Type 3 Diabetes Is Sporadic Alzheimer׳S Disease Mini-Review

Total Page:16

File Type:pdf, Size:1020Kb

Type 3 Diabetes Is Sporadic Alzheimer׳S Disease Mini-Review European Neuropsychopharmacology (2014) 24, 1954–1960 www.elsevier.com/locate/euroneuro Type 3 diabetes is sporadic Alzheimer's disease: Mini-review Suzanne M. de la Monten Departments of Medicine, Pathology, Neurology, and Neurosurgery, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, 55 Claverick Street, Room 419, Providence, RI 02903, USA Received 12 June 2014; accepted 20 June 2014 KEYWORDS Abstract Insulin resistance; Alzheimer's disease (AD) is the most common cause of dementia in North America. Growing Diabetes; evidence supports the concept that AD is a metabolic disease mediated by impairments in brain Glucose Metabolism; insulin responsiveness, glucose utilization, and energy metabolism, which lead to increased Alzheimer's; oxidative stress, inflammation, and worsening of insulin resistance. In addition, metabolic Nitrosamines derangements directly contribute to the structural, functional, molecular, and biochemical abnormalities that characterize AD, including neuronal loss, synaptic disconnection, tau hyperphosphorylation, and amyloid-beta accumulation. Because the fundamental abnormalities in AD represent effects of brain insulin resistance and deficiency, and the molecular and biochemical consequences overlap with Type 1 and Type 2 diabetes, we suggest the term “Type 3 diabetes” to account for the underlying abnormalities associated with AD-type neurodegen- eration. In light of the rapid increases in sporadic AD prevalence rates and vastly expanded use of nitrites and nitrates in foods and agricultural products over the past 30–40 years, the potential role of nitrosamine exposures as mediators of Type 3 diabetes is discussed. & 2014 Elsevier B.V. and ECNP. All rights reserved. 1. Alzheimer's disease and brain glucose Disorders and Stroke and the Alzheimer's Disease and starvation Related Disorders Association (NINCDS/ADRDA) and DSM-IV criteria (Cummings, 2007). Although neuroimaging and biomarker panels begin to facilitate its detection and Sporadic Alzheimer's disease (AD) is the most common cause severity (Gustaw-Rothenberg et al., 2010), a definitive of dementia in North America and its high incidence and diagnosis can only be rendered by postmortem examination prevalence rates now constitute an epidemic (de la Monte of the brain. AD presence and severity are gauged by the et al., 2009b). AD diagnosis is based on criteria set by distribution and abundance of related and characteristic the National Institute of Neurological and Communicative lesions, including neuronal loss, gliosis, insoluble aggregates of abnormally phosphorylated and ubiquitinated tau in the nTel.: +1 401 444 7364; fax: +1 401 444 2939. forms of neurofibrillary tangles, dystrophic neurites and E-mail address: [email protected] neuropil threads, and neurotoxic amyloid-beta precursor http://dx.doi.org/10.1016/j.euroneuro.2014.06.008 0924-977X/& 2014 Elsevier B.V. and ECNP. All rights reserved. Type 3 diabetes is sporadic Alzheimer's disease: Mini-review 1955 protein peptides (AβPP-Aβ) as oligomers, fibrillar aggre- The anti-apoptosis mechanisms that insulin/IGF-1 inhibit gates, or extracellular plaques. Secreted AβPP-Aβ oligomers include BAD (inhibitor of Bcl-2), Forkhead Box O (FoxO), are neurotoxic and inhibit synaptic plasticity (Walsh et al., glycogen synthase kinase 3β (GSK-3β), and nuclear factor 2002). Beyond these effects, AD is associated with degen- kappa B (NF-κB) (de la Monte et al., 2009a). GSK-3β regulates eration and disconnection of synaptic terminals, disruption Wnt signaling by phosphorylating β-catenin, leading to its of the cortical laminar architecture, neuro-inflammation, degradation via the ubiquitin–proteasome pathway (Cadigan and white matter fiber loss. and Liu, 2006; Foltz et al., 2002). Since Wnt mediates Over decades, the dominant hypothesis was that neuro- synaptic plasticity (Contestabile et al., 2013; Tabatadze degeneration is caused by one or two of the specific lesions et al., 2012; Varela-Nallar and Inestrosa, 2013), impairments that characterize AD, e.g. AβPP-Aβ accumulation, pTau in insulin/IGF signaling compromise cross-talk with various aggregation, or neuro-inflammation. However, a stream of Wnt functions in the brain. In essence, insulin/IGF pathways human and experimental studies has provided convincing support neuronal growth, survival, differentiation, migra- evidence that AD is a metabolic disease whereby the brain tion, energy metabolism, gene expression, protein synthesis, loses its capacity to efficiently utilize glucose for energy cytoskeletal assembly, synapse formation, neurotransmitter production and respond to critical trophic factor signals due function, and plasticity (Chesik et al., 2008; de la Monte and to insulin as well as insulin-like growth factor (IGF) resis- Wands, 2005; Gong et al., 2008; Liang et al., 2007). tance (Baker et al., 2011; Craft, 2007; Hoyer, 2002, 2004b; Correspondingly, impaired insulin/IGF signaling has dire Krikorian et al., 2010; Luchsinger, 2010; Neumann et al., effects on the CNS's structural and functional integrity. 2008; Rivera et al., 2005; Schubert et al., 2004; Steen et al., 2005; Talbot et al., 2012; Watson and Craft, 2006). The molecular and biochemical consequences of insulin and 3. Evidence of type 3 diabetes (brain insulin IGF resistance in the brain are similar to those in other and IGF resistance and deficiency) in AD organs and tissues; however, in brain, insulin signaling impairments compromise neuronal survival, energy produc- The concept that AD represents a metabolic disease tion, gene expression, plasticity and white matter integrity stemmed from studies showing that deficits in cerebral (de la Monte, 2011; de la Monte et al., 2009a). Since glucose glucose utilization were present very early in the course is the primary fuel for the brain, deficits in glucose uptake of disease (Caselli et al., 2008; Langbaum et al., 2010; and utilization cause the brain to “starve”. With the Mosconi et al., 2008, 2009), either prior to, or coincident starvation comes oxidative stress, impairments in home- with the initial stages of cognitive dysfunction (Hoyer, ostasis, and increased cell death. Inhibition of insulin/IGF 2004a; Iwangoff et al., 1980). Deficits in cerebral glucose signaling mediates AD neurodegeneration due to increased: utilization and energy metabolism worsen with progression 1) activity of kinases that aberrantly phosphorylate tau; 2) of cognitive impairment (Hoyer et al., 1991). Furthermore, accumulation of AβPP-Aβ; 3) oxidative and endoplasmic human postmortem studies revealed that brains from clini- reticulum (ER) stress; 4) generation of reactive oxygen cally well-characterized patients with pathologically proven and reactive nitrogen species that damage proteins, RNA, AD have molecular and biochemical evidence of insulin and DNA, and lipids; 5) mitochondrial dysfunction; and 6) IGF resistance and deficiencies, as well as impairments in signaling through pro-inflammatory and pro-apoptosis cas- signal transduction (Rivera et al., 2005; Steen et al., 2005). cades (de la Monte, 2011, 2012; de la Monte et al., 2009a, Brain insulin/IGF resistance is manifested by reduced 2012). In addition, insulin resistance down-regulates target levels of insulin/IGF receptor binding and decreased respon- genes needed for cholinergic function, further compromis- siveness to insulin/IGF stimulation (Rivera et al., 2005; ing neuronal plasticity, memory, and cognition (de la Monte, Steen et al., 2005; Talbot et al., 2012), while insulin/IGF 2011; de la Monte et al., 2009a). deficiencies are associated with altered expression of insulin and IGF polypeptides in brain and cerebrospinal fluid (Hoyer, 2004a,b; Rivera et al., 2005; Steen et al., 2005). 2. Insulin and IGF actions in the brain These findings support the concept that chronic deficits in insulin signaling mediate the pathogenesis of AD (Steen In the central nervous system (CNS), insulin and IGF signal- et al., 2005). Moreover, AD could be regarded as a brain ing pathways play critical roles in cognitive function. disorder that has composite features of Type 1 (insulin Insulin, IGF-1 and IGF-2 polypeptide and receptor genes deficiency) and Type 2 (insulin resistance) diabetes. To are expressed in neurons (de la Monte and Wands, 2005) and consolidate this concept, we proposed that AD be referred glial cells (Broughton et al., 2007; Freude et al., 2009; to as, “Type 3 diabetes” (Rivera et al., 2005; Steen et al., Zeger et al., 2007) throughout the brain; their highest levels 2005). As insulin stimulates brain glucose uptake and are in structures that are heavily targeted by neurodegen- utilization (de la Monte and Wands, 2005), metabolism, eration, particularly AD (de la Monte et al., 2009a; de la memory, and cognition (Benedict et al., 2004; Craft et al., Monte and Wands, 2005). Insulin and IGFs regulate a wide 2003; Krikorian et al., 2010; Reger et al., 2006, 2008), range of neuronal functions through ligand–receptor binding insulin resistance/deficiency associated impairments in glu- and activation of intrinsic receptor tyrosine kinases. Sub- cose metabolism disrupt brain energy balance, increasing sequent interactions between phosphorylated receptors and oxidative stress, reactive oxygen species (ROS) production, insulin receptor substrate molecules mediate transmission DNA damage, and mitochondrial dysfunction, all of which of signals downstream, and thereby inhibit apoptosis, and drive pro-apoptosis, pro-inflammatory, and pro-AβPP-Aβ stimulate growth, survival, metabolism,
Recommended publications
  • Type 3 Diabetes and Its Role Implications in Alzheimer's Disease
    International Journal of Molecular Sciences Review Type 3 Diabetes and Its Role Implications in Alzheimer’s Disease 1, 2, 3 Thuy Trang Nguyen y, Qui Thanh Hoai Ta y, Thi Kim Oanh Nguyen , Thi Thuy Dung Nguyen 4,* and Vo Van Giau 5,6,* 1 Faculty of Pharmacy, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam; [email protected] 2 Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam; [email protected] 3 Faculty of Food Science and Technology, Ho Chi Minh City University of Food Industry, Ho Chi Minh City 700000, Vietnam; oanhntk@hufi.edu.vn 4 Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam 5 Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, 1342 Sungnam-daero, Sujung-gu, Seongnam-si, Gyeonggi-do 461-701, Korea 6 Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, 1342 Sungnam-daero, Sujung-gu, Seongnam-si, Gyeonggi-do 461-701, Korea * Correspondence: [email protected] (T.T.D.N.); [email protected] (V.V.G.) These authors contributed equally to this work. y Received: 12 April 2020; Accepted: 28 April 2020; Published: 30 April 2020 Abstract: The exact connection between Alzheimer’s disease (AD) and type 2 diabetes is still in debate. However, poorly controlled blood sugar may increase the risk of developing Alzheimer’s. This relationship is so strong that some have called Alzheimer’s “diabetes of the brain” or “type 3 diabetes (T3D)”. Given more recent studies continue to indicate evidence linking T3D with AD, this review aims to demonstrate the relationship between T3D and AD based on the fact that both the processing of amyloid-β (Aβ) precursor protein toxicity and the clearance of Aβ are attributed to impaired insulin signaling, and that insulin resistance mediates the dysregulation of bioenergetics and progress to AD.
    [Show full text]
  • Diabetes and Dementia Mario Barbagallo* and Ligia J
    Barbagallo and Dominguez. Int J Diabetes Clin Res 2015, 2:4 ISSN: 2377-3634 International Journal of Diabetes and Clinical Research Commentary: Open Access Diabetes and Dementia Mario Barbagallo* and Ligia J. Dominguez Geriatric Unit, Department DIBIMIS, University of Palermo, Italy *Corresponding author: Mario Barbagallo, UOC di Geriatria e Lungodegenza, AOUP Azienda Universitaria Policlinico, University of Palermo, Italy, Tel: +390916552885, Fax: +390916552952, E-mail: [email protected] speed and executive functions [13,14]. Not only frank dementia, Abstract but also mild cognitive impairment (MCI) is associated with DM2, Persons with type 2 diabetes mellitus (DM2) have an increased as well as an accelerated progression from MCI to dementia [15]. incidence of cognitive decline and dementia. An increased cortical Dementia is the most common comorbidity in persons with diabetes and subcortical atrophy has been found after controlling for in nursing homes [16]. vascular disease and inadequate cerebral circulation. A possible role of insulin resistance and hyperinsulinemia has been suggested Several studies on the cerebral structure of patients with diabetes to mediate the link between DM2 and Alzheimer’s Disease (AD). have evidenced increased cortical and subcortical atrophy (besides Altered insulin signaling may contribute to AD biochemical and increased leukoaraiosis and cerebrovascular disease), which were histopathological lesions. Both hyperglycemia and hypoglycemia associated with impaired cognitive performance [17,18]. Insulin may contribute to cognitive decline in DM2. Recurrent symptomatic and asymptomatic hypoglycemic episodes have been suggested itself and insulin resistance have been suggested as mediators of to cause subclinical brain damage, and permanent cognitive AD-type neurodegeneration. It has been proposed that AD may be impairment.
    [Show full text]
  • Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up of Diabetes Mellitus and Its Complications - 2019
    THE SOCIETY of ENDOCRINOLOGY and METABOLISM of TURKEY (SEMT) Clinical Practice Guideline for Diagnosis, Treatment and Follow-up of Diabetes Mellitus and Its Complications - 2019 English Version of the 12th Edition SEMT Diabetes Mellitus Working Group ISBN: 978-605-4011-39-1 CLINICAL PRACTICE GUIDELINE FOR DIAGNOSIS, TREATMENT, AND FOLLOW-UP OF DIABETES MELLITUS AND ITS COMPLICATIONS-2019 © SEMT -2019 This material has been published and distributed by The Society of Endocrinology and Metabolism of Turkey (SEMT). Whole or part of this guideline cannot be reproduced or used for commercial purposes without permission. THE SOCIETY of ENDOCRINOLOGY and METABOLISM of TURKEY (SEMT) Meşrutiyet Cad., Ali Bey Apt. 29/12, Kızılay 06420, Ankara, Turkey Phone. +90 312 425 2072 http://www.temd.org.tr ISBN: 978-605-4011-39-1 English Version of the 12th Edition Publishing Services BAYT Bilimsel Araştırmalar Basın Yayın ve Tanıtım Ltd. Şti. Ziya Gökalp Cad. 30/31 Kızılay 06420, Ankara, Turkey Phone. +90 312 431 3062 Fax +90 312 431 3602 www.bayt.com.tr Printing Miki Matbaacılık San. ve Tic. Ltd. Şti. Matbaacılar Sanayi Sitesi 1516/1 Sk. No. 27 İvedik, Yenimahalle / Ankara, Turkey Phone. +90 312 395 2128 Print Date: October 23, 2019 “Major achievements and important undertakings are only possible through collaborations” “Büyük işler, mühim teşebbüsler; ancak, müşterek mesai ile kabil-i temindir.” MUSTAFA KEMAL ATATÜRK, 1925 PREFACE Dear colleagues, The prevalence of diabetes has been increasing tremendously in the last few decades. As a result , medical professionals/ specialists from different fields encounter many diabetics in their daily practice. At this point, updated guidelines on diabetes management, which take regional specification into consideration is needed.
    [Show full text]
  • Diabetes and Health
    Diabetes and Health Diabetes Prevention and Control Program Population and Community Health Bureau Public Health Division NM Department of Health Jill Joseph, Nurse Consultant May 21, 2021 1190 S. St. Francis Drive • Santa Fe, NM 87505 • Phone: 505-827-2613 • Fax: 505-827-2530 • nmhealth.org • Jill Joseph BSN • Nurse Consultant, Diabetes Prevention and Control Program • [email protected] • (505) 476-7618 • There are no conflicts of interest to disclose 1190 S. St. Francis Drive • Santa Fe, NM 87505 • Phone: 505-827-2613 • Fax: 505-827-2530 • nmhealth.org Today’s Discussion • Introduction • Diabetes Basics • Diabetes defined • Common forms • Uncommon forms • Risk Factors/Complications • Management • Prevention • Questions 1190 S. St. Francis Drive • Santa Fe, NM 87505 • Phone: 505-827-2613 • Fax: 505-827-2530 • nmhealth.org New Mexico Department of Health Diabetes Prevention and Control Program • Prevent or delay diabetes • Prevent complications, disabilities, and burden associated with diabetes and related chronic conditions • Advance health equity to improve health outcomes and quality of life among all New Mexicans. 1190 S. St. Francis Drive • Santa Fe, NM 87505 • Phone: 505-827-2613 • Fax: 505-827-2530 • nmhealth.org JJ1 Diabetes and Prediabetes Why talk about these? • Because of the numbers • Because diabetes has profound effects on our bodies 1190 S. St. Francis Drive • Santa Fe, NM 87505 • Phone: 505-827-2613 • Fax: 505-827-2530 • nmhealth.org Slide 5 JJ1 Jill Joseph, 5/17/2021 Diabetes is: • A disorder of the body’s ability to process food for energy use. The food we eat is turned into glucose, or sugar, for our bodies to use for energy.
    [Show full text]
  • Pancreatic Diabetes
    CHAPTER Pancreatic Diabetes 163 Sidhartha Das, SK Tripathy, BP Panda INTRODUCTION and is now called Pancreatic Diabetes or Type 3c Diabetes. Pancreatic or pancreatogenic diabetes is a form of There was a time when the cyanide containing cassava secondary diabetes where pancreatic diseases with was thought to be the cause of chronic pancreatitis and exocrine deficiency leads to endocrine dysfunction diabetes. Epidemiological studies had shown that this resulting in defective glucose homeostasis. Though it type of diabetes was common in the countries of tropics was felt over last few decades that patient’s suffering where cassava consumption was high in the diet of from diabetes mellitus who have pancreatic diseases like countries like Brazil, Africa and South India particularly chronic pancreatitis, cystic fibrosis, post pancreatectomy Kerala. Now a days various causes of chronic pancreatitis states, pancreatic carcinoma etc. behave in a different are incrimated in Pancreatic Diabetes.3 1 manner from that of Type 1 & Type 2 diabetic patients , Later pancreatic diabetes due to other causes like chronic only over last few years it was proved to be a distinct pancreatitis, pancreatic carcinoma etc. was given separate entity needing specific tailored approach. DM due to recognition by ADA & WHO as Type 3C diabetes, in the cystic fibrosis was recognized as a distinct clinical state current classification & criteria for its diagnosis was laid because the patients have poor nutritional status, severe down. (Table 1) respiratory inflammatory symptoms, increased mortality rate from respiratory failure.2 They needed special care in EPIDEMIOLOGY evaluation and treatment. This type of secondary diabetes In the general population prevalence of Type 2 DM is was called CFRD (cystic fibrosis related diabetes) where around 8%.5 As awareness regarding the pancreatic exocrine defect altered the pancreatic endocrine system.
    [Show full text]
  • Can Alzheimer Disease Be a Form of Type 3 Diabetes?
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Archivio istituzionale della ricerca - Università di Palermo REJUVENATION RESEARCH Volume 15, Number 2, 2012 ª Mary Ann Liebert, Inc. DOI: 10.1089/rej.2011.1289 Can Alzheimer Disease Be a Form of Type 3 Diabetes? Giulia Accardi,1 Calogero Caruso,1 Giuseppina Colonna-Romano,1 Cecilia Camarda,2 Roberto Monastero,2 and Giuseppina Candore1 Abstract Alzheimer disease (AD) and metabolic syndrome are two highly prevalent pathological conditions of Western society due to incorrect diet, lifestyle, and vascular risk factors. Recent data have suggested metabolic syndrome as an independent risk factor for AD and pre-AD syndrome. Furthermore, biological plausibility for this rela- tionship has been framed within the ‘‘metabolic cognitive syndrome’’ concept. Due to the increasing aging of populations, prevalence of AD in Western industrialized countries will rise in the near future. Thus, new knowledge in the area of molecular biology and epigenetics will probably help to make an early molecular diagnosis of dementia. An association between metabolic syndrome and specific single-nucleotide poly- lmorphisms (SNPs) in the gene INPPL1, encoding for SHIP2, a SH2 domain-containing inositol 5-phosphatase involved in insulin signaling, has been described. According to recent data suggesting that Type 2 diabetes represents an independent risk factor for AD and pre-AD, preliminary results of a case–control study performed to test the putative association between three SNPs in the SHIP2 gene and AD show a trend toward association of these SNPs with AD. Introduction However, today some different pathophysiological theo- ries regarding AD exist, suggesting that the disease could be lzheimer disease (AD) is the most common form of driven by inflammation, vascular changes, and metabolic Adementia, accounting for more than 50% of all cases disorders.
    [Show full text]
  • Insulin in the Nervous System and the Mind: Functions in Metabolism, Memory, and Mood
    Insulin in the nervous system and the mind: Functions in metabolism, memory, and mood The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Lee, Seung-Hwan, Janice M. Zabolotny, Hu Huang, Hyon Lee, and Young-Bum Kim. 2016. “Insulin in the nervous system and the mind: Functions in metabolism, memory, and mood.” Molecular Metabolism 5 (8): 589-601. doi:10.1016/j.molmet.2016.06.011. http:// dx.doi.org/10.1016/j.molmet.2016.06.011. Published Version doi:10.1016/j.molmet.2016.06.011 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:29407539 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Review Insulin in the nervous system and the mind: Functions in metabolism, memory, and mood Seung-Hwan Lee 1,2,5, Janice M. Zabolotny 1,5, Hu Huang 1,3, Hyon Lee 4, Young-Bum Kim 1,* ABSTRACT Background: Insulin, a pleotrophic hormone, has diverse effects in the body. Recent work has highlighted the important role of insulin’s action in the nervous system on glucose and energy homeostasis, memory, and mood. Scope of review: Here we review experimental and clinical work that has broadened the understanding of insulin’s diverse functions in the central and peripheral nervous systems, including glucose and body weight homeostasis, memory and mood, with particular emphasis on intranasal insulin.
    [Show full text]
  • Living with Diabetes Module 02
    Living with Diabetes Module 02 0 2. Module 02: Other types of diabetes Table of Contents 2. Module 02: Other types of diabetes ......................................................................................................................... 1 2.1 Type 3 Diabetes .................................................................................................................................... 2 2.2 Gestational Diabetes, MODY, LADA, and other types of diabetes ........................................................ 3 2.3 Preparing for your first appointment ...................................................................................................... 5 1 2.1 Type 3 Diabetes Recently, researchers have found a connection between type 2 diabetes and Alzheimer’s, with many people now referring to Alzheimer’s as “type 3 diabetes” or “brain diabetes.” While many people who contract type 2 diabetes will go on to live normal, well-managed lives, the presence of type 2 diabetes seems to increase and individual’s chances of experiencing some form of dementia as he or she ages. Even though researchers are still working to clarify the exact connection between type 2 diabetes and Alzheimer’s, many trace the connection as follows: Diabetes causes an individual’s blood sugar level to increase. Increased blood sugar leads to inflammation in many parts of the body, including the brain. Additionally, the brain does not get the right amount of glucose that it needs to function effectively. Chronic inflammations of this type in the brain
    [Show full text]
  • DIABETES and COGNITIVE IMPAIRMENT José A
    CHAPTER 24 DIABETES AND COGNITIVE IMPAIRMENT José A. Luchsinger, MD, MPH, Christopher Ryan, PhD, and Lenore J. Launer, PhD Dr. José A. Luchsinger is Associate Professor of Medicine and Epidemiology, Columbia University Medical Center, New York, NY. Dr. Christopher Ryan is Director, Human Research Protection Program, University of California San Francisco, San Francisco, CA. Dr. Lenore J. Launer is Senior Investigator and Chief, Neuroepidemiology Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD. SUMMARY Cognitive impairment, ranging from mild cognitive impairment to dementia, is increasingly recognized as a potential complication of diabetes. The increase in the prevalence of diabetes along with the aging of the population may result in a large increase in the prevalence of cognitive impairment in persons with diabetes. Approximately one-third of the United States adult population has prediabetes or diabetes. However, about one-half of persons age ≥60 years, who are most at risk for cognitive impairment, have prediabetes or diabetes. The association of diabetes and cognitive impairment may reflect a direct effect on the brain of hyperglycemia or the effects of the diabetes-associated comorbidities, such as hypertension, dyslipidemia, or hyperinsulinemia. There is evidence for an effect of diabetes-related processes on both neurodegenerative and vascular processes, thus contributing to both Alzheimer’s-like cognitive impairment, i.e., amnestic, and cerebrovascular-type cognitive impairment characterized by impairment in executive cognitive function. This chapter reviews epidemiologic studies of the association between diabetes and cognitive impairment in large clinical or community- based studies, emphasizing studies in the United States.
    [Show full text]
  • Challenge of Diabetes Mellitus and Researchers' Contributions to Its
    Open Chemistry 2021; 19: 614–634 Review Article Ayodele T. Odularu*, Peter A. Ajibade Challenge of diabetes mellitus and researchers’ contributions to its control https://doi.org/10.1515/chem-2020-0153 from the beta cells in the pancreas [1]. The outcome is received November 28, 2018; accepted June 30, 2020 either high blood level/high glucose level (that is hyper- )[– ] Abstract: The aim of this review study was to assess the glycemia 1 6 or low blood level/high glucose level ( )[ ] past significant events on diabetes mellitus, transforma- that is hypoglycemia 7,8 . Complications arising from tions that took place over the years in the medical records high and low glucose levels when not treated lead to - of treatment, countries involved, and the researchers who atherosclerosis, ocular disorder, diabetic retinopathy, car - brought about the revolutions. This study used the con- diac abnormalities, cardiovascular diseases, renal dys [ – ] tent analysis to report the existence of diabetes mellitus function, and other diseases of the blood vessels 9 11 . ff and the treatments provided by researchers to control it. Medications are failing with side e ects, and there is The focus was mainly on three main types of diabetes the likelihood of more widespread diabetes this coming (type 1, type 2, and type 3 diabetes). Ethical consideration decade because of urbanization, growing and aging - has also helped to boost diabetic studies globally. The states of people, and increasing childhood and adult obe [ – ] research has a history path from pharmaceuticals of sities 12 15 . The present statistics of diabetic patients organic-based drugs to metal-based drugs with their is alarming with the prediction of higher subjects.
    [Show full text]
  • Brief Review on Diabetes – a Metabolic Disease
    Archives of Diabetes and Endocrine System ISSN 2638-4981 Volume 3, Issue 1, 2020, PP: 06-11 Brief Review on Diabetes – A Metabolic Disease Shivani Mehta*1 Dr.Shridhar Pandya2 1Sheriden College of Applied Science and Technology 2Gplife Healthcre Pvt Ltd *Corresponding Author: Shivani Mehta, Sheriden College of Applied Science and Technology, India. Introduction with obesity those with type 2 DM. Gestational diabetes usually Diabetes mellitus (DM), commonly known as diabetes, resolves after theis sometimes birth of the an baby. effective measure in is a group of metabolic disorders characterized by high blood sugar levels over a prolonged period. Symptoms of Diabetes Symptoms high blood sugar include frequent urination, increased The following symptoms of diabetes are typical. thirst, and increased hunger. If left untreated, diabetes However, some people with type 2 diabetes have can cause many complications. Acute complications symptoms so mild that they go unnoticed. can include diabetic ketoacidosis, hyperosmolar hyperglycemic state, or death. Serious long- Common Symptoms of Diabetes term complications include cardiovascular Urinating often disease, stroke, chronic kidney disease, foot ulcers, Feeling very thirsty and damage to the eyes. Diabetes is due to either • the pancreas not producing enough insulin, or the • Feeling very hungry - even though you are cells of the body not responding properly to the eating insulin produced.[10] There are three main types • Extreme fatigue of diabetes mellitus: Type 1 DM results from the pancreas’ failure to produce enough insulin due to • Blurry vision loss of beta cells. This form was previously referred • Cuts/bruises that are slow to heal to as “insulin-dependent diabetes mellitus” (IDDM) or “juvenile diabetes”.
    [Show full text]
  • The Role of Melatonin in the Onset and Progression of Type 3 Diabetes Juhyun Song1, Daniel J
    Song et al. Molecular Brain (2017) 10:35 DOI 10.1186/s13041-017-0315-x REVIEW Open Access The role of melatonin in the onset and progression of type 3 diabetes Juhyun Song1, Daniel J. Whitcomb2 and Byeong C. Kim3* Abstract Alzheimer’s disease (AD) is defined by the excessive accumulation of toxic peptides, such as beta amyloid (Aβ) plaques and intracellular neurofibrillary tangles (NFT). The risk factors associated with AD include genetic mutations, aging, insulin resistance, and oxidative stress. To date, several studies that have demonstrated an association between AD and diabetes have revealed that the common risk factors include insulin resistance, sleep disturbances, blood brain barrier (BBB) disruption, and altered glucose homeostasis. Many researchers have discovered that there are mechanisms common to both diabetes and AD. AD that results from insulin resistance in the brain is termed “type 3 diabetes”. Melatonin synthesized by the pineal gland is known to contribute to circadian rhythms, insulin resistance, protection of the BBB, and cell survival mechanisms. Here, we review the relationship between melatonin and type 3 diabetes, and suggest that melatonin might regulate the risk factors for type 3 diabetes. We suggest that melatonin is crucial for attenuating the onset of type 3 diabetes by intervening in Aβ accumulation, insulin resistance, glucose metabolism, and BBB permeability. Keywords: Melatonin, Type 3 diabetes, Alzheimer’s disease (AD), Insulin resistance, Hyperglycemia, Blood brain barrier (BBB), Beta amyloid (Aβ) Introduction tohaveaprogressivedeclineincognitivefunction,leading Alzheimer’s disease (AD) is an age-related neurodegen- to the development of AD [20, 21]. One meta-analysis erative disorder that is characterized by the abnormal showed that diabetes significantly increases the risk for AD aggregation and accumulation of toxic peptides resulting in elderly people [22].
    [Show full text]