Directional Vibration Sensing in the Leafcutter Ant Atta Sexdens Felix A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spatial Ecology of Leafcutter Ants, Isla Del Cielo Reserve, Barú, Costa Rica
Research Reports of the Firestone Center for Restoration Ecology v. 1 2005 Spatial Ecology of Leafcutter Ants, Isla del Cielo Reserve, Barú, Costa Rica Christopher Wheeler Pitzer College Summer 2005 I. Introduction There are 38 different species of Leaf-cutting ants restricted to two genera Acromyrmex (24 species) and Atta (14 species). These two genera belong to the tribe of fungus-growing ants called, Attini. Attini are confined to the New World between the latitudes of ~33oN and ~44oS. Though considered a pest, these species of leaf-cutting ants cause damage only in the areas that they are indigenous to (except for a few exceptions) (Lofgren & Meer, 1986). Townsend (1923) reported that in the absence of their control, leaf-cutting ants are capable of affecting 1000 million U.S dollars of damage a year. The damage covers a wide array of industries, damaging pastureland and stock, agricultural and horticultural crops, plantation forests, dried foodstuffs, roads, and the foundations of buildings (Lofgren & Meer, 1986). Leaf-cutting ants express a striking degree of polyphagy. Even in species-rich tropical rain forests, 50% to 77% of the plant species are harvested by leaf-cutting ants (Lofgren & Meer, 1986). Leaf-cutting ants are the dominant herbivore in the neotropics, harvesting an estimated 12-17% of all leaf production in a forest (Perfecto & Vandermeer, 1993). These harvested leaf fragments are brought underground to the ants’ colony where they are used as a medium for fungus. This fungus is the main food source for the whole colony. The spent leaf fragments are then either brought to the surface and deposited onto large nutrient-rich refuse piles, or transported to another chamber underground where they are mixed with excavated earth. -
Atta: Information Technologies for Conservation and Sustainable Use of Biodiversity Instituto Nacional De Biodiversidad (Inbio)
Atta: Information Technologies for Conservation and Sustainable Use of Biodiversity Instituto Nacional de Biodiversidad (INBio) Company: Instituto Nacional de Biodiversidad (INBio) Website: http://www.inbio.ac.cr Social network outlets: www.facebook.com/inbio / www.twitter.com/inbiocr National and International Accolades: The project was recognized with the Tech Museum Award in 2003, organized by the Tech Museum of Innovation. Also with the award Augusto González de Linares of Environment in 2004, organized by the Cantabria University, the Environmental counsel and Territorial Organization of the Cantabria government and the company Residuos de Cantabria. In addition, it reached 1st place on the II National Contest of Websites in 2005 organized by the Ministry of Science, Technology and Telecommunications (MICITT), the Costa Rican Electrical Institute (ICE) and Radiográfica Costarricense (RACSA). Reached 2nd place on the Ibero-American best portals of 2005, organized by the Asociación Hispanoamericana de Centros de Investigación y Empresas de Telecomunicaciones (AHCIET) It was also named the winner of the Green Solution category on the “Costa Rica Verde e Inteligente” Awards (CAMTIC, 2015) Company Description: The National Biodiversity Institute (INBio) is a research and biodiversity management center, established in 1989 to support efforts to learn about biological biodiversity of Costa Rica and promote its sustainable use. The institute works under the premise that the better way to preserve biodiversity is by learning about it, studying it, appreciating it and taking advantage of the opportunities that it offers in order to improve the quality of life of human beings. It is a civil society organization, non-governmental and with a nonprofit philosophy, that works with a public interest end. -
What Can the Bacterial Community of Atta Sexdens (Linnaeus, 1758) Tell Us About the Habitats in Which This Ant Species Evolves?
insects Article What Can the Bacterial Community of Atta sexdens (Linnaeus, 1758) Tell Us about the Habitats in Which This Ant Species Evolves? Manuela de Oliveira Ramalho 1,2,*, Cintia Martins 3, Maria Santina Castro Morini 4 and Odair Correa Bueno 1 1 Centro de Estudos de Insetos Sociais—CEIS, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil; [email protected] 2 Department of Entomology, Cornell University, 129 Garden Ave, Ithaca, NY 14850, USA 3 Campus Ministro Reis Velloso, Universidade Federal do Piauí, Av. São Sebastião, 2819, Parnaíba, Piauí 64202-020, Brazil; [email protected] 4 Núcleo de Ciências Ambientais, Universidade de Mogi das Cruzes, Av. Dr. Cândido Xavier de Almeida e Souza, 200, Centro Cívico, Mogi das Cruzes 08780-911, SP, Brazil; [email protected] * Correspondence: [email protected] Received: 5 March 2020; Accepted: 22 May 2020; Published: 28 May 2020 Abstract: Studies of bacterial communities can reveal the evolutionary significance of symbiotic interactions between hosts and their associated bacteria, as well as identify environmental factors that may influence host biology. Atta sexdens is an ant species native to Brazil that can act as an agricultural pest due to its intense behavior of cutting plants. Despite being extensively studied, certain aspects of the general biology of this species remain unclear, such as the evolutionary implications of the symbiotic relationships it forms with bacteria. Using high-throughput amplicon sequencing of 16S rRNA genes, we compared for the first time the bacterial community of A. -
Hymenoptera: Formicidae) in Brazilian Forest Plantations
Forests 2014, 5, 439-454; doi:10.3390/f5030439 OPEN ACCESS forests ISSN 1999-4907 www.mdpi.com/journal/forests Review An Overview of Integrated Management of Leaf-Cutting Ants (Hymenoptera: Formicidae) in Brazilian Forest Plantations Ronald Zanetti 1, José Cola Zanuncio 2,*, Juliana Cristina Santos 1, Willian Lucas Paiva da Silva 1, Genésio Tamara Ribeiro 3 and Pedro Guilherme Lemes 2 1 Laboratório de Entomologia Florestal, Universidade Federal de Lavras, 37200-000, Lavras, Minas Gerais, Brazil; E-Mails: [email protected] (R.Z.); [email protected] (J.C.S.); [email protected] (W.L.P.S.) 2 Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; E-Mail: [email protected] 3 Departamento de Ciências Florestais, Universidade Federal de Sergipe, 49100-000, São Cristóvão, Sergipe State, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-31-389-925-34; Fax: +55-31-389-929-24. Received: 18 December 2013; in revised form: 19 February 2014 / Accepted: 19 February 2014 / Published: 20 March 2014 Abstract: Brazilian forest producers have developed integrated management programs to increase the effectiveness of the control of leaf-cutting ants of the genera Atta and Acromyrmex. These measures reduced the costs and quantity of insecticides used in the plantations. Such integrated management programs are based on monitoring the ant nests, as well as the need and timing of the control methods. Chemical control employing baits is the most commonly used method, however, biological, mechanical and cultural control methods, besides plant resistance, can reduce the quantity of chemicals applied in the plantations. -
Expressed Sequence Tags from Atta Laevigata and Identification of Candidate Genes for the Control of Pest Leaf-Cutting Ants Rodovalho Et Al
Expressed sequence tags from Atta laevigata and identification of candidate genes for the control of pest leaf-cutting ants Rodovalho et al. Rodovalho et al. BMC Research Notes 2011, 4:203 http://www.biomedcentral.com/1756-0500/4/203 (17 June 2011) Rodovalho et al. BMC Research Notes 2011, 4:203 http://www.biomedcentral.com/1756-0500/4/203 RESEARCHARTICLE Open Access Expressed sequence tags from Atta laevigata and identification of candidate genes for the control of pest leaf-cutting ants Cynara M Rodovalho1, Milene Ferro1, Fernando PP Fonseca2, Erik A Antonio3, Ivan R Guilherme4, Flávio Henrique-Silva2 and Maurício Bacci Jr1* Abstract Background: Leafcutters are the highest evolved within Neotropical ants in the tribe Attini and model systems for studying caste formation, labor division and symbiosis with microorganisms. Some species of leafcutters are agricultural pests controlled by chemicals which affect other animals and accumulate in the environment. Aiming to provide genetic basis for the study of leafcutters and for the development of more specific and environmentally friendly methods for the control of pest leafcutters, we generated expressed sequence tag data from Atta laevigata, one of the pest ants with broad geographic distribution in South America. Results: The analysis of the expressed sequence tags allowed us to characterize 2,006 unique sequences in Atta laevigata. Sixteen of these genes had a high number of transcripts and are likely positively selected for high level of gene expression, being responsible for three basic biological functions: energy conservation through redox reactions in mitochondria; cytoskeleton and muscle structuring; regulation of gene expression and metabolism. -
Ant–Fungus Species Combinations Engineer Physiological Activity Of
© 2014. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2014) 217, 2540-2547 doi:10.1242/jeb.098483 RESEARCH ARTICLE Ant–fungus species combinations engineer physiological activity of fungus gardens J. N. Seal1,2,*, M. Schiøtt3 and U. G. Mueller2 ABSTRACT such complexity, the fungus-gardening insects have evolved obligate Fungus-gardening insects are among the most complex organisms macro-symbioses with specific clades of fungi, and use fungal because of their extensive co-evolutionary histories with obligate symbionts essentially as an external digestive organ that allows the fungal symbionts and other microbes. Some fungus-gardening insect insect to thrive on otherwise non-digestible substrates, such as lineages share fungal symbionts with other members of their lineage structural carbohydrates of plants (e.g. cellulose) (Aanen et al., and thus exhibit diffuse co-evolutionary relationships, while others 2002; Aylward et al., 2012a; Aylward et al., 2012b; Bacci et al., exhibit little or no symbiont sharing, resulting in host–fungus fidelity. 1995; Farrell et al., 2001; De Fine Licht and Biedermann, 2012; The mechanisms that maintain this symbiont fidelity are currently Martin, 1987a; Mueller et al., 2005). One of the most striking unknown. Prior work suggested that derived leaf-cutting ants in the attributes of these symbioses is the degree of physiological genus Atta interact synergistically with leaf-cutter fungi (Attamyces) integration: the insect host functions as a distributor of fungal by exhibiting higher fungal growth rates and enzymatic activities than enzymes, which digest plant fibers external to the insect’s body when growing a fungus from the sister-clade to Attamyces (so-called (Aanen and Eggleton, 2005; Aylward et al., 2012b; De Fine Licht ‘Trachymyces’), grown primarily by the non-leaf cutting and Biedermann, 2012; De Fine Licht et al., 2013; Martin, 1987b; Trachymyrmex ants that form, correspondingly, the sister-clade to Schiøtt et al., 2010). -
Ant Muscle Fibre Attachment
The Journal of Experimental Biology 202, 797–808 (1999) 797 Printed in Great Britain © The Company of Biologists Limited 1999 JEB1762 OPTIMIZING FORCE AND VELOCITY: MANDIBLE MUSCLE FIBRE ATTACHMENTS IN ANTS JÜRGEN PAUL* AND WULFILA GRONENBERG Theodor Boveri Institut der Universität, Lehrstuhl für Verhaltensphysiologie und Soziobiologie, Am Hubland, D-97074 Würzburg, Germany *e-mail: [email protected] Accepted 14 January; published on WWW 3 March 1999 Summary To be able to perform swift and powerful movements, attached fibres and they maximize speed of action at the ant mandible closer muscles are composed of two expense of force output. (2) Ants performing particularly subpopulations of muscle fibres: fast fibres for rapid forceful mandible movements, such as seed cracking, rely actions and slow fibres for forceful biting. All these fibres on many short parallel muscle fibres contained within a attach to a sturdy and complex apodeme which conveys broad head capsule. Their slower muscles incorporate a force into the mandible base. Fast muscle fibres attach large proportion of filament-attached fibres. Two simple directly to the apodeme. Slow fibres may attach directly or models explain how the attachment angles are optimized insert at individual thin filament processes of the apodeme with respect to force and velocity output and how filament- which vary in length. Comparisons of different ant species attached fibres help to generate the largest power output suggest two basic principles underlying the design of from the available head capsule volume. mandible muscles. (1) Ants specialized for fast mandible movements generally feature long heads which contain long fast muscle fibres that attach to the apodeme at small Key words: biomechanics, insect, apodeme, ant, feeding, muscle angles. -
Escovopsioides As a Fungal Antagonist of the Fungus Cultivated by Leafcutter Ants Julio Flavio Osti1 and Andre Rodrigues1,2*
Osti and Rodrigues BMC Microbiology (2018) 18:130 https://doi.org/10.1186/s12866-018-1265-x RESEARCHARTICLE Open Access Escovopsioides as a fungal antagonist of the fungus cultivated by leafcutter ants Julio Flavio Osti1 and Andre Rodrigues1,2* Abstract Background: Fungus gardens of fungus-growing (attine) ants harbor complex microbiomes in addition to the mutualistic fungus they cultivate for food. Fungi in the genus Escovopsioides were recently described as members of this microbiome but their role in the ant-fungus symbiosis is poorly known. In this study, we assessed the phylogenetic diversity of 21 Escovopsioides isolates obtained from fungus gardens of leafcutter ants (genera Atta and Acromyrmex) and non-leafcutter ants (genera Trachymyrmex and Apterostigma) sampled from several regions in Brazil. Results: Regardless of the sample locality or ant genera, phylogenetic analysis showed low genetic diversity among the 20 Escovopsisoides isolates examined, which prompted the identification as Escovopsioides nivea (the only described species in the genus). In contrast, one Escovopsioides isolate obtained from a fungus garden of Apterostigma megacephala was considered a new phylogenetic species. Dual-culture plate assays showed that Escovopsioides isolates inhibited the mycelium growth of Leucoagaricus gongylophorus, the mutualistic fungus cultivated by somes species of leafcutter ants. In addition, Escovopsioides growth experiments in fungus gardens with and without ant workers showed this fungus is detrimental to the ant-fungus symbiosis. Conclusions: Here, we provide clues for the antagonism of Escovopsioides towards the mutualistic fungus of leafcutter ants. Keywords: Hypocreales, Attine ants, Escovopsis,Symbiosis Background garden. In fact, a diverse and rich microbial community Fungus-growing ants in the tribe Attini are found only on consisting of bacteria, yeasts, and filamentous fungi are also the American continent [1]. -
Download PDF File
Myrmecological News 19 Digital supplementary material Digital supplementary material to DEJEAN, A., CORBARA, B., ROUX, O. & ORIVEL, J. 2014: The antipredatory behaviours of Neotropical ants towards army ant raids (Hymenoptera: Formicidae). – Myrmeco- logical News 19: 17-24. Appendix 1: Synthesis of the reactions of different ant species when faced with New World army ants. The size of the ecitonine colonies varies as follows: Eciton burchellii WESTWOOD, 1842: up to 650,000 workers (FRANKS 1985) and E. hamatum FABRICIUS, 1782: up to 250,000 workers (RETTENMEYER & al. 1983); Neivamyrmex nigrescens (CRESSON, 1872): 150,000 to 200,000 (SCHNEIRLA 1958); Nomamyrmex esenbeckii (WESTWOOD, 1842): 700,000 workers (RETTENMEYER 1963); Labidus praedator (F. SMITH, 1858): one million workers (HÖLLDOBLER & WILSON 1990). SF: subfamily; Dol: Dolichoderinae; Eci: Ecitoninae; Ect: Ectatomminae; Form: Formicinae; Myr: Myrmicinae; Par: Paraponerinae; Ps; Pseudomyrmecinae; Pon: Ponerinae. Raided ant species SF Army ant Details of the reactions References Avoided by army ants Acromyrmex coronatus Myr Eciton bur- Encountered Acromyrmex forager immobilized, crouched, SAN JUAN (2002) FABRICIUS, 1804 chellii (WEST- was antennated, then it moved; Eciton seemed repulsed. WOOD, 1842) Atta cephalotes (LINNAEUS, Myr Eciton No aggressiveness during the encounters. Once the raid RETTENMEYER 1758), Atta spp. burchellii traversed the Atta nest. (1963), this study Odontomachus spp. Pon Eciton hama- Avoided; seldom retrieved workers. RETTENMEYER & tum (FABRICI- al. (1983) US, 1782) Crematogaster spp. Myr Eciton spp. Avoided by Eciton as well as Neivamyrmex pilosus. RETTENMEYER & al. (1983) Myrmecocystus mimicus Myr Neivamyrmex Avoided; even F. pruinosus climbed over the raiders, MIRENDA & al. WHEELER, 1908, nigrescens which remained motionless. (1980) Forelius pruinosus (ROGER, Dol (CRESSON, 1863) 1872) Solenopsis xyloni MCCOOK, Myr Neivamyrmex Avoided but was raided by Neivamyrmex harrisi (speci- MIRENDA & al. -
Microbial Communities in Different Tissues of Atta Sexdens Rubropilosa Leaf-Cutting Ants
Curr Microbiol (2017) 74:1216–1225 DOI 10.1007/s00284-017-1307-x Microbial Communities in Different Tissues of Atta sexdens rubropilosa Leaf-cutting Ants 1 1 2 1 Alexsandro S. Vieira • Manuela O. Ramalho • Cintia Martins • Vanderlei G. Martins • Odair C. Bueno1 Received: 6 February 2017 / Accepted: 11 July 2017 / Published online: 18 July 2017 Ó Springer Science+Business Media, LLC 2017 Abstract Bacterial endosymbionts are common in all were Burkholderiales, Clostridiales, Syntrophobacterales, insects, and symbiosis has played an integral role in ant Lactobacillales, Bacillales, and Actinomycetales (midgut) evolution. Atta sexdens rubropilosa leaf-cutting ants cul- and Entomoplasmatales, unclassified c-proteobacteria, and tivate their symbiotic fungus using fresh leaves. They need Actinomycetales (postpharyngeal glands). The high abun- to defend themselves and their brood against diseases, but dance of Entomoplasmatales in the postpharyngeal glands they also need to defend their obligate fungus gardens, (77%) of the queens was an unprecedented finding. We their primary food source, from infection, parasitism, and discuss the role of microbial communities in different tis- usurpation by competitors. This study aimed to character- sues and castes. Bacteria are likely to play a role in ize the microbial communities in whole workers and dif- nutrition and immune defense as well as helping antimi- ferent tissues of A. sexdens rubropilosa queens using Ion crobial defense in this ant species. Torrent NGS. Our results showed that the microbial com- munity in the midgut differs in abundance and diversity Keywords Attini Á Endosymbiont Á Entomoplasmatales Á from the communities in the postpharyngeal gland of the Next-generation sequencing queen and in whole workers. -
Paleodistributions and Comparative Molecular Phylogeography of Leafcutter Ants (Atta Spp.) Provide New Insight Into the Origins of Amazonian Diversity
Paleodistributions and Comparative Molecular Phylogeography of Leafcutter Ants (Atta spp.) Provide New Insight into the Origins of Amazonian Diversity Scott E. Solomon1,2,3*, Mauricio Bacci, Jr.3, Joaquim Martins, Jr.3, Giovanna Gonc¸alves Vinha3, Ulrich G. Mueller1 1 Section of Integrative Biology, The University of Texas at Austin, Austin, Texas, United States of America, 2 Department of Entomology, Smithsonian Institution, Washington, D. C., United States of America, 3 Center for the Study of Social Insects, Sa˜o Paulo State University, Rio Claro, Sa˜o Paulo, Brazil Abstract The evolutionary basis for high species diversity in tropical regions of the world remains unresolved. Much research has focused on the biogeography of speciation in the Amazon Basin, which harbors the greatest diversity of terrestrial life. The leading hypotheses on allopatric diversification of Amazonian taxa are the Pleistocene refugia, marine incursion, and riverine barrier hypotheses. Recent advances in the fields of phylogeography and species-distribution modeling permit a modern re-evaluation of these hypotheses. Our approach combines comparative, molecular phylogeographic analyses using mitochondrial DNA sequence data with paleodistribution modeling of species ranges at the last glacial maximum (LGM) to test these hypotheses for three co-distributed species of leafcutter ants (Atta spp.). The cumulative results of all tests reject every prediction of the riverine barrier hypothesis, but are unable to reject several predictions of the Pleistocene refugia and marine incursion hypotheses. Coalescent dating analyses suggest that population structure formed recently (Pleistocene-Pliocene), but are unable to reject the possibility that Miocene events may be responsible for structuring populations in two of the three species examined. -
DISTRIBUTION and FORAGING by the LEAF-CUTTING ANT, Atta
DISTRIBUTION AND FORAGING BY THE LEAF-CUTTING ANT, Atta cephalotes L., IN COFFEE PLANTATIONS WITH DIFFERENT TYPES OF MANAGEMENT AND LANDSCAPE CONTEXTS, AND ALTERNATIVES TO INSECTICIDES FOR ITS CONTROL A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy with a Major in Entomology in the College of Graduate Studies University of Idaho and with an Emphasis in Tropical Agriculture In the Graduate School Centro Agronómico Tropical de Investigación y Enseñanza by Edgar Herney Varón Devia June 2006 Major Professor: Sanford D. Eigenbrode, Ph.D. iii ABSTRACT Atta cephalotes L., the predominant leaf-cutting ant species found in coffee farms in the Turrialba region of Costa Rica, is considered a pest of the crop because it removes coffee foliage. I applied agroecosystem and landscape level perspectives to study A. cephalotes foraging, colony distribution and dynamics in coffee agroecosystems in the Turrialba region. I also conducted field assays to assess effects of control methods on colonies of different sizes and to examine the efficacy of alternatives to insecticides. Colony density (number of colonies/ha) and foraging of A. cephalotes were studied in different coffee agroecosystems, ranging from monoculture to highly diversified systems, and with either conventional or organic inputs. A. cephalotes colony density was higher in monocultures compared to more diversified coffee systems. The percentage of shade within the farm was directly related to A. cephalotes colony density. The proportion of coffee plant tissue being collected by A. cephalotes was highest in monocultures and lowest in farms with complex shade (more than three shade tree species present).