Combat Between Large Derived Societies: a Subterranean Army Ant Established As a Predator of Mature Leaf-Cutting Ant Colonies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Birds of Reserva Ecológica Guapiaçu (REGUA)
Cotinga 33 The birds of Reserva Ecológica Guapiaçu (REGUA), Rio de Janeiro, Brazil Leonardo Pimentel and Fábio Olmos Received 30 September 2009; final revision accepted 15 December 2010 Cotinga 33 (2011): OL 8–24 published online 16 March 2011 É apresentada uma lista da avifauna da Reserva Ecológica de Guapiaçu (REGUA), uma reserva privada de 6.500 ha localizada no município de Cachoeiras de Macacu, vizinha ao Parque Estadual dos Três Picos, Estação Ecológica do Paraíso e Parque Nacional da Serra dos Órgãos, parte de um dos maiores conjuntos protegidos do Estado do Rio de Janeiro. Foram registradas um total de 450 espécies de aves, das quais 63 consideradas de interesse para conservação, como Leucopternis lacernulatus, Harpyhaliaetus coronatus, Triclaria malachitacea, Myrmotherula minor, Dacnis nigripes, Sporophila frontalis e S. falcirostris. A reserva também está desenvolvendo um projeto de reintrodução dos localmente extintos Crax blumembachii e Aburria jacutinga, e de reforço das populações locais de Tinamus solitarius. The Atlantic Forest of eastern Brazil and Some information has been published on neighbouring Argentina and Paraguay is among the birds of lower (90–500 m) elevations in the the most imperilled biomes in the world. At region10,13, but few areas have been subject to least 188 bird species are endemic to it, and 70 long-term surveys. Here we present the cumulative globally threatened birds occur there, most of them list of a privately protected area, Reserva Ecológica endemics4,8. The Atlantic Forest is not homogeneous Guapiaçu (REGUA), which includes both low-lying and both latitudinal and longitudinal gradients parts of the Serra dos Órgãos massif and nearby account for diverse associations of discrete habitats higher ground, now mostly incorporated within and associated bird communities. -
Antbird Guilds in the Lowland Caribbean Rainforest of Southeast Nicaragua1
The Condor 102:7X4-794 0 The Cooper Ornithological Society 2000 ANTBIRD GUILDS IN THE LOWLAND CARIBBEAN RAINFOREST OF SOUTHEAST NICARAGUA1 MARTIN L. CODY Department of OrganismicBiology, Ecology and Evolution, Universityof California, Los Angeles, CA 90095-1606, e-mail: [email protected] Abstract. Some 20 speciesof antbirdsoccur in lowland Caribbeanrainforest in southeast Nicaragua where they form five distinct guilds on the basis of habitat preferences,foraging ecology, and foraging behavior. Three guilds are habitat-based,in Edge, Forest, and Gaps within forest; two are behaviorally distinct, with species of army ant followers and those foraging within mixed-species flocks. The guilds each contain 3-6 antbird species. Within guilds, species are segregatedby body size differences between member species, and in several guilds are evenly spaced on a logarithmic scale of body mass. Among guilds, the factors by which adjacent body sizes differ vary between 1.25 and 1.75. Body size differ- ences may be related to differences in preferred prey sizes, but are influenced also by the density of the vegetation in which each speciescustomarily forages. Resumen. Unas 20 especies de aves hormiguerasviven en el bosque tropical perenni- folio, surestede Nicaragua, donde se forman cinquo gremios distinctos estribando en pre- ferencias de habitat, ecologia y comportamiento de las costumbresde alimentacion. Las diferenciasentre las varias especiesson cuantificadaspor caractaristicasde1 ambiente vegetal y por la ecologia y comportamientode la alimentaci6n, y usadospara definir cinco grupos o gremios (“guilds”). Tres gremios se designanpor las relacionesde habitat: edge (margen), forest (selva), y gaps (aberturasadentro la selva); dos mas por comportamiento,partidarios de army ants (hormigasarmadas) y mixed-speciesflocks (forrejando en bandadasde especies mexcladas). -
Atta: Information Technologies for Conservation and Sustainable Use of Biodiversity Instituto Nacional De Biodiversidad (Inbio)
Atta: Information Technologies for Conservation and Sustainable Use of Biodiversity Instituto Nacional de Biodiversidad (INBio) Company: Instituto Nacional de Biodiversidad (INBio) Website: http://www.inbio.ac.cr Social network outlets: www.facebook.com/inbio / www.twitter.com/inbiocr National and International Accolades: The project was recognized with the Tech Museum Award in 2003, organized by the Tech Museum of Innovation. Also with the award Augusto González de Linares of Environment in 2004, organized by the Cantabria University, the Environmental counsel and Territorial Organization of the Cantabria government and the company Residuos de Cantabria. In addition, it reached 1st place on the II National Contest of Websites in 2005 organized by the Ministry of Science, Technology and Telecommunications (MICITT), the Costa Rican Electrical Institute (ICE) and Radiográfica Costarricense (RACSA). Reached 2nd place on the Ibero-American best portals of 2005, organized by the Asociación Hispanoamericana de Centros de Investigación y Empresas de Telecomunicaciones (AHCIET) It was also named the winner of the Green Solution category on the “Costa Rica Verde e Inteligente” Awards (CAMTIC, 2015) Company Description: The National Biodiversity Institute (INBio) is a research and biodiversity management center, established in 1989 to support efforts to learn about biological biodiversity of Costa Rica and promote its sustainable use. The institute works under the premise that the better way to preserve biodiversity is by learning about it, studying it, appreciating it and taking advantage of the opportunities that it offers in order to improve the quality of life of human beings. It is a civil society organization, non-governmental and with a nonprofit philosophy, that works with a public interest end. -
First Record of the Army Ant Cheliomyrmex Morosus in Panama and Its High Associate Diversity
BIOTROPICA *(*): ***-*** **** 10.1111/J.1744-7429.2007.00302.X First Record of the Army Ant Cheliomyrmex morosus in Panama and its High Associate Diversity Stefanie M. Berghoff1 and Nigel R. Franks School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK ABSTRACT The occurrence and distribution of hypogaeic army ants is still poorly known despite their potential importance for tropical soil ecosystems. We present the first record of one of the most cryptic of army ants, Cheliomyrmex morosus, in Panama and list a diverse array of associated arthropods. The late discovery of these ants and high diversity of their associates indicates that much remains to be discovered even in one of the most intensely studied research areas. Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp. Key words: Acari; Coleoptera; Diptera; Ecitoninae; Formicidae; hypogaeic; myrmecophile; Zygentoma. THROUGHOUT THE TROPICS, ARMY ANTS ARE ONE OF THE MOST and evolution of other New World army ant associates. Here, we CONSPICUOUS GROUPS OF ANTS. Species with large epigaeic mass report the first record of a Cheliomyrmex morosus colony in Panama raids, such as Eciton and Labidus in the New World, Dorylus and give a summary of associates collected from the ant column. {Anomma) in Africa, and Aenictus in Asia, are recognized as key- We conducted extensive daily ant surveys in the Barro Col- stone species in their habitats (Franks & Bossert 1983, Gotwald orado Nature Monument and Soberanfa National Park (Panama, 1995, Brown & Feener 1998). Army ant colonies host very diverse 9° 10' N, 79°51' W) between March and May 2005. -
THE TRUE ARMY ANTS of the INDO-AUSTRALIAN AREA (Hymenoptera: Formicidae: Dorylinae)
Pacific Insects 6 (3) : 427483 November 10, 1964 THE TRUE ARMY ANTS OF THE INDO-AUSTRALIAN AREA (Hymenoptera: Formicidae: Dorylinae) By Edward O. Wilson BIOLOGICAL LABORATORIES, HARVARD UNIVERSITY, CAMBRIDGE, MASS., U. S. A. Abstract: All of the known Indo-Australian species of Dorylinae, 4 in Dorylus and 34 in Aenictus, are included in this revision. Eight of the Aenictus species are described as new: artipus, chapmani, doryloides, exilis, huonicus, nganduensis, philiporum and schneirlai. Phylo genetic and numerical analyses resulted in the discarding of two extant subgenera of Aenictus (Typhlatta and Paraenictus) and the loose clustering of the species into 5 informal " groups" within the unified genus Aenictus. A consistency test for phylogenetic characters is discussed. The African and Indo-Australian doryline species are compared, and available information in the biology of the Indo-Australian species is summarized. The " true " army ants are defined here as equivalent to the subfamily Dorylinae. Not included are species of Ponerinae which have developed legionary behavior independently (see Wilson, E. O., 1958, Evolution 12: 24-31) or the subfamily Leptanillinae, which is very distinct and may be independent in origin. The Dorylinae are not as well developed in the Indo-Australian area as in Africa and the New World tropics. Dorylus itself, which includes the famous driver ants, is centered in Africa and sends only four species into tropical Asia. Of these, the most widespread reaches only to Java and the Celebes. Aenictus, on the other hand, is at least as strongly developed in tropical Asia and New Guinea as it is in Africa, with 34 species being known from the former regions and only about 15 from Africa. -
Hymenoptera: Formicidae) in Brazilian Forest Plantations
Forests 2014, 5, 439-454; doi:10.3390/f5030439 OPEN ACCESS forests ISSN 1999-4907 www.mdpi.com/journal/forests Review An Overview of Integrated Management of Leaf-Cutting Ants (Hymenoptera: Formicidae) in Brazilian Forest Plantations Ronald Zanetti 1, José Cola Zanuncio 2,*, Juliana Cristina Santos 1, Willian Lucas Paiva da Silva 1, Genésio Tamara Ribeiro 3 and Pedro Guilherme Lemes 2 1 Laboratório de Entomologia Florestal, Universidade Federal de Lavras, 37200-000, Lavras, Minas Gerais, Brazil; E-Mails: [email protected] (R.Z.); [email protected] (J.C.S.); [email protected] (W.L.P.S.) 2 Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; E-Mail: [email protected] 3 Departamento de Ciências Florestais, Universidade Federal de Sergipe, 49100-000, São Cristóvão, Sergipe State, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-31-389-925-34; Fax: +55-31-389-929-24. Received: 18 December 2013; in revised form: 19 February 2014 / Accepted: 19 February 2014 / Published: 20 March 2014 Abstract: Brazilian forest producers have developed integrated management programs to increase the effectiveness of the control of leaf-cutting ants of the genera Atta and Acromyrmex. These measures reduced the costs and quantity of insecticides used in the plantations. Such integrated management programs are based on monitoring the ant nests, as well as the need and timing of the control methods. Chemical control employing baits is the most commonly used method, however, biological, mechanical and cultural control methods, besides plant resistance, can reduce the quantity of chemicals applied in the plantations. -
Expressed Sequence Tags from Atta Laevigata and Identification of Candidate Genes for the Control of Pest Leaf-Cutting Ants Rodovalho Et Al
Expressed sequence tags from Atta laevigata and identification of candidate genes for the control of pest leaf-cutting ants Rodovalho et al. Rodovalho et al. BMC Research Notes 2011, 4:203 http://www.biomedcentral.com/1756-0500/4/203 (17 June 2011) Rodovalho et al. BMC Research Notes 2011, 4:203 http://www.biomedcentral.com/1756-0500/4/203 RESEARCHARTICLE Open Access Expressed sequence tags from Atta laevigata and identification of candidate genes for the control of pest leaf-cutting ants Cynara M Rodovalho1, Milene Ferro1, Fernando PP Fonseca2, Erik A Antonio3, Ivan R Guilherme4, Flávio Henrique-Silva2 and Maurício Bacci Jr1* Abstract Background: Leafcutters are the highest evolved within Neotropical ants in the tribe Attini and model systems for studying caste formation, labor division and symbiosis with microorganisms. Some species of leafcutters are agricultural pests controlled by chemicals which affect other animals and accumulate in the environment. Aiming to provide genetic basis for the study of leafcutters and for the development of more specific and environmentally friendly methods for the control of pest leafcutters, we generated expressed sequence tag data from Atta laevigata, one of the pest ants with broad geographic distribution in South America. Results: The analysis of the expressed sequence tags allowed us to characterize 2,006 unique sequences in Atta laevigata. Sixteen of these genes had a high number of transcripts and are likely positively selected for high level of gene expression, being responsible for three basic biological functions: energy conservation through redox reactions in mitochondria; cytoskeleton and muscle structuring; regulation of gene expression and metabolism. -
Ant–Fungus Species Combinations Engineer Physiological Activity Of
© 2014. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2014) 217, 2540-2547 doi:10.1242/jeb.098483 RESEARCH ARTICLE Ant–fungus species combinations engineer physiological activity of fungus gardens J. N. Seal1,2,*, M. Schiøtt3 and U. G. Mueller2 ABSTRACT such complexity, the fungus-gardening insects have evolved obligate Fungus-gardening insects are among the most complex organisms macro-symbioses with specific clades of fungi, and use fungal because of their extensive co-evolutionary histories with obligate symbionts essentially as an external digestive organ that allows the fungal symbionts and other microbes. Some fungus-gardening insect insect to thrive on otherwise non-digestible substrates, such as lineages share fungal symbionts with other members of their lineage structural carbohydrates of plants (e.g. cellulose) (Aanen et al., and thus exhibit diffuse co-evolutionary relationships, while others 2002; Aylward et al., 2012a; Aylward et al., 2012b; Bacci et al., exhibit little or no symbiont sharing, resulting in host–fungus fidelity. 1995; Farrell et al., 2001; De Fine Licht and Biedermann, 2012; The mechanisms that maintain this symbiont fidelity are currently Martin, 1987a; Mueller et al., 2005). One of the most striking unknown. Prior work suggested that derived leaf-cutting ants in the attributes of these symbioses is the degree of physiological genus Atta interact synergistically with leaf-cutter fungi (Attamyces) integration: the insect host functions as a distributor of fungal by exhibiting higher fungal growth rates and enzymatic activities than enzymes, which digest plant fibers external to the insect’s body when growing a fungus from the sister-clade to Attamyces (so-called (Aanen and Eggleton, 2005; Aylward et al., 2012b; De Fine Licht ‘Trachymyces’), grown primarily by the non-leaf cutting and Biedermann, 2012; De Fine Licht et al., 2013; Martin, 1987b; Trachymyrmex ants that form, correspondingly, the sister-clade to Schiøtt et al., 2010). -
Borowiec Et Al-2020 Ants – Phylogeny and Classification
A Ants: Phylogeny and 1758 when the Swedish botanist Carl von Linné Classification published the tenth edition of his catalog of all plant and animal species known at the time. Marek L. Borowiec1, Corrie S. Moreau2 and Among the approximately 4,200 animals that he Christian Rabeling3 included were 17 species of ants. The succeeding 1University of Idaho, Moscow, ID, USA two and a half centuries have seen tremendous 2Departments of Entomology and Ecology & progress in the theory and practice of biological Evolutionary Biology, Cornell University, Ithaca, classification. Here we provide a summary of the NY, USA current state of phylogenetic and systematic 3Social Insect Research Group, Arizona State research on the ants. University, Tempe, AZ, USA Ants Within the Hymenoptera Tree of Ants are the most ubiquitous and ecologically Life dominant insects on the face of our Earth. This is believed to be due in large part to the cooperation Ants belong to the order Hymenoptera, which also allowed by their sociality. At the time of writing, includes wasps and bees. ▶ Eusociality, or true about 13,500 ant species are described and sociality, evolved multiple times within the named, classified into 334 genera that make up order, with ants as by far the most widespread, 17 subfamilies (Fig. 1). This diversity makes the abundant, and species-rich lineage of eusocial ants the world’s by far the most speciose group of animals. Within the Hymenoptera, ants are part eusocial insects, but ants are not only diverse in of the ▶ Aculeata, the clade in which the ovipos- terms of numbers of species. -
Eight Highly Polymorphic Microsatellite Markers for the Army Ant Eciton Hurchellii
Molecular Ecology Notes (2004) doi:10.1111/i.l471-8286.2004.00627.x PRIMER NOTE Eight highly polymorphic microsatellite markers for the army ant Eciton hurchellii A. JAY DENNY,NIGEL R. FRANKS andKEITH J. EDWARDS School of Biological Sciences, University of Bristol, Woodlands Road, Bristol, BS8 lUG, UK Abstract The army ant Eciton hurchellii is a nomadic predator in the rain forests of Central and South America. Detailed work has documented many aspects of this species' ecology, behaviour and life history. However, a detailed investigation into within colony relatedness structure requires the development of genetic tools. Here we present eight microsatellite markers with between nine and 25 alíeles. For each loci there is close agreement between observed and expected heterozygosity. Keywords: Army ant, Eciton, hymenoptera, microsatellite Received 20 December 2003; revision received 23 January 2004; accepted 23 January 2004 A population of the army ant Eciton hurchellii from Barro markers has allowed detailed analysis of parentage Colorado Island, Panama, has been studied intensively and relatedness of individuals within colonies of some ant for 70 years (Rettenmeyer 1963; Franks 1985; Boswell et al. species (e.g. Boomsma & Ratnieks 1996; Hammond etal. 1998). These behavioural and ecological studies have led to 2001). However, no such tools have as yet been developed a good understanding of the colony life cycle. Colonies have for army ants. Here we address this shortfall and present a single queen and may have up to half a million workers. eight microsatellite markers for the army ant Eciton They follow a regular 35-day activity cycle during which a hurchellii. -
ENY 2040 – the Insects ‐ Video Review (Second Examination)
ENY 2040 – The Insects ‐ Video Review (Second Examination) “Webs and Other Wonders” 1. How is the crab spider protected from predators? 2. What is the only use of silk by crab spiders? 3. The crab spider paralyzes its prey by biting which body part(s)? 4. What is the only use of silk by swamp spiders? 5. How do swamp spiders detect their prey? 6. For what purpose do male nursery web spiders use silk? 7. What interesting mating behavior is characteristic of male nursery web spiders 8. For what one purpose do all species of spiders use silk? 9. What kind of insects are most commonly captured by the webs of sheet web spiders? 10. What is the legend regarding the young of money spiders? 11. What modification of the silk of the comb‐footed spider assists with capture of prey? 12. How often and when does the garden spider make a new web? 13. How do spiders that make sticky webs avoid sticking to the web themselves? 14. What is the function of the stabilimentum in the webs of some spiders? 15. How does the “robber spider escape detection by its orb weaver spider prey? 16. What does the net‐casting spider do with its silk net after capturing prey 17. How does the bolas spider detect its prey? 18. How does the bolas spider attract male moths? 19. Where do purse web and trap door spiders live? 20. How does the giant millipede (Mombassa train) escape capture by trap door spiders 1 "Subterranean Termite Biology" 1. What is the role of termites in nature? 2. -
Download PDF File
Myrmecological News 19 Digital supplementary material Digital supplementary material to DEJEAN, A., CORBARA, B., ROUX, O. & ORIVEL, J. 2014: The antipredatory behaviours of Neotropical ants towards army ant raids (Hymenoptera: Formicidae). – Myrmeco- logical News 19: 17-24. Appendix 1: Synthesis of the reactions of different ant species when faced with New World army ants. The size of the ecitonine colonies varies as follows: Eciton burchellii WESTWOOD, 1842: up to 650,000 workers (FRANKS 1985) and E. hamatum FABRICIUS, 1782: up to 250,000 workers (RETTENMEYER & al. 1983); Neivamyrmex nigrescens (CRESSON, 1872): 150,000 to 200,000 (SCHNEIRLA 1958); Nomamyrmex esenbeckii (WESTWOOD, 1842): 700,000 workers (RETTENMEYER 1963); Labidus praedator (F. SMITH, 1858): one million workers (HÖLLDOBLER & WILSON 1990). SF: subfamily; Dol: Dolichoderinae; Eci: Ecitoninae; Ect: Ectatomminae; Form: Formicinae; Myr: Myrmicinae; Par: Paraponerinae; Ps; Pseudomyrmecinae; Pon: Ponerinae. Raided ant species SF Army ant Details of the reactions References Avoided by army ants Acromyrmex coronatus Myr Eciton bur- Encountered Acromyrmex forager immobilized, crouched, SAN JUAN (2002) FABRICIUS, 1804 chellii (WEST- was antennated, then it moved; Eciton seemed repulsed. WOOD, 1842) Atta cephalotes (LINNAEUS, Myr Eciton No aggressiveness during the encounters. Once the raid RETTENMEYER 1758), Atta spp. burchellii traversed the Atta nest. (1963), this study Odontomachus spp. Pon Eciton hama- Avoided; seldom retrieved workers. RETTENMEYER & tum (FABRICI- al. (1983) US, 1782) Crematogaster spp. Myr Eciton spp. Avoided by Eciton as well as Neivamyrmex pilosus. RETTENMEYER & al. (1983) Myrmecocystus mimicus Myr Neivamyrmex Avoided; even F. pruinosus climbed over the raiders, MIRENDA & al. WHEELER, 1908, nigrescens which remained motionless. (1980) Forelius pruinosus (ROGER, Dol (CRESSON, 1863) 1872) Solenopsis xyloni MCCOOK, Myr Neivamyrmex Avoided but was raided by Neivamyrmex harrisi (speci- MIRENDA & al.