to the very last, Dr. Simon Scerri. You are the person who set me in the research journey and showed me its right path. You will be the person who I will miss the most. I so much appreciate everything you did for me! To my other co-supervisor, Dr. Damien Graux, my journey flourished during your presence; a pure coincidence?! No. You are a person who knows how to get the most and best out of people. You are a planning master. Merci infiniment! Thank you Prof. Dr. Maria-Esther Vidal, I will not be complimenting to say that the energy of working with you is incomparable. You have built and continue to build generations of researchers. The Semantic Web community will always be thankful for having you among its members. Thank you Prof. Dr. Jens Lehmann, I have the immense pleasure to collaborate with you and have your name on my papers. Working on your project SANSA marked my journey and gave it a special flavor. Thank you Dr. Hajira Jabeen, I am so grateful for your advice and orientations, you are the person with whom I wish if I could work more. Thanks, Dr. Christoph Lange and Dr. Steffen Lohmann, you were always there and supportive in the difficult situations. To Lavdim, Fathoni, Kemele, Irlan, and many others, the journey was much nicer with your colleagueship. To my past Algerian university respectful teachers who have equipped me with the necessary fundamentals. To you go all the credits. Thank you! To this great country Germany, "Das Land der Ideen" (the country of ideas). Danke! iii Abstract The remarkable advances achieved in both research and development of Data Management as well as the prevalence of high-speed Internet and technology in the last few decades have caused unprecedented data avalanche. Large volumes of data manifested in a multitude of types and formats are being generated and becoming the new norm. In this context, it is crucial to both leverage existing approaches and propose novel ones to overcome this data size and complexity, and thus facilitate data exploitation. In this thesis, we investigate two major approaches to addressing this challenge: Physical Data Integration and Logical Data Integration. The specific problem tackled is to enable querying large and heterogeneous data sources in an ad hoc manner. In the Physical Data Integration, data is physically and wholly transformed into a canonical unique format, which can then be directly and uniformly queried. In the Logical Data Integration, data remains in its original format and form and a middleware is posed above the data allowing to map various schemata elements to a high-level unifying formal model. The latter enables the querying of the underlying original data in an ad hoc and uniform way, a framework which we call Semantic Data Lake, SDL. Both approaches have their advantages and disadvantages. For example, in the former, a significant effort and cost are devoted to pre-processing and transforming the data to the unified canonical format. In the latter, the cost is shifted to the query processing phases, e.g., query analysis, relevant source detection and results reconciliation. In this thesis we investigate both directions and study their strengths and weaknesses. For each direction, we propose a set of approaches and demonstrate their feasibility via a proposed implementation. In both directions, we appeal to Semantic Web technologies, which provide a set of time-proven techniques and standards that are dedicated to Data Integration. In the Physical Integration, we suggest an end-to-end blueprint for the semantification of large and heterogeneous data sources, i.e., physically transforming the data to the Semantic Web data standard RDF (Resource Description Framework). A unified data representation, storage and query interface over the data are suggested. In the Logical Integration, we provide a description of the SDL architecture, which allows querying data sources right on their original form and format without requiring a prior transformation and centralization. For a number of reasons that we detail, we put more emphasis on the logical approach. We present the effort behind an extensible implementation of the SDL, called Squerall, which leverages state-of-the-art Semantic and Big Data technologies, e.g., RML (RDF Mapping Language) mappings, FnO (Function Ontology) ontology, and Apache Spark. A series of evaluation is conducted to evaluate the implementation along with various metrics and input data scales. In particular, we describe an industrial real-world use case using our SDL implementation. In a preparation phase, we conduct a survey for the Query Translation methods in order to back some of our design choices. v Contents 1 Introduction 1 1.1 Motivation.......................................2 1.2 Problem Definition and Challenges..........................3 1.3 Research Questions...................................6 1.4 Thesis Overview....................................7 1.4.1 Contributions..................................7 1.4.2 List of Publications..............................9 1.5 Thesis Structure.................................... 11 2 Background and Preliminaries 13 2.1 Semantic Technologies................................. 13 2.1.1 Semantic Web................................. 13 2.1.2 Resource Description Framework....................... 14 2.1.3 Ontology.................................... 15 2.1.4 SPARQL Query Language........................... 16 2.2 Big Data Management................................. 17 2.2.1 BDM Definitions................................ 17 2.2.2 BDM Challenges................................ 17 2.2.3 BDM Concepts and Principles........................ 18 2.2.4 BDM Technology Landscape......................... 20 2.3 Data Integration.................................... 22 2.3.1 Physical Data Integration........................... 23 2.3.2 Logical Data Integration............................ 24 2.3.3 Mediator/Wrapper Architecture....................... 24 2.3.4 Semantic Data Integration........................... 24 2.3.5 Scalable Semantic Storage and Processing.................. 25 3 Related Work 29 3.1 Semantic-based Physical Integration......................... 29 3.1.1 MapReduce-based RDF Processing...................... 29 3.1.2 SQL Query Engine for RDF Processing................... 31 3.1.3 NoSQL-based RDF Processing........................ 32 3.1.4 Discussion.................................... 34 3.2 Semantic-based Logical Data Integration....................... 35 3.2.1 Semantic-based Access............................. 36 3.2.2 Non-Semantic Access.............................. 37 3.2.3 Discussion.................................... 38 vii 4 Overview on Query Translation Approaches 41 4.1 Considered Query Languages............................. 43 4.1.1 Relational Query Language.......................... 43 4.1.2 Graph Query Languages............................ 43 4.1.3 Hierarchical Query Languages......................... 44 4.1.4 Document Query Languages.......................... 44 4.2 Query Translation Paths................................ 44 4.2.1 SQL ↔ XML Languages............................ 45 4.2.2 SQL ↔ SPARQL................................ 45 4.2.3 SQL ↔ Document-based........................... 45 4.2.4 SQL ↔ Graph-based.............................. 45 4.2.5 SPARQL ↔ XML Languages......................... 46 4.2.6 SPARQL ↔ Graph-based........................... 46 4.3 Survey Methodology.................................. 46 4.4 Criteria-based Classification.............................
Recommended publications
  • Empirical Study on the Usage of Graph Query Languages in Open Source Java Projects
    Empirical Study on the Usage of Graph Query Languages in Open Source Java Projects Philipp Seifer Johannes Härtel Martin Leinberger University of Koblenz-Landau University of Koblenz-Landau University of Koblenz-Landau Software Languages Team Software Languages Team Institute WeST Koblenz, Germany Koblenz, Germany Koblenz, Germany [email protected] [email protected] [email protected] Ralf Lämmel Steffen Staab University of Koblenz-Landau University of Koblenz-Landau Software Languages Team Koblenz, Germany Koblenz, Germany University of Southampton [email protected] Southampton, United Kingdom [email protected] Abstract including project and domain specific ones. Common applica- Graph data models are interesting in various domains, in tion domains are management systems and data visualization part because of the intuitiveness and flexibility they offer tools. compared to relational models. Specialized query languages, CCS Concepts • General and reference → Empirical such as Cypher for property graphs or SPARQL for RDF, studies; • Information systems → Query languages; • facilitate their use. In this paper, we present an empirical Software and its engineering → Software libraries and study on the usage of graph-based query languages in open- repositories. source Java projects on GitHub. We investigate the usage of SPARQL, Cypher, Gremlin and GraphQL in terms of popular- Keywords Empirical Study, GitHub, Graphs, Query Lan- ity and their development over time. We select repositories guages, SPARQL, Cypher, Gremlin, GraphQL based on dependencies related to these technologies and ACM Reference Format: employ various popularity and source-code based filters and Philipp Seifer, Johannes Härtel, Martin Leinberger, Ralf Lämmel, ranking features for a targeted selection of projects.
    [Show full text]
  • Towards an Analytics Query Engine *
    Towards an Analytics Query Engine ∗ Nantia Makrynioti Vasilis Vassalos Athens University of Economics and Business Athens University of Economics and Business Athens, Greece Athens, Greece [email protected] [email protected] ABSTRACT with black box libraries, evaluating various algorithms for a This vision paper presents new challenges and opportuni- task and tuning their parameters, in order to produce an ef- ties in the area of distributed data analytics, at the core of fective model, is a time-consuming process. Things become which are data mining and machine learning. At first, we even more complicated when we want to leverage paralleliza- provide an overview of the current state of the art in the area tion on clusters of independent computers for processing big and then analyse two aspects of data analytics systems, se- data. Details concerning load balancing, scheduling or fault mantics and optimization. We argue that these aspects will tolerance can be quite overwhelming even for an experienced emerge as important issues for the data management com- software engineer. munity in the next years and propose promising research Research in the data management domain recently started directions for solving them. tackling the above issues by developing systems for large- scale analytics that aim at providing higher-level primitives for building data mining and machine learning algorithms, Keywords as well as hiding low-level details of distributed execution. Data analytics, Declarative machine learning, Distributed MapReduce [12] and Dryad [16] were the first frameworks processing that paved the way. However, these initial efforts suffered from low usability, as they offered expressive but at the same 1.
    [Show full text]
  • Graphql Attack
    GRAPHQL ATTACK Date: 01/04/2021 Team: Sun* Cyber Security Research Agenda • What is this? • REST vs GraphQL • Basic Blocks • Query • Mutation • How to test What is the GraphQL? GraphQL is an open-source data query and manipulation language for APIs, and a runtime for fulfilling queries with existing data. GraphQL was developed internally by Facebook in 2012 before being publicly released in 2015. • Powerful & Flexible o Leaves most other decisions to the API designer o GraphQL offers no requirements for the network, authorization, or pagination. Sun * Cyber Security Team 1 REST vs GraphQL Over the past decade, REST has become the standard (yet a fuzzy one) for designing web APIs. It offers some great ideas, such as stateless servers and structured access to resources. However, REST APIs have shown to be too inflexible to keep up with the rapidly changing requirements of the clients that access them. GraphQL was developed to cope with the need for more flexibility and efficiency! It solves many of the shortcomings and inefficiencies that developers experience when interacting with REST APIs. REST GraphQL • Multi endpoint • Only 1 endpoint • Over fetching/Under fetching • Fetch only what you need • Coupling with front-end • API change do not affect front-end • Filter down the data • Strong schema and types • Perform waterfall requests for • Receive exactly what you ask for related data • No aggregating or filtering data • Aggregate the data yourself Sun * Cyber Security Team 2 Basic blocks Schemas and Types Sun * Cyber Security Team 3 Schemas and Types (2) GraphQL Query Sun * Cyber Security Team 4 Queries • Arguments: If the only thing we could do was traverse objects and their fields, GraphQL would already be a very useful language for data fetching.
    [Show full text]
  • Graphql-Tools Merge Schemas
    Graphql-Tools Merge Schemas Marko still misdoings irreproachably while vaulted Maximilian abrades that granddads. Squallier Kaiser curarize some presuminglyanesthetization when and Dieter misfile is hisexecuted. geomagnetist so slothfully! Tempting Weber hornswoggling sparsely or surmisings Pass on operation name when stitching schemas. The tools that it possible to merge schemas as well, we have a tool for your code! It can remember take an somewhat of resolvers. It here are merged, graphql with schema used. Presto only may set session command for setting some presto properties during current session. Presto server implementation of queries and merged together. Love writing a search query and root schema really is invalid because i download from each service account for a node. Both APIs have root fields called repository. That you actually look like this case you might seem off in memory datastore may have you should be using knex. The graphql with vue, but one round robin approach. The name signify the character. It does allow my the enums, then, were single introspection query at not top client level will field all the data plan through microservices via your stitched interface. The tools that do to other will a tool that. If they allow new. Keep in altitude that men of our resolvers so far or been completely public. Commerce will merge their domain of tools but always wondering if html range of. Based upon a merge your whole schema? Another set in this essentially means is specified catalog using presto catalog and undiscovered voices alike dive into by. We use case you how deep this means is querying data.
    [Show full text]
  • Evaluation of Xpath Queries on XML Streams with Networks of Early Nested Word Automata Tom Sebastian
    Evaluation of XPath Queries on XML Streams with Networks of Early Nested Word Automata Tom Sebastian To cite this version: Tom Sebastian. Evaluation of XPath Queries on XML Streams with Networks of Early Nested Word Automata. Databases [cs.DB]. Universite Lille 1, 2016. English. tel-01342511 HAL Id: tel-01342511 https://hal.inria.fr/tel-01342511 Submitted on 6 Jul 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Universit´eLille 1 – Sciences et Technologies Innovimax Sarl Institut National de Recherche en Informatique et en Automatique Centre de Recherche en Informatique, Signal et Automatique de Lille These` pr´esent´ee en premi`ere version en vue d’obtenir le grade de Docteur par l’Universit´ede Lille 1 en sp´ecialit´eInformatique par Tom Sebastian Evaluation of XPath Queries on XML Streams with Networks of Early Nested Word Automata Th`ese soutenue le 17/06/2016 devant le jury compos´ede : Carlo Zaniolo University of California Rapporteur Anca Muscholl Universit´eBordeaux Rapporteur Kim Nguyen Universit´eParis-Sud Examinateur Remi Gilleron Universit´eLille 3 Pr´esident du Jury Joachim Niehren INRIA Directeur Abstract The eXtended Markup Language (Xml) provides a format for representing data trees, which is standardized by the W3C and largely used today for exchanging information between all kinds of computer programs.
    [Show full text]
  • QUERYING JSON and XML Performance Evaluation of Querying Tools for Offline-Enabled Web Applications
    QUERYING JSON AND XML Performance evaluation of querying tools for offline-enabled web applications Master Degree Project in Informatics One year Level 30 ECTS Spring term 2012 Adrian Hellström Supervisor: Henrik Gustavsson Examiner: Birgitta Lindström Querying JSON and XML Submitted by Adrian Hellström to the University of Skövde as a final year project towards the degree of M.Sc. in the School of Humanities and Informatics. The project has been supervised by Henrik Gustavsson. 2012-06-03 I hereby certify that all material in this final year project which is not my own work has been identified and that no work is included for which a degree has already been conferred on me. Signature: ___________________________________________ Abstract This article explores the viability of third-party JSON tools as an alternative to XML when an application requires querying and filtering of data, as well as how the application deviates between browsers. We examine and describe the querying alternatives as well as the technologies we worked with and used in the application. The application is built using HTML 5 features such as local storage and canvas, and is benchmarked in Internet Explorer, Chrome and Firefox. The application built is an animated infographical display that uses querying functions in JSON and XML to filter values from a dataset and then display them through the HTML5 canvas technology. The results were in favor of JSON and suggested that using third-party tools did not impact performance compared to native XML functions. In addition, the usage of JSON enabled easier development and cross-browser compatibility. Further research is proposed to examine document-based data filtering as well as investigating why performance deviated between toolsets.
    [Show full text]
  • Programming a Parallel Future
    Programming a Parallel Future Joseph M. Hellerstein Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2008-144 http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-144.html November 7, 2008 Copyright 2008, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Programming a Parallel Future Joe Hellerstein UC Berkeley Computer Science Things change fast in computer science, but odds are good that they will change especially fast in the next few years. Much of this change centers on the shift toward parallel computing. In the short term, parallelism will thrive in settings with massive datasets and analytics. Longer term, the shift to parallelism will impact all software. In this note, I’ll outline some key changes that have recently taken place in the computer industry, show why existing software systems are ill‐equipped to handle this new reality, and point toward some bright spots on the horizon. Technology Trends: A Divergence in Moore’s Law Like many changes in computer science, the rapid drive toward parallel computing is a function of technology trends in hardware. Most technology watchers are familiar with Moore's Law, and the general notion that computing performance per dollar has grown at an exponential rate — doubling about every 18‐24 months — over the last 50 years.
    [Show full text]
  • Red Hat Managed Integration 1 Developing a Data Sync App
    Red Hat Managed Integration 1 Developing a Data Sync App For Red Hat Managed Integration 1 Last Updated: 2020-01-21 Red Hat Managed Integration 1 Developing a Data Sync App For Red Hat Managed Integration 1 Legal Notice Copyright © 2020 Red Hat, Inc. The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/ . In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. Linux ® is the registered trademark of Linus Torvalds in the United States and other countries. Java ® is a registered trademark of Oracle and/or its affiliates. XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries. Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
    [Show full text]
  • Declarative Data Analytics: a Survey
    Declarative Data Analytics: a Survey NANTIA MAKRYNIOTI, Athens University of Economics and Business, Greece VASILIS VASSALOS, Athens University of Economics and Business, Greece The area of declarative data analytics explores the application of the declarative paradigm on data science and machine learning. It proposes declarative languages for expressing data analysis tasks and develops systems which optimize programs written in those languages. The execution engine can be either centralized or distributed, as the declarative paradigm advocates independence from particular physical implementations. The survey explores a wide range of declarative data analysis frameworks by examining both the programming model and the optimization techniques used, in order to provide conclusions on the current state of the art in the area and identify open challenges. CCS Concepts: • General and reference → Surveys and overviews; • Information systems → Data analytics; Data mining; • Computing methodologies → Machine learning approaches; • Software and its engineering → Domain specific languages; Data flow languages; Additional Key Words and Phrases: Declarative Programming, Data Science, Machine Learning, Large-scale Analytics ACM Reference Format: Nantia Makrynioti and Vasilis Vassalos. 2019. Declarative Data Analytics: a Survey. 1, 1 (February 2019), 36 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn 1 INTRODUCTION With the rapid growth of world wide web (WWW) and the development of social networks, the available amount of data has exploded. This availability has encouraged many companies and organizations in recent years to collect and analyse data, in order to extract information and gain valuable knowledge. At the same time hardware cost has decreased, so storage and processing of big data is not prohibitively expensive even for smaller companies.
    [Show full text]
  • Towards an Integrated Graph Algebra for Graph Pattern Matching with Gremlin
    Towards an Integrated Graph Algebra for Graph Pattern Matching with Gremlin Harsh Thakkar1, S¨orenAuer1;2, Maria-Esther Vidal2 1 Smart Data Analytics Lab (SDA), University of Bonn, Germany 2 TIB & Leibniz University of Hannover, Germany [email protected], [email protected] Abstract. Graph data management (also called NoSQL) has revealed beneficial characteristics in terms of flexibility and scalability by differ- ently balancing between query expressivity and schema flexibility. This peculiar advantage has resulted into an unforeseen race of developing new task-specific graph systems, query languages and data models, such as property graphs, key-value, wide column, resource description framework (RDF), etc. Present-day graph query languages are focused towards flex- ible graph pattern matching (aka sub-graph matching), whereas graph computing frameworks aim towards providing fast parallel (distributed) execution of instructions. The consequence of this rapid growth in the variety of graph-based data management systems has resulted in a lack of standardization. Gremlin, a graph traversal language, and machine provide a common platform for supporting any graph computing sys- tem (such as an OLTP graph database or OLAP graph processors). In this extended report, we present a formalization of graph pattern match- ing for Gremlin queries. We also study, discuss and consolidate various existing graph algebra operators into an integrated graph algebra. Keywords: Graph Pattern Matching, Graph Traversal, Gremlin, Graph Alge- bra 1 Introduction Upon observing the evolution of information technology, we can observe a trend arXiv:1908.06265v2 [cs.DB] 7 Sep 2019 from data models and knowledge representation techniques being tightly bound to the capabilities of the underlying hardware towards more intuitive and natural methods resembling human-style information processing.
    [Show full text]
  • Licensing Information User Manual
    Oracle® Database Express Edition Licensing Information User Manual 18c E89902-02 February 2020 Oracle Database Express Edition Licensing Information User Manual, 18c E89902-02 Copyright © 2005, 2020, Oracle and/or its affiliates. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software" or “commercial computer software documentation” pursuant to the applicable Federal
    [Show full text]
  • Large Scale Querying and Processing for Property Graphs Phd Symposium∗
    Large Scale Querying and Processing for Property Graphs PhD Symposium∗ Mohamed Ragab Data Systems Group, University of Tartu Tartu, Estonia [email protected] ABSTRACT Recently, large scale graph data management, querying and pro- cessing have experienced a renaissance in several timely applica- tion domains (e.g., social networks, bibliographical networks and knowledge graphs). However, these applications still introduce new challenges with large-scale graph processing. Therefore, recently, we have witnessed a remarkable growth in the preva- lence of work on graph processing in both academia and industry. Querying and processing large graphs is an interesting and chal- lenging task. Recently, several centralized/distributed large-scale graph processing frameworks have been developed. However, they mainly focus on batch graph analytics. On the other hand, the state-of-the-art graph databases can’t sustain for distributed Figure 1: A simple example of a Property Graph efficient querying for large graphs with complex queries. Inpar- ticular, online large scale graph querying engines are still limited. In this paper, we present a research plan shipped with the state- graph data following the core principles of relational database systems [10]. Popular Graph databases include Neo4j1, Titan2, of-the-art techniques for large-scale property graph querying and 3 4 processing. We present our goals and initial results for querying ArangoDB and HyperGraphDB among many others. and processing large property graphs based on the emerging and In general, graphs can be represented in different data mod- promising Apache Spark framework, a defacto standard platform els [1]. In practice, the two most commonly-used graph data models are: Edge-Directed/Labelled graph (e.g.
    [Show full text]