Human TLR7 Or TLR8 Independently Confer Responsiveness to the Antiviral Compound R-848

Total Page:16

File Type:pdf, Size:1020Kb

Human TLR7 Or TLR8 Independently Confer Responsiveness to the Antiviral Compound R-848 CORRESPONDENCE bers of this family (TLR1 to In the quest to identify ligands for TLRs, Human TLR7 or TLR8 TLR10) have been reported to we also screened immunostimulatory synthet- date. TLR2, TLR4 and TLR5 ic compounds for their potential to activate are crucial for the recognition HEK293 cells that were transiently transfect- independently confer of peptidoglycan, lipopolysac- ed with TLR cDNAs and a NF-κB luciferase charide and flagellin, respec- reporter plasmid. We found that R-848 responsiveness to the tively3–5. TLR6 associates with induced NF-κB activation in HEK293 cells TLR2 and recognizes lipopro- transfected with human TLR8 (GenBank antiviral compound teins from mycoplasma6. TLR9 accession number AF245703) in a dose- detects bacterial DNA contain- dependent manner (Fig. 1). In accordance ing unmethylated CpG motifs with the findings of Hemmi et al., human and R-848 and TLR3 activates immune murine TLR7 (GenBank accession numbers cells in response to double- AF240467 and AY035889) also mediate 1, 2, 1 MARION JURK *, FLORIAN HEIL *, JÖRG VOLLMER , stranded RNA7–9. The natural R-848 recognition (Fig. 1)10. TLR7 showed a CHRISTIAN SCHETTER1,ARTHUR M. KRIEG1,HERMANN ligands for TLR1, TLR7, higher sensitivity to R-848, but TLR8 was WAGNER2,GRAYSON LIPFORD1 AND STEFAN BAUER2 TLR8 and TLR10 are not able to induce NF-κB more effectively than known, although a synthetic TLR7 when higher concentrations of R-848 1Coley Pharmaceutical GmbH, Elisabeth-Selbert-Strasse 9, 40764 Langenfeld, Germany and Coley Pharmaceutical Group, Inc., 93 Worcester compound with antiviral activi- were used (Fig. 1). In contrast, HEK293 cells St.,Wellesley, MA 02481, USA. 2Institute for Medical Microbiology, Hygiene ty has now been described as a transiently transfected with murine TLR8 and Immunology,Trogerstrasse 9, 81675 Munich, Germany. *These ligand for TLR710. (GenBank accession number AY035890) did authors contributed equally to this work. ([email protected]) Hemmi et al. reported in not activate NF-κB after stimulation with Nature Immunology that, in R-848 (data not shown), which suggests that Toll-like receptors (TLRs) play an important experiments that used gene-deficient mice, the TLR8 is nonfunctional in mice. This mute role in the innate immune response to antiviral imidazoquinoline resiquimod (R-848) phenotype is in accordance with the observa- pathogens1. TLRs detect PAMPs (pathogen- activates immune cells via the TLR7 MyD88- tion that TLR7-deficient mice do not respond associated molecular patterns) and stimulate dependent signaling pathway10. They showed to R-848, even though TLR8 is present10. immune cells via the MyD88-dependent inter- that macrophages from MyD88- and TLR7- These results show that both human TLR7 leukin 1 receptor (IL-1R)–TLR signaling deficient mice do not respond to R-848 stimu- and TLR8 can independently mediate recogni- pathway, which leads to activation of the tran- lation, whereas macrophages from wild-type tion of the same antiviral compound, imidazo- scription factor NF-κB2. In humans, ten mem- mice strongly induce the transcription factor quinoline R-848, which suggests a possible NF-κB and the secretion of proinflammatory redundancy among these receptors. The differ- cytokines, such as tumor necrosis factor-α, as ential dose response observed between these © http://immunol.nature.com Group 2002 Nature Publishing 20 Human TLR8 well as the regulatory cytokine IL-12. In addi- receptors may allow fine-tuning of the 15 tion, Hemmi et al. showed, by genetic com- immune response to high or low concentra- 10 plementation in HEK293 cells, that human tions of this molecule as well as other ligands. 5 TLR7 confers responsiveness to R-84810. Further studies will be necessary to identify 0 the natural ligands for both receptors and clar- Human TLR7 ify the status and function of murine TLR8. 5 Figure 1. R-848 induces NF-κB activation via B induction κ TLR8 or TLR7. HEK293 cells were transfected by elec- troporation with vectors expressing human TLR8,human TLR7 or murine TLR7 and a NF-kB luciferase reporter 1. Medzhitov, R. Nature Rev. Immunol. 1, 135–145 (2001). Fold NF- 0 2. Medzhitov, R. et al. Mol. Cell 2, 253–258 (1998). plasmid. Sixteen hours after transfection, cells were stim- 3. Takeuchi, O. et al. Immunity 11, 443–451 (1999). Murine TLR7 ulated with R-848 (commercially synthesized by 4. Poltorak,A. et al. Science 282, 2085–2088 (1998). 5 GLSynthesis,Worcester,MA) at the indicated concentra- 5. Hayashi, F. et al. Nature 410, 1099–1103 (2001). tions for a further 7 h.TLR2-,TLR3- and TLR4-transfect- 6. Ozinsky,A. et al. Proc. Natl.Acad. Sci. USA 97, 13766–13771 (2000). 7. Hemmi, H. et al. Nature 408, 740–745 (2000). ed cells did not induce NF-kB activation after stimulation 8. Bauer, S. et al. Proc. Natl.Acad. Sci. USA 98, 9237–9242 (2001). 0 with R-848; a negative result was also scored for murine 9. Alexopoulou, L., Holt, H. C., Medzhitov, R. & Flavell, R.A. Nature -3 10 413, 732–738 (2001). R-848 0 10 10-2 10-1 1 10 TLR8 (data not shown ). Data are mean±s.d. from one (µg/ml) representative of three independent experiments. 10. Hemmi, H. et al. Nature Immunol. 3, 196–200 (2002). http://immunol.nature.com • june 2002 • volume 3 no 6 • nature immunology 499.
Recommended publications
  • Genetic Variation of the Toll-Like Receptors in a Swedish Allergic Rhinitis Case Population
    http://www.diva-portal.org This is the published version of a paper published in BMC Medical Genetics. Citation for the original published paper (version of record): Henmyr, V., Carlberg, D., Manderstedt, E., Lind-Halldén, C., Säll, T. et al. (2017) Genetic variation of the toll-like receptors in a Swedish allergic rhinitis case population. BMC Medical Genetics, 18(1): 18 https://doi.org/10.1186/s12881-017-0379-6 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-16592 Henmyr et al. BMC Medical Genetics (2017) 18:18 DOI 10.1186/s12881-017-0379-6 RESEARCHARTICLE Open Access Genetic variation of the Toll-like receptors in a Swedish allergic rhinitis case population V. Henmyr1,2*†, D. Carlberg2†, E. Manderstedt1,2, C. Lind-Halldén2, T. Säll1, L. O. Cardell3 and C. Halldén2 Abstract Background: Variation in the 10 toll-like receptor (TLR) genes has been significantly associated with allergic rhinitis (AR) in several candidate gene studies and three large genome-wide association studies. These have all investigated common variants, but no investigations for rare variants (MAF ≤ 1%) have been made in AR. The present study aims to describe the genetic variation of the promoter and coding sequences of the 10 TLR genes in 288 AR patients. Methods: Sanger sequencing and Ion Torrent next-generation sequencing was used to identify polymorphisms in a Swedish AR population and these were subsequently compared and evaluated using 1000Genomes and Exome Aggregation Consortium (ExAC) data.
    [Show full text]
  • TLR8-Dependent Immune Responses Stimulating Sequence-Specific
    Identification of RNA Sequence Motifs Stimulating Sequence-Specific TLR8-Dependent Immune Responses This information is current as Alexandra Forsbach, Jean-Guy Nemorin, Carmen Montino, of September 28, 2021. Christian Müller, Ulrike Samulowitz, Alain P. Vicari, Marion Jurk, George K. Mutwiri, Arthur M. Krieg, Grayson B. Lipford and Jörg Vollmer J Immunol 2008; 180:3729-3738; ; doi: 10.4049/jimmunol.180.6.3729 Downloaded from http://www.jimmunol.org/content/180/6/3729 References This article cites 55 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/180/6/3729.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 28, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Identification of RNA Sequence Motifs Stimulating Sequence-Specific TLR8-Dependent Immune Responses1 Alexandra Forsbach,* Jean-Guy Nemorin,† Carmen Montino,* Christian Mu¨ller,* Ulrike Samulowitz,* Alain P.
    [Show full text]
  • TLR9 Gene Transcriptional Regulation of the Human
    Transcriptional Regulation of the Human TLR9 Gene Fumihiko Takeshita, Koichi Suzuki, Shin Sasaki, Norihisa Ishii, Dennis M. Klinman and Ken J. Ishii This information is current as of September 30, 2021. J Immunol 2004; 173:2552-2561; ; doi: 10.4049/jimmunol.173.4.2552 http://www.jimmunol.org/content/173/4/2552 Downloaded from References This article cites 49 articles, 31 of which you can access for free at: http://www.jimmunol.org/content/173/4/2552.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 30, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Transcriptional Regulation of the Human TLR9 Gene1 Fumihiko Takeshita,2* Koichi Suzuki,† Shin Sasaki,‡ Norihisa Ishii,‡ Dennis M. Klinman,* and Ken J. Ishii3* To clarify the molecular basis of human TLR9 (hTLR9) gene expression, the activity of the hTLR9 gene promoter was charac- terized using the human myeloma cell line RPMI 8226.
    [Show full text]
  • RT² Profiler PCR Array (96-Well Format and 384-Well [4 X 96] Format)
    RT² Profiler PCR Array (96-Well Format and 384-Well [4 x 96] Format) Human Toll-Like Receptor Signaling Pathway Cat. no. 330231 PAHS-018ZA For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 5700, 7000, 7300, 7500, Format A 7700, 7900HT, ViiA™ 7 (96-well block); Bio-Rad® models iCycler®, iQ™5, MyiQ™, MyiQ2; Bio-Rad/MJ Research Chromo4™; Eppendorf® Mastercycler® ep realplex models 2, 2s, 4, 4s; Stratagene® models Mx3005P®, Mx3000P®; Takara TP-800 RT² Profiler PCR Array, Applied Biosystems models 7500 (Fast block), 7900HT (Fast Format C block), StepOnePlus™, ViiA 7 (Fast block) RT² Profiler PCR Array, Bio-Rad CFX96™; Bio-Rad/MJ Research models DNA Format D Engine Opticon®, DNA Engine Opticon 2; Stratagene Mx4000® RT² Profiler PCR Array, Applied Biosystems models 7900HT (384-well block), ViiA 7 Format E (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (96-well block) Format F RT² Profiler PCR Array, Roche LightCycler 480 (384-well block) Format G RT² Profiler PCR Array, Fluidigm® BioMark™ Format H Sample & Assay Technologies Description The Human Toll-Like Receptor (TLR) Signaling Pathway RT² Profiler PCR Array profiles the expression of 84 genes central to TLR-mediated signal transduction and innate immunity. The TLR family of pattern recognition receptors (PRRs) detects a wide range of bacteria, viruses, fungi and parasites via pathogen-associated molecular patterns (PAMPs). Each receptor binds to specific ligands, initiates a tailored innate immune response to the specific class of pathogen, and activates the adaptive immune response.
    [Show full text]
  • Bacterial Interactions with Cells of the Intestinal Mucosa: Toll- 1182 Like Receptors and Nod2
    Recent advances in basic science BACTERIAL INTERACTIONS WITH CELLS OF THE INTESTINAL MUCOSA: TOLL- 1182 LIKE RECEPTORS AND NOD2 ECario Gut: first published as on 11 July 2005. Downloaded from Gut 2005;54:1182–1193. doi: 10.1136/gut.2004.062794 SUMMARY Toll-like receptors (TLR) and NOD2 are emerging as key mediators of innate host defence in the intestinal mucosa, crucially involved in maintaining mucosal as well as commensal homeostasis. Recent observations suggest new (patho-) physiological mechanisms of how functional versus dysfunctional TLRx/NOD2 pathways may oppose or favour inflammatory bowel disease (IBD). In Published online first 19 April 2005 health, TLRx signalling protects the intestinal epithelial barrier and confers commensal tolerance whereas NOD2 signalling exerts antimicrobial activity and prevents pathogenic invasion. In disease, aberrant TLRx and/or NOD2 signalling may stimulate diverse inflammatory responses leading to acute and chronic intestinal inflammation with many different clinical phenotypes. c INTRODUCTION The intestinal mucosa must rapidly recognise detrimental pathogenic threats to the lumen to initiate controlled immune responses but maintain hyporesponsiveness to omnipresent harmless commensals. Charles Janeway Jr first suggested that so-called pattern recognition receptors (PRRs) may play an essential role in allowing innate immune cells to discriminate between ‘‘self’’ http://gut.bmj.com/ and microbial ‘‘non-self’’ based on the recognition of broadly conserved molecular patterns.1 Toll- like receptors (TLRs) which comprise a class of transmembrane PRRs play a key role in microbial recognition, induction of antimicrobial genes, and the control of adaptive immune responses. NODs (NOD1 and NOD2) are a structurally distinct family of intracellular PRRs which presumably in the context of microbial invasion subserve similar functions (fig 1).
    [Show full text]
  • Toll-Like Receptors and Relevant Emerging Therapeutics with Reference to Delivery Methods
    pharmaceutics Review Toll-Like Receptors and Relevant Emerging Therapeutics with Reference to Delivery Methods Nasir Javaid, Farzana Yasmeen and Sangdun Choi * Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea * Correspondence: [email protected]; Tel.: +82-31-219-2600 Received: 9 July 2019; Accepted: 28 August 2019; Published: 1 September 2019 Abstract: The built-in innate immunity in the human body combats various diseases and their causative agents. One of the components of this system is Toll-like receptors (TLRs), which recognize structurally conserved molecules derived from microbes and/or endogenous molecules. Nonetheless, under certain conditions, these TLRs become hypofunctional or hyperfunctional, thus leading to a disease-like condition because their normal activity is compromised. In this regard, various small-molecule drugs and recombinant therapeutic proteins have been developed to treat the relevant diseases, such as rheumatoid arthritis, psoriatic arthritis, Crohn’s disease, systemic lupus erythematosus, and allergy. Some drugs for these diseases have been clinically approved; however, their efficacy can be enhanced by conventional or targeted drug delivery systems. Certain delivery vehicles such as liposomes, hydrogels, nanoparticles, dendrimers, or cyclodextrins can be employed to enhance the targeted drug delivery. This review summarizes the TLR signaling pathway, associated diseases and their treatments, and the ways to efficiently deliver the drugs to a target site. Keywords: Toll-like receptor; immunological disease; therapeutic; drug delivery method 1. Introduction The immune system in an organism is the protective system combating pathogenic and/or abnormal conditions. Innate and adaptive immune systems are two basic components in vertebrates. Adaptive immunity is mediated by T and B lymphocytes with the help of their antigen-specific receptors that are encoded as a result of hypermutability and rearrangements in a genomic region of the organism.
    [Show full text]
  • Not Signaling Mechanisms of Innate Immune Sensing but Human Tlrs
    Human TLRs 10 and 1 Share Common Mechanisms of Innate Immune Sensing but Not Signaling This information is current as Yue Guan, Diana Rose E. Ranoa, Song Jiang, Sarita K. of September 26, 2021. Mutha, Xinyan Li, Jerome Baudry and Richard I. Tapping J Immunol 2010; 184:5094-5103; Prepublished online 26 March 2010; doi: 10.4049/jimmunol.0901888 http://www.jimmunol.org/content/184/9/5094 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2010/03/25/jimmunol.090188 Material 8.DC1 http://www.jimmunol.org/ References This article cites 74 articles, 29 of which you can access for free at: http://www.jimmunol.org/content/184/9/5094.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 26, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Human TLRs 10 and 1 Share Common Mechanisms of Innate Immune Sensing but Not Signaling Yue Guan,* Diana Rose E.
    [Show full text]
  • Sex and Suicide: the Curious Case of Toll-Like Receptors
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in the Biological Sciences Papers in the Biological Sciences 3-23-2020 Sex and suicide: The curious case of Toll-like receptors Paulo A. Navarro-Costa Instituto Gulbenkian de Ciência & Universidade de Lisboa, [email protected] Antoine Molaro Fred Hutchinson Cancer Research Center Chandra S. Misra Instituto Gulbenkian de Ciência & Instituto de Tecnologia Quımica e Biologica Colin D. Meiklejohn University of Nebraska-Lincoln, [email protected] Peter J. Ellis University of Kent, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscifacpub Part of the Biology Commons Navarro-Costa, Paulo A.; Molaro, Antoine; Misra, Chandra S.; Meiklejohn, Colin D.; and Ellis, Peter J., "Sex and suicide: The curious case of Toll-like receptors" (2020). Faculty Publications in the Biological Sciences. 772. https://digitalcommons.unl.edu/bioscifacpub/772 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in the Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. PLOS BIOLOGY UNSOLVED MYSTERY Sex and suicide: The curious case of Toll-like receptors 1,2 3 1,4 Paulo A. Navarro-CostaID , Antoine MolaroID , Chandra S. MisraID , Colin 5 6 D. MeiklejohnID , Peter J. EllisID * 1 Instituto Gulbenkian de Ciência, Oeiras,
    [Show full text]
  • Cx3cr1 Mediates the Development of Monocyte-Derived Dendritic Cells During Hepatic Inflammation
    CX3CR1 MEDIATES THE DEVELOPMENT OF MONOCYTE-DERIVED DENDRITIC CELLS DURING HEPATIC INFLAMMATION. Supplementary material Supplementary Figure 1: Liver CD45+ myeloid cells were pre-gated for Ly6G negative cells for excluding granulocytes and HDCs subsequently analyzed among the cells that were CD11c+ and had high expression of MHCII. Supplementary Table 1 low/- high + Changes in gene expression between CX3CR1 and CX3CR1 CD11b myeloid hepatic dendritic cells (HDCs) from CCl4-treated mice high Genes up-regulated in CX3CR1 HDCs Gene Fold changes P value Full name App 4,01702 5,89E-05 amyloid beta (A4) precursor protein C1qa 9,75881 1,69E-22 complement component 1, q subcomponent, alpha polypeptide C1qb 9,19882 3,62E-20 complement component 1, q subcomponent, beta polypeptide Ccl12 2,51899 0,011769 chemokine (C-C motif) ligand 12 Ccl2 6,53486 6,37E-11 chemokine (C-C motif) ligand 2 Ccl3 4,99649 5,84E-07 chemokine (C-C motif) ligand 3 Ccl4 4,42552 9,62E-06 chemokine (C-C motif) ligand 4 Ccl6 3,9311 8,46E-05 chemokine (C-C motif) ligand 6 Ccl7 2,60184 0,009272 chemokine (C-C motif) ligand 7 Ccl9 4,17294 3,01E-05 chemokine (C-C motif) ligand 9 Ccr2 3,35195 0,000802 chemokine (C-C motif) receptor 2 Ccr5 3,23358 0,001222 chemokine (C-C motif) receptor 5 Cd14 6,13325 8,61E-10 CD14 antigen Cd36 2,94367 0,003243 CD36 antigen Cd44 4,89958 9,60E-07 CD44 antigen Cd81 6,49623 8,24E-11 CD81 antigen Cd9 3,06253 0,002195 CD9 antigen Cdkn1a 4,65279 3,27E-06 cyclin-dependent kinase inhibitor 1A (P21) Cebpb 6,6083 3,89E-11 CCAAT/enhancer binding protein (C/EBP),
    [Show full text]
  • TLR10 Is a B Cell Intrinsic Suppressor of Adaptive Immune Responses Nicholas J
    TLR10 Is a B Cell Intrinsic Suppressor of Adaptive Immune Responses Nicholas J. Hess, Song Jiang, Xinyan Li, Yue Guan and Richard I. Tapping This information is current as of September 23, 2021. J Immunol published online 12 December 2016 http://www.jimmunol.org/content/early/2016/12/09/jimmun ol.1601335 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2016/12/09/jimmunol.160133 Material 5.DCSupplemental Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 23, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published December 12, 2016, doi:10.4049/jimmunol.1601335 The Journal of Immunology TLR10 Is a B Cell Intrinsic Suppressor of Adaptive Immune Responses Nicholas J. Hess,*,1 Song Jiang,*,†,1 Xinyan Li,* Yue Guan,* and Richard I. Tapping*,† Toll-like receptors play a central role in the initiation of adaptive immune responses with several TLR agonists acting as known B cell mitogens.
    [Show full text]
  • TLR7-Dependent Recognition of Viral RNA Cutting Edge
    Cutting Edge: Antibody-Mediated TLR7-Dependent Recognition of Viral RNA Jennifer P. Wang, Damon R. Asher, Melvin Chan, Evelyn A. Kurt-Jones and Robert W. Finberg This information is current as of September 24, 2021. J Immunol 2007; 178:3363-3367; ; doi: 10.4049/jimmunol.178.6.3363 http://www.jimmunol.org/content/178/6/3363 Downloaded from References This article cites 29 articles, 16 of which you can access for free at: http://www.jimmunol.org/content/178/6/3363.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 24, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. THE JOURNAL OF IMMUNOLOGY CUTTING EDGE Cutting Edge: Antibody-Mediated TLR7-Dependent Recognition of Viral RNA1 Jennifer P. Wang,2 Damon R. Asher, Melvin Chan, Evelyn A. Kurt-Jones, and Robert W. Finberg TLR7 recognizes the genome of ssRNA viruses such as Cox- “atypical” measles, dengue hemorrhagic fever, and enhanced sackievirus B.
    [Show full text]
  • TLR7 Trafficking and Signaling in B Cells Is Regulated by the MHCII-Associated Invariant Chain
    © 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs236711. doi:10.1242/jcs.236711 RESEARCH ARTICLE SPECIAL ISSUE: CELL BIOLOGY OF THE IMMUNE SYSTEM TLR7 trafficking and signaling in B cells is regulated by the MHCII-associated invariant chain Mira Tohme1, Lucie Maisonneuve2,3, Karim Achour4, Michaël Dussiot5, Sophia Maschalidi6 and Bénédicte Manoury2,3,* ABSTRACT respectively. The localization, traffic and folding of intracellular Toll-like receptor 7 (TLR7) is an endosomal receptor that recognizes TLRs are regulated by the endoplasmic reticulum (ER)-resident single-stranded RNA from viruses. Its trafficking and activation is protein UNC93B1 (Tabeta et al., 2006; Brinkmann et al., 2007; regulated by the endoplasmic reticulum (ER) chaperone UNC93B1 Pelka et al., 2018; Majer et al., 2019). UNC93B1 binds directly to and lysosomal proteases. UNC93B1 also modulates major the transmembrane region of TLR3, TLR7, TLR8 and TLR9 in the histocompatibility complex class II (MHCII) antigen presentation, ER and transports them to endocytic compartments upon and deficiency in MHCII protein diminishes TLR9 signaling. These stimulation (Kim et al., 2008). In dendritic cells (DCs) purified results indicate a link between proteins that regulate both innate and from mice expressing a point mutation in UNC93B1 (3d), adaptive responses. Here, we report that TLR7 resides in lysosomes intracellular TLRs are retained in the ER, preventing DCs from and interacts with the MHCII-chaperone molecule, the invariant chain secreting cytokines upon engagement of TLR3, TLR7 and TLR9 (Ii) or CD74, in B cells. In the absence of CD74, TLR7 displays both (Tabeta et al., 2006). However, in B cells, even though UNC93B1 is ER and lysosomal localization, leading to an increase in pro- still required for intracellular TLR signaling, TLR9 seems, at the inflammatory cytokine production.
    [Show full text]