Above, X Below)

Total Page:16

File Type:pdf, Size:1020Kb

Above, X Below) Durham E-Theses A polarimetric study of ETA carinae and the carina nebula Carty, T. F. How to cite: Carty, T. F. (1979) A polarimetric study of ETA carinae and the carina nebula, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8206/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk .A POLARIMETRIC STUDY OF ETA CARINAE AND THE CARINA NEBULA BY T.F. CARTY The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. SECTION A thesis submitted to the University of Durham for the degree of Doctor of Philosophy April 1979 ABSTRACT This thesis contains an account of some of the work undertaken by the author while a member of the Astronomy Group at the University of Durham. The work of the group involves the measurement and ..interpretation of the linear polarization in nebular astronomical objects. The initial chapters briefly describe the theory of polarized light and the. method of observing linear polarization, along with an indication of the techniques involved when analyzing the data. Chapter three is a review of recent work on interstellar grains with a siammary of the present ideas on the nature of the grains. The next chapter summarizes the observations of the peculiar object n Carinae and in the following chapter, a polarization map of the nebulosity around n Carinae is presented and a model determined to account for the observed linear polarization. The model involves the assumption of a bipolar type geometry for n Carinae with a size distribution of silicate grains of the form p 0.85 n(a) = exp -[f/0.022_ and it is found that grains of .15y contribute most to the scattering at optical wavelengths. Using the same distribution it is found that maximum emission at lOy can be expected from grains of size .ly . The final chapter contains observations of the linear polarization in the Carina Nebula in the region of n Carinae, and the results are interpreted in the light of present ideas concerning n Carinae and its relationship with the Carinae Nebula. It seems that the light from n Carinae is being reflected by clouds in the Carina Nebula. CONTENTS page INTRODUCTICN CHAPTER 1 POLARIZED LIGHT 1.1 Wave Polarization 3 1.2 The Stokes' Parameters 3 1.3 The Polarization Ellipse 5 1.4 Determination of the Stokes' Parameters 7 References 10 CHAPTER 2 1HE NEBDLAR POLARIMETER AND REDUCTION TECHNIQUE 2.1 Intxoduction 11 2.2 The Nebular Polarimeter 11 2.3 TSie Electronographic Camera 11 2.4 Reduction of the Data 13 References 18 CHAPTER 3 INTERSTELLAR DUST GRAINS 3.1 Introduction 19 3.2 Interstellar Extinction 19 3.3 Interstellar Polarization 26 3.4 Far Infrared Observations 29 3.5 Ccanetary Dust 30 3.6 Summary 31 References 33 CHAPTER 4 ETA CARINAE 4.1 Ecirly History 35 4.2 The Structure of Eta Carinae 39 4.3 Modern Light Curve Measurements 42 4.4 Optical Spectrum 43 4.5 Infrared Measurements 46 4.6 The Nature of Eta Carinae 47 References 51 SECTION - 2 - Page CHAPTER 5 A DUST SCATTERING MODEL OF THE ETA CARINAE NEBULA 5.1 The Data 53 5.2 The Polarization Map 54 5.3 The Model 55 5.4 Method of Computation 56 5.5 Results 60 5.6 Emission at lOy 62 5.7 Calculation of R 62 5.8 Discussion 64 5.9 Conclusions 65 References 67 CHAP1ER 6 A POLARIMETRIC INVESTIGATION OF THE - . CARINA NEBULA NEAR T\ CARINAE 6.1 Introduction 68 6.2 Observations of the Carina Nebula 70 6.3 7\nalysis of the Data 78 6.4 The Polarization Map 81 6.5 Discussion 82 6.6 Conclusions 84 References 86 GENERAL CONCLUSIONS 88 Appendix 89 ACKNOWLEDGEMENTS 93 INTRODUCTION ' ' ' ' "Spiarred by discoveries of elliptical poleirization, by the combination of photometry and polarimetry, by the introduction of new computers and instruments, including those on spacecraft and by the growing realization of the usefulness of these techniques when supported by well- developed interpretive theories " (Gehrels, 1974) there has, in recent years, been a wave of activity in polarimetry. With most astronomical problems, there, are many parameters to solve. For example, the geometry and aspect of a reflecting object with respect to the light source must be determined or assumed and this may be complicated by'a dependence on wavelength as in the case of planetary atmospheres where penetration depends on the wavelength of the incident and emergent light. Also dependent on the wavelength is the complex refractive index and the number of scatterers or optical depth of atmosphere,. Distribution of sizes and shapes of particles must also be determined and whether or not they are preferentially aligned. In order to solve for all these parameters many independant phenomena must be observed. Since the object is extremely remote, solution of the astronomical problem requires that observations of the light emitted or reflected by the body be made in the fullest detail, and hence the need for light scattering theories is obvious. From the beginning the development of light.scattering theories has been linked with astronomy. Computations on the radiation pressure exerted on perfectly conducting spheres were made before 1900 in order to explain the theory of comet tails.. Since 1930 much attention has been peiid to the optical properties viz scattering and/or extinction of inter• stellar grains.. Later work on scattering by cylinders was aimed at explaining interstellar polarization, • • V ' • • • . • . ' • • Laboratory work in formulating physical and chemical theories of the properties of such grains in the ambient gas and radiation field have complemented the basic data which should be obtained over as many parameters as possible. Therefore, results of radioastronomy, spectroscopy, photometry, radial velocity studies, and direct photographs and visual observations should be added to those of polarimetry over as large a : range of wavelengths and phases as possible. This is especially important in objects such as the Carina Nebula which present strikingly different appearances at different wavelengths. Also in n Carinae, vrtiere previous observations have suggested a particular geometry and grain type as the nature of the scattering particle, present poiarimetric observations may allow the determination of a size distribution of grains, but fut\are poiarimetric observations along with techniques previously mentioned, at different wavelengths, will be very important in completely determining the nature of this peculiar object. CHAPTER 1 POLARIZED LIGHT 1.1 WAVE POLARIZATION Lig^t is a superposition of many electromagnetic waves, each exhibiting transverse, sinusoidal vibrations, and satisfying Mcixwell's Equations. The direction and amplitude of each wave is chciracterized by its electric field vector E_ and its magnetic field vector H. C.G .Stokes (1852) was the first to investigate in detail the phenomenon of 'polarized', as opposed to 'natureil' light. He defined natural li^t as :- 'Light which is incapable of exhibiting rings of any kind when examined by a crystal of Icelcind spar and an analyzer or by some equivalent combination'. This is equivalent to saying that, on average, natural light has no preferred orientation for the direction of its E vector. Polarized light, on the other hand, arises when the direction of vibration of the light is restricted in some manner from its natural random• ness. Ploine polarization arises when the vibrations are confined to one plane. When the plane of polarization of polarized light rotates with time, eind the an^jlitude of vibration varies, elliptical polarization occurs, if the amplitude of vibration of elliptically polarized light remains the same, the light is said to be circularly polarized. Mixtures of these different, polarizations are found in nature. 1.2 THE STOKES' PARAMETERS The polarization of a beam of light may be completely chciracterized by four vectors : I, Q, U and V, which were introduced by C.G.Stokes (1852) as follows :- 'When euay number of independent polarized streams of given refrangibility cire mixed together, the nature of the mixture is completely determined by the values of four constants which . are certain functions of the intensities of the streams, and of the azimuths and eccentricities of the ellipses by which they are respectively characterized, so that any two groups of polarized streams which furnish the same values for each of these four constants are optically eqtiivalent'. An extension of this is the 'Principle of Equivalence' which states that it is iu^jossible by means of any instriunents to distinguish between "various incoherent sums of electromagnetic waves that may together form a beam with the Stokes' Parameters (I, Q, U, V). Hence, there is only one kind of naturai light with (I, Q, U, V) = (1, 0, 0, 0) wliich theoretically may be composed of waves in an infinite vzuriety of ways. The essential property of the Stokes' Parameters is their additivity in the superposition of two independent beams of light, corresponding to the absence of any interference.
Recommended publications
  • Chemical Abundances for the Transiting Planet Host Stars OGLE-TR-10, 56, 111, 113, 132, and Tres-1, Abundances in Different Galactic Populations
    A&A 458, 997–1005 (2006) Astronomy DOI: 10.1051/0004-6361:20065683 & c ESO 2006 Astrophysics Chemical abundances for the transiting planet host stars OGLE-TR-10, 56, 111, 113, 132, and TrES-1, Abundances in different galactic populations N. C. Santos1,2,3, A. Ecuvillon4, G. Israelian4, M. Mayor2,C.Melo5,D.Queloz2,S.Udry2, J. P. Ribeiro1,andS.Jorge1 1 Centro de Astronomia e Astrofísica da Universidade de Lisboa, Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa, Portugal e-mail: [email protected] 2 Observatoire de Genève, 51 Ch. des Maillettes, 1290 Sauverny, Switzerland 3 Centro de Geofisica de Évora, Rua Romão Ramalho 59, 7002-554 Évora, Portugal 4 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain 5 European Southern Observatory, Casilla 19001, Santiago 19, Chile Received 24 May 2006 / Accepted 22 June 2006 ABSTRACT Aims. We used the UVES spectrograph (VLT-UT2 telescope) to obtain high-resolution spectra of 6 stars hosting transiting planets, namely for OGLE-TR-10, 56, 111, 113, 132, and TrES-1. These spectra are now used to derive and discuss the chemical abundances forC,O,Na,Mg,Al,Si,S,Ca,Sc,Ti,V,Cr,Mn,Co,Ni,Cu,andZn. Methods. Abundances were derived in LTE, using 1D plane-parallel Kurucz model atmospheres. For S, Zn, and Cu, we used a spectral synthesis procedure, while for the remaining cases the abundances were derived from measurements of line-equivalent widths. Results. The resulting abundances were compared with those found for stars in the solar neighborhood. Distances and galactic coordinates were estimated for the stars.
    [Show full text]
  • Dear Supervisors- Attached Please Find Our Letter of Opposition to the SCA Ordinance for Sleepy Hollow As Drafted by Our Attorne
    From: Andrea Taber To: Rice, Katie; Kinsey, Steven; Adams, Susan; Arnold, Judy; Sears, Kathrin Cc: Dan Stein; Thorsen, Suzanne; Lai, Thomas Subject: Sleepy Hollow Homeowners Association Letter of Oppostion to the SCA Ordinance Date: Wednesday, May 22, 2013 8:12:53 PM Attachments: Document4.docx Dear Supervisors- Attached please find our letter of opposition to the SCA Ordinance for Sleepy Hollow as drafted by our attorney Neil Moran of Freitas McCarthy MacMahon & Keating, LLP. Sleepy Hollow Homeowners Association May 3, 2013 Board of Supervisors of Marin County 3501 Civil Center Drive San Rafael, CA 94903-4157 Re: Stream Conservation Area (SCA) Proposed Amendments to the Development Code Honorable Members of the Board of Supervisors: INTRODUCTION The Sleepy Hollow Homes Association (SHHA) objects to the proposed changes to Chapters 22.33 (Stream Protection) and 22.63 (Stream Conservation Area Permit) as they would apply to the residents of the unincorporated portion of San Anselmo known as Sleepy Hollow. We ask that the County exempt and/or delay implementation of any changes to Chapters 22.33 and 22.63 as to the city-centered corridor streams, including Sleepy Hollow. The SHHA supports implementation of the proposed amendments to the San Geronimo Valley, to protect wildlife habitat in streams where Coho Salmon currently exist. The SHHA supports regulations to ensure the health and survival of the species in these areas. The SHHA recognizes the urgency of this matter to the San Geronimo Valley, both for the survival of the endangered and declining Coho population and for the property rights of the affected residents who are currently subject to a building moratorium.
    [Show full text]
  • Understanding the X-Ray Flaring from N Carinae A
    To be Submitted to the Astrophysical Journal Understanding the X-ray Flaring from n Carinae A. F. J. Moffat Departement de physique, UniversiM de Montreal, Succursale Centre-Ville, Montreal, QC, H3C V7, and Centre de recherche en astrophysique du Quebec, Canada [email protected] M. F. Corcoranl CRESST and X-ray Astrophysics Laboratory NASA/GSFC, Greenbelt, jWD 20771, USA [email protected] ABSTRACT We quantify the rapid variations in X-ray brightness ( "flares") from the ex- tremely massive colliding wind binary n Carinae seen during the past three or- bital cycles by RXTE. The observed flares tend to be shorter in duration and more frequent as periastron is approached, although the largest ones tend to be roughly constant in strength at all phases. Plausible scenarios include (1) the largest of multi-scale stochastic wind clumps from the LBV component entering and compressing the hard X-ray emitting wind-wind collision (WWC) zone, (2) large-scale corotating interacting regions in the LBV wind sweeping across the WWC zone, or (3) instabilities intrinsic to the WWC zone. The first one appears to be most consistent with the observations, requiring homologously expanding clumps as they propagate outward in the LBV wind and a turbulence-like power- law distribution of clumps, decreasing in number towards larger sizes, as seen in Wolf-Rayet winds. Subject headings: X-rays: stars — stars: early-type — stars: individual (p Car) — stars: LBV 'Universities Space Research Association, 10211 W incopin Circle. Suite 500 Columbia, 1v1D 21044, USA. -2— 1. Introduction The extremely massive binary star rl Carinae consists of a Luminous Blue Variable (LBV) primary (star A) coupled with a hot, fast-wind secondary (star B) which is probably an evolved 0 star (Verner et al.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • VOLANS-CARINA: a NEW 90 Myr OLD STELLAR ASSOCIATION at 85 Pc
    Draft version August 15, 2018 Typeset using LATEX twocolumn style in AASTeX62 VOLANS-CARINA: A NEW 90 Myr OLD STELLAR ASSOCIATION AT 85 pc Jonathan Gagne´,1, 2 Jacqueline K. Faherty,3 and Eric E. Mamajek4, 5 1Carnegie Institution of Washington DTM, 5241 Broad Branch Road NW, Washington, DC 20015, USA 2NASA Sagan Fellow 3Department of Astrophysics, American Museum of Natural History, Central Park West at 79th St., New York, NY 10024, USA 4Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA 5Department of Physics & Astronomy, University of Rochester, Rochester, NY 14627, USA Submitted to ApJ ABSTRACT We present a characterization of the new Volans-Carina Association (VCA) of stars near the Galactic plane (b ' -10°) at a distance of ' 75{100 pc, previously identified as group 30 by Oh et al.(2017). We compile a list of 19 likely members from Gaia DR2 with spectral types B8{M2, and 46 additional candidate members from Gaia DR2, 2MASS and AllWISE with spectral types A0{M9 that require +5 further follow-up for confirmation. We find an isochronal age of 89−7 Myr based on MIST isochrones calibrated with Pleiades members. This new association of stars is slightly younger than the Pleiades, with less members but located at a closer distance, making its members ' 3 times as bright than those of the Pleiades on average. It is located further than members of the AB Doradus moving group which have a similar age, but it is more compact on the sky which makes it less prone to contamination from random field interlopers.
    [Show full text]
  • ASTRONOMICAL HANDBOOK for SOUTHERN AFRICA 1978 Published by the Astronomical Society of Southern Africa
    ASTRONOMICAL HANDBOOK FOR SOUTHERN AFRICA 1978 published by the Astronomical Society of Southern Africa : X._" . X ï Proposed Durban Observatory 1881 ASTRONOMICAL HANDBOOK FOR SOUTHERN AFRICA 1978 This booklet is intended both as an introduction to observational astronomy for the interested layman - even if his interest is only a passing one - and as a handbook for the established amateur or professional astronomer. Front Cover: Edmund (Neison) Nevill's Durban Observatory, 1822-1912 (Demolished late 1957) ® the Astronomical Society of Southern Africa, Cape Town. 1977 CONTENTS ASTRONOMY IN SOUTHERN AFRICA .......................................................................................... 1 DIARY .......................................................... 4 THE SUN ......................................................................................................................................... 6 THE MOON ...................................................... 8 THE PLANETS................................................................................................................................. I 7 THE MOONS OF JUPITER AND SATURN ...................................................................................... 23 COMETS AND METEORS.............................................................................................................. 28 THE STARS ..................................................................................................................................... 30 ORDINARY OCCULTATIONS........................................................................................................
    [Show full text]
  • Exoplanet Community Report
    JPL Publication 09‐3 Exoplanet Community Report Edited by: P. R. Lawson, W. A. Traub and S. C. Unwin National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California March 2009 The work described in this publication was performed at a number of organizations, including the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Publication was provided by the Jet Propulsion Laboratory. Compiling and publication support was provided by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government, or the Jet Propulsion Laboratory, California Institute of Technology. © 2009. All rights reserved. The exoplanet community’s top priority is that a line of probe­class missions for exoplanets be established, leading to a flagship mission at the earliest opportunity. iii Contents 1 EXECUTIVE SUMMARY.................................................................................................................. 1 1.1 INTRODUCTION...............................................................................................................................................1 1.2 EXOPLANET FORUM 2008: THE PROCESS OF CONSENSUS BEGINS.....................................................2
    [Show full text]
  • High Accuracy Transit Photometry of the Planet OGLE-TR-113B with a New Deconvolution-Based Method
    A&A 459, 249–255 (2006) Astronomy DOI: 10.1051/0004-6361:20065844 & c ESO 2006 Astrophysics High accuracy transit photometry of the planet OGLE-TR-113b with a new deconvolution-based method M. Gillon1,2,F.Pont1, C. Moutou3, F. Bouchy4,5, F. Courbin6, S. Sohy2, and P. Magain2 1 Observatoire de Genève, 51 Chemin des Maillettes, 1290 Sauverny, Switzerland e-mail: [email protected] 2 Institut d’Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août 17, Bat. B5C, Liège 1, Belgium 3 LAM, Traverse du Siphon, BP 8, Les Trois Lucs, 13376 Marseille Cedex 12, France 4 Observatoire de Haute-Provence, 04870 St-Michel l’Observatoire, France 5 Institut d’Astrophysique de Paris, 98bis Bd Arago, 75014 Paris, France 6 Laboratoire d’Astrophysique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire, 1290 Sauverny, Switzerland Received 16 June 2006 / Accepted 10 July 2006 ABSTRACT A high accuracy photometry algorithm is needed to take full advantage of the potential of the transit method for the characterization of exoplanets, especially in deep crowded fields. It has to reduce to the lowest possible level the negative influence of systematic effects on the photometric accuracy. It should also be able to cope with a high level of crowding and with large-scale variations of the spatial resolution from one image to another. A recent deconvolution-based photometry algorithm fulfills all these requirements, and it also increases the resolution of astronomical images, which is an important advantage for the detection of blends and the discrimination of false positives in transit photometry.
    [Show full text]
  • Arxiv:0908.2624V1 [Astro-Ph.SR] 18 Aug 2009
    Astronomy & Astrophysics Review manuscript No. (will be inserted by the editor) Accurate masses and radii of normal stars: Modern results and applications G. Torres · J. Andersen · A. Gim´enez Received: date / Accepted: date Abstract This paper presents and discusses a critical compilation of accurate, fun- damental determinations of stellar masses and radii. We have identified 95 detached binary systems containing 190 stars (94 eclipsing systems, and α Centauri) that satisfy our criterion that the mass and radius of both stars be known to ±3% or better. All are non-interacting systems, so the stars should have evolved as if they were single. This sample more than doubles that of the earlier similar review by Andersen (1991), extends the mass range at both ends and, for the first time, includes an extragalactic binary. In every case, we have examined the original data and recomputed the stellar parameters with a consistent set of assumptions and physical constants. To these we add interstellar reddening, effective temperature, metal abundance, rotational velocity and apsidal motion determinations when available, and we compute a number of other physical parameters, notably luminosity and distance. These accurate physical parameters reveal the effects of stellar evolution with un- precedented clarity, and we discuss the use of the data in observational tests of stellar evolution models in some detail. Earlier findings of significant structural differences between moderately fast-rotating, mildly active stars and single stars, ascribed to the presence of strong magnetic and spot activity, are confirmed beyond doubt. We also show how the best data can be used to test prescriptions for the subtle interplay be- tween convection, diffusion, and other non-classical effects in stellar models.
    [Show full text]
  • Abundances of Massive Stars in Carina Nebula Within the Gaia- ESO Survey
    Abundances of massive stars in Carina Nebula within the Gaia- ESO Survey Laurent Mahy University of Liège / KU Leuven F. Martins, A. Blazère, S. Rodriguez Berlanas, A. Herrero, E. Gosset,… (and the GES WG13) 1 Overview • Massive stars • Multiplicity • Determination of surface abundances ‣ Helium abundance ‣ CNO abundances and comparison with another survey • Conclusion and perspectives Overview • Massive stars • Multiplicity • Determination of surface abundances ‣ Helium abundance ‣ CNO abundances and comparison with another survey • Conclusion and perspectives M > 8 M log (L/L • M ~10 Age < 10 Myr Rare 4 M > 8 M log (L/L • M ~10 Age < 10 Myr Rare 4 Overview • Massive stars • Multiplicity • Determination of surface abundances ‣ Helium abundance ‣ CNO abundances and comparison with another survey • Conclusion and perspectives Trumpler 15 Collinder 232 Trumpler 14 • presumably single • SB2 Trumpler 16 Collinder 228 6 Trumpler 15 Collinder 232 Trumpler 14 • presumably single • SB2 Trumpler 16 Collinder 228 6 Trumpler 15 Collinder 232 Trumpler 14 • presumably single • SB2 Trumpler 16 But other brighter massive stars exist in Collinder 228 Carina nebula 6 Multiplicity GES: 1 epoch In massive star population: ~ 70% of binaries up to 90% if P>3500 days 7 Sana & Evans (2011) Multiplicity GES: 1 epoch In massive star population: ~ 70% of binaries up to 90% if P>3500 days 7 Sana & Evans (2011) Multiplicity GES: 1 epoch In massive star population: ~ 70% of binaries up to 90% if P>3500 days 7 Sana & Evans (2011) Multiplicity GES: 1 epoch In massive star population: ~ 70% of binaries up to 90% if P>3500 days 7 Sana & Evans (2011) Multiplicity GES: 1 epoch In massive star population: ~ 70% of binaries up to 90% if P>3500 days 7 Sana & Evans (2011) Multiplicity • Lower binary fraction in Tr14 ~ 13.7% (see S.
    [Show full text]
  • Arxiv:2006.10868V2 [Astro-Ph.SR] 9 Apr 2021 Spain and Institut D’Estudis Espacials De Catalunya (IEEC), C/Gran Capit`A2-4, E-08034 2 Serenelli, Weiss, Aerts Et Al
    Noname manuscript No. (will be inserted by the editor) Weighing stars from birth to death: mass determination methods across the HRD Aldo Serenelli · Achim Weiss · Conny Aerts · George C. Angelou · David Baroch · Nate Bastian · Paul G. Beck · Maria Bergemann · Joachim M. Bestenlehner · Ian Czekala · Nancy Elias-Rosa · Ana Escorza · Vincent Van Eylen · Diane K. Feuillet · Davide Gandolfi · Mark Gieles · L´eoGirardi · Yveline Lebreton · Nicolas Lodieu · Marie Martig · Marcelo M. Miller Bertolami · Joey S.G. Mombarg · Juan Carlos Morales · Andr´esMoya · Benard Nsamba · KreˇsimirPavlovski · May G. Pedersen · Ignasi Ribas · Fabian R.N. Schneider · Victor Silva Aguirre · Keivan G. Stassun · Eline Tolstoy · Pier-Emmanuel Tremblay · Konstanze Zwintz Received: date / Accepted: date A. Serenelli Institute of Space Sciences (ICE, CSIC), Carrer de Can Magrans S/N, Bellaterra, E- 08193, Spain and Institut d'Estudis Espacials de Catalunya (IEEC), Carrer Gran Capita 2, Barcelona, E-08034, Spain E-mail: [email protected] A. Weiss Max Planck Institute for Astrophysics, Karl Schwarzschild Str. 1, Garching bei M¨unchen, D-85741, Germany C. Aerts Institute of Astronomy, Department of Physics & Astronomy, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium and Department of Astrophysics, IMAPP, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands G.C. Angelou Max Planck Institute for Astrophysics, Karl Schwarzschild Str. 1, Garching bei M¨unchen, D-85741, Germany D. Baroch J. C. Morales I. Ribas Institute of· Space Sciences· (ICE, CSIC), Carrer de Can Magrans S/N, Bellaterra, E-08193, arXiv:2006.10868v2 [astro-ph.SR] 9 Apr 2021 Spain and Institut d'Estudis Espacials de Catalunya (IEEC), C/Gran Capit`a2-4, E-08034 2 Serenelli, Weiss, Aerts et al.
    [Show full text]
  • The Star Cluster Collinder 232 in the Carina Complex and Its Relation to Trumpler 14/16 Almost Coeval
    Astronomy & Astrophysics manuscript no. AA0335 August 15, 2018 (DOI: will be inserted by hand later) The star cluster Collinder 232 in the Carina complex and its relation to Trumpler 14/16⋆ Giovanni Carraro1,2, Martino Romaniello2, Paolo Ventura3, and Ferdinando Patat2 1 Dipartimento di Astronomia, Universit`adi Padova, vicolo dell’Osservatorio 2, I-35122, Padova, Italy 2 European Southern Observatory, Karl-Schwarzschild-Str 2, D-85748 Garching b. M¨unchen, Germany 3 Osservatorio Astronomico di Roma, Via di Frascati 33, I-00040, Monte Porzio Catone, Italy Received September 2003; accepted Abstract. In this paper we present and analyze new CCD UBV RI photometry down to V ≈ 21 in the region of the young open cluster Collinder 232, located in the Carina spiral arm, and discuss its relationship to Trumpler 14 and Trumpler 16, the two most prominent young open clusters located in the core of NGC 3372 (the Carina Nebula). First of all we study the extinction pattern in the region. We find that the total to selective absorption ratio RV differs from cluster to cluster, being 3.48 ± 0.11, 4.16 ± 0.07 and 3.73 ± 0.01 for Trumpler 16, Trumpler 14 and Collinder 232, respectively. Then we derive individual reddenings and intrinsic colours and magnitudes using the method devised by Romaniello et al. (2002). Ages, age spreads and distances are then estimated by comparing the Colour Magnitude Diagrams and the Hertzsprung-Russel diagram with post and pre-main sequence tracks and isochrones. We find that Trumpler 14 and Collinder 232 lie at the same distance from the Sun (about 2.5 kpc), whereas Trumpler 16 lies much further out, at about 4 kpc from the Sun.
    [Show full text]