Preparing for Conjoined Twins Separation Through Virtual Reality

Total Page:16

File Type:pdf, Size:1020Kb

Preparing for Conjoined Twins Separation Through Virtual Reality Proceedings of the 2018 Design of Medical Devices Conference DMD2018 April 9-12, 2018, Minneapolis, MN, USA DMD2018-6895 Downloaded from http://asmedigitalcollection.asme.org/BIOMED/proceedings-pdf/DMD2018/40789/V001T08A009/2787793/v001t08a009-dmd2018-6895.pdf by guest on 30 September 2021 PREPARING FOR CONJOINED TWINS SEPARATION THROUGH VIRTUAL REALITY Bethany Juhnke, MS Alex Mattson, BS Daniel Saltzman, MD, PhD Earl E. Bakken Medical Visible Heart Laboratory Department of Surgery Devices Center University of Minnesota University of Minnesota University of Minnesota Minneapolis, Minnesota, USA Minneapolis, Minnesota, USA Minneapolis, Minnesota, USA Anthony Azakie, MD Eric Hoggard, MD Matthew Ambrose Department of Surgery Department of Radiology Department of Pediatrics University of Minnesota University of Minnesota University of Minnesota Minneapolis, Minnesota, USA Minneapolis, Minnesota, USA Minneapolis, Minnesota, USA Arthur Erdman, PhD Paul Iaizzo, PhD Gwenyth Fischer, MD Earl E. Bakken Medical Visible Heart Laboratory Department of Pediatrics Devices Center University of Minnesota University of Minnesota University of Minnesota Minneapolis, Minnesota, USA Minneapolis, Minnesota, USA Minneapolis, Minnesota, USA BACKGROUND Advances in technology are making virtual reality (VR) available BLUE RED for many different interests. Inexpensive commercially available Twin Twin hardware can be setup at home [1,2], while corporations are using VR to design mechanical systems and train pilots [3,4]. However, limited application is seen in the medical field. Most medical VR simulation focus on medical training, by incorporating anatomical models, physics models, haptics, and visualization to recreate surgical procedures [4-6]. These simulations teach foundational technical skills and show value for preoperative planning and image-guided surgery [4,7]. Simulations provide opportunities to develop surgical plans [7], and practice teamwork skills [8]. Studies have shown that expenses of implementing VR technology can be offset by reduced operating room time [5] and s can shape the operating room of the future [6]. Procedural planning using VR shows positive results for patient outcomes. One study looking at VR use for procedural planning found an increase in operational success, a decrease in 30-day mortality and Figure 1. The heart of the RED twin was completely developed with all four an estimated cost savings by incorporating 3D imaging [9]. A second chambers functioning properly and modeled as oxygenated (pink) and study saw increase confidence in 14 of 16 study participants when deoxygenated (purple) sides of the heart. The BLUE twin’s heart had three virtual reality rehearsals were used prior to the procedure [5]. chambers and therefore only one model was created (blue). Conjoined twins are very unique cases that require advanced planning to ensure the wellbeing of both patients. The separation of METHODS craniopagus conjoined twins in 1997 is the first record of using VR for Imaging. Individual computed tomography angiograms (CTA) preoperative separation planning [6]. The medical team used VIVIAN, were captured of each twin with contrast injected. The scans were a Dextroscope-based VR environment designed for neurosurgeries. coded as RED baby and BLUE baby The twins were imaged at a The technology assisted with three craniopagus conjoined twins windowing level of 210, a window width of 1040 and slice thickness separations from 1997 to 2004 [6,10,11]. VR technology presented the of 600 μm. spatial relationships between anatomy and pathology to simulate the Segmentation. Mimics [12] software was used to segment and techniques needed during the surgery [6]. analysis the twins anatomical data. The cardiac blood volume of the In summary, we present the first case to our knowledge of VR used contrast-injected twin, lungs and thoracic skeletal anatomy were to assist in the separation planning of thoraco-omphalopagus conjoined modeled for each twin. The red twin’s four-chamber heart was twins; a connection at the chest, that includes sharing a heart and may modeled as the oxygenated left side and the deoxygenated right side. also involve sharing their liver and digestive system. 1 Copyright © 2018 ASME The blue twin’s three-chamber heart remained as one model. Cardiac, immediately prompted the doctors to reconsider the orientation of the lungs and skeletal anatomies for each twin were aligned in the twins during the surgery. software 3-matic [13]. Initially, the cardiac anatomies were juxtaposed Accessing and stopping the flow between the twin’s hearts would by aligning the thoracic cage of the blue twin from each scan. be one of the first steps in the lengthy separation procedure. The After discussion with the clinical team, the constructed models surgical team decided to flip the orientation of the twins to have the were modified. Matching the hepatic venous vasculature across both blue twin on the left and the red twin on the right. This orientation the scan of the red baby and the blue baby realigned cardiac would allow for a smaller incision to ensure the twin’s stabilization anatomies. This alignment represented a more accurate depiction of during the separation of blood flow between their two hearts. Downloaded from http://asmedigitalcollection.asme.org/BIOMED/proceedings-pdf/DMD2018/40789/V001T08A009/2787793/v001t08a009-dmd2018-6895.pdf by guest on 30 September 2021 the anatomy. The hypothesized communication between atria was revealed after alignment, joining the lateral right atrial protrusion of the blue twin to the right atrium of the red twin. INTERPRETATION Once both cardiac blood volumes were modeled, a surface Virtual reality provides opportunities to improve the surgical thickness around the blood volume was created and blood volume was planning process, particularly for complex pediatric and neonatal subtracted to create hollow models. The lungs and skeletons were operative procedures. Medical professionals can collaboratively plan modeled as solid models. The final models were exported as stereo procedures while visualizing the same anatomical reconstruction of a lithography files (STL). patient’s anatomy. Medical devices can be accurately sized to patients Visualization. The STL models were loaded into MeshLab [14] and necessary surgical adaptations can be explored prior to the and assigned colors. The models for the red twin were colored in warm procedure. colors; while the blue twin’s models were colored in cool colors. The Medical imaging algorithm advancements will increase the models were exported as object files (OBJ) with corresponding accessibility of these techniques for surgical planning. Additional material files (MTL). A scene file was created and loaded into the improvements in algorithms for visualization to analyze DICOM data stereoscopic display [15] available at the University of Minnesota, Earl will enable medical professionals to view patient-specific anatomical E. Bakken Medical Device Center. Active shutter glasses were used to models. Allowing for a translation of the information virtually to view the models, as a touch display could rotate, translate and hide provide remote surgical planning opportunities. models. Overall, these visualization technologies will decrease the cost of healthcare in the foreseeable future. Medical professionals will be able to make informed decisions about a patient’s diagnosis and care based RESULTS on patient specific anatomical visualization. Patients will receive more Members of the general surgery and cardiac surgery teams accurate diagnoses in quicker timeframes to reduce the cost of each reviewed the anatomical visualizations. The first viewing confirmed individual’s overall healthcare, creating a more efficient and effective that the anatomy was segmented correctly. healthcare system. Atrial communication. The working clinical hypothesis was confirmed through the visualization that an atrial communication allowed free blood flow between the two hearts. This was evidenced REFERENCES by a close coupling of each twin’s p-wave as seen on EKG (i.e. one 1. Oculus Rift. https://www.oculus.com/rift/ twin’s atrial contraction was driven by the other twin’s atrial 2. HTC Vive. https://www.vive.com/us/ contraction), as well as increased plasma Brain Naturetic Peptide 3. Noon, C., Zhang, R., Winer, E., Oliver, J., Gilmore, B., & Duncan, (BNP) levels seen in the red twin. J. (2012). A system for rapid creation and assessment of Altering Surgical Planning. During the first viewing, members of conceptual large vehicle designs using immersive virtual reality. the surgical team discussed the best view of the anatomical models. Computers in Industry. 63(5):1-13. The teams preferred models that presented heart cavities surfaces. This doi:10.1016/j.compind.2012.02.003. visualization presented the perspective of placing a camera within the 4. Chan, S., Conti, F., Salisbury, K., & Blevins, N. (2013). Virtual anatomy. Reality Simulation in Neurosurgery: Technologies and Evolution. Neurosurgery. 72(51):A154-A164. doi: 10.1227/NEU.0b013e3182750d26. 5. Locketz, GD., Lui, JT., Chan, S., Dort, JC., Youngblood, P., & Blevins, NH. (2017). Anatomy-Specific Virtual Reality Simulation in Temporal Bone Dissection: Perceived Utility and Impact on Surgeon Confidence. Otolaryngology–Head and Neck Surgery. 156(6):1142-1149. doi:10.1177/0194599817691474. 6. Nowinski, W. (2005). Virtual reality in brain interventions: models and applications. Proceedings of the 2005 IEEE Engineering in Medicine
Recommended publications
  • Dolan Law Firm
    DOLAN LAW FIRM McMATH HEARING POSTPONED TO PROVIDE ADDITIONAL MEDICAL EVIDENCE HYPERLINKED TABLE OF CONTENTS CLICK HOME BUTTON ON LOWER RIGHT CORNER TO RETURN TO TABLE OF CONTENTS Press Release Re continuance 10/06/2014 Fisher's Letter Dr. Charles J. Prestigiacomo, CV Dr. Calixto Machado, CV Dr. Phil Defina, CV Dr. Alan Shewmon, CV Dr. Ivan Mikolaenko, CV Signed Declaration of Dr. Calixto Machado Signed Declaration of Dr Alan Shewmon Signed Declaration of Dr Charles J. Prestigiacomo Signed Declaration of Dr. Defina Signed Declaration of Ivan Mikolaenko, M.D. Petitioner's Objection FOR IMMEDIATE RELEASE McMATH HEARING POSTPONED TO PROVIDE ADDITIONAL MEDICAL EVIDENCE Christopher Dolan, McMath family attorney, has asked Alameda County Superior Court Judge Emillo Grillo to postpone tomorrow’s hearing regarding Jahi McMath’s status as brain dead so that the team of international brain death experts presented by McMath’s attorneys can have time to read and react to a new statement issued by Dr. Paul Fischer, the physician who originally testified as to Jahi’s brain death. This comes following yesterday’s re-appointment of Dr. Fischer as a court consultant by Judge Grillo. McMath’s attorneys have objected to Dr. Fischer’s appointment saying that Fischer had a conflict of interest, and a legal bias, as it is his original determination which is being examined in light of the new facts. No decision on the objection to Dr. Fischer has been issued. Fischer, immediately upon re-appointment by the court issued a letter supporting his earlier determination stating that the fact that the brain had not liquified, Jahi had started her period (menarche), the evidence that there was cerebral blood flow, the recorded movements of Jahi’s body in response to commands, and the presence of electrical activity in her brain as recorded by EEG had no effect on his opinion.
    [Show full text]
  • Endoscope in Cranial Neurosurgery
    Endoscope in cranial neurosurgery Dr. Jean-Yves Fournier Department of Neurosurgery Cantonal Hospital St Gall, Switzerland 1 Endoscope in cranial neurosurgery 1. Introduction .............................................................................................................. 4 2. History of neuroendoscopy and training simulation in neurosurgery .......................... 5 First endoscopes in the history of medicine .......................................................................................................... 5 Transsphenoidal endoscopic surgery ....................................................................................................................... 6 1 From Sir Victor Horsley to Norman Dott. ............................................................................................................... 6 2 Reintroduction of the transsphenoidal approach initiated by Gérard Guiot ......................................... 7 3 Refinement of the method .............................................................................................................................................. 8 Cerebral endoscopy.......................................................................................................................................................... 9 History of training simulation in neurosurgery and its place today .......................................................... 12 Physical simulators .............................................................................................................................................................15
    [Show full text]
  • Comprehensive Anatomic Assessment of Ipsilateral Pterional Versus Contralateral Subfrontal Approaches to the Internal Carotid Op
    Original Article Comprehensive Anatomic Assessment of Ipsilateral Pterional Versus Contralateral Subfrontal Approaches to the Internal Carotid Ophthalmic Segment: A Cadaveric Study and Three-Dimensional Simulation Lucas Ezequiel Serrano1, Eleftherios Archavlis1, Ali Ayyad2, Eike Schwandt1, Amr Nimer3, Florian Ringel1, Sven Rainer Kantelhardt1 - OBJECTIVE: Medially pointing aneurysms of the 7.25 Æ 0.86 mm (VR: 6 Æ 1 mm) contralaterally without ON ophthalmic segment of the internal carotid artery (oICA) mobilization and 2.44 Æ 0.51 mm (VR, 2 Æ 1 mm) ipsilater- represent a neurosurgical challenge. Conventional ipsilat- ally even after AC. Statistical analysis showed that, for eral approaches require internal carotid artery and optic nonprefixed chiasm, contralateral approaches achieved a nerve (ON) mobilization as well as anterior clinoidectomy significantly higher exposure of the ophthalmic artery, (AC), all associated with increased surgical risk. Contra- superior hypophyseal artery, and the superomedial aspect lateral approaches could provide a better exposure of the of the oICA with its perforating branches (all P < 0.01). superomedial aspect of the oICA, ophthalmic artery, and - CONCLUSIONS: Contralateral approaches may enable superior hypophyseal artery, sparing AC and internal ca- successful exposure of the oICA and related vascular rotid artery or ON mobilization. However, the microsurgical structures, reducing the need for AC or ON mobilization. anatomy of this approach has not been systematically Systematic clinical/surgical studies are needed to further studied. In the present work, we exhaustibly analyzed the determine the effectiveness and safety of the approach. anatomic and morphometric characteristics of contralat- eral approaches to the oICA and compared them with those from ipsilateral approaches.
    [Show full text]
  • Extended Endoscopic Endonasal Approaches for Cerebral Aneurysms: Anatomical, Virtual Reality and Morphometric Study
    Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 703792, 9 pages http://dx.doi.org/10.1155/2014/703792 Research Article Extended Endoscopic Endonasal Approaches for Cerebral Aneurysms: Anatomical, Virtual Reality and Morphometric Study Alberto Di Somma,1,2 Matteo de Notaris,2,3 Vita Stagno,1,2 Luis Serra,4 Joaquim Enseñat,3 Isam Alobid,5 Joan San Molina,6 Joan Berenguer,7 Paolo Cappabianca,1 and Alberto Prats-Galino2 1 Department of Neurosciences, Reproductive and Odontostomatological Sciences, Division of Neurosurgery, Universita` degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy 2 Laboratory of Surgical Neuroanatomy (LSNA), Faculty of Medicine, Universitat de Barcelona, Villarroel 170, 08036 Barcelona, Spain 3 Division of Neurosurgery, Hospital Clinic de Barcelona, Faculty of Medicine, Universitat de Barcelona, Villarroel 170, 08036 Barcelona, Spain 4 Center for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB), Information & Communication Technologies Department, Universitat Pompeu Fabra (UPF), Tanger` 122-140, 08018 Barcelona, Spain 5 Department of Otorhinolaryngology, Rhinology Unit, Hospital Clinic de Barcelona, Faculty of Medicine, Universitat de Barcelona, Villarroel 170, 08036 Barcelona, Spain 6 Medical Sciences Department, Faculty of Medicine, University of Girona, Emili Grahit 77, 17071 Girona, Spain 7 Department of Radiology, Neuroradiology Division, Hospital Clinic of Barcelona, Villarroel 170, 08036 Barcelona, Spain Correspondence should be addressed to Matteo de Notaris; [email protected] Received 30 April 2013; Accepted 24 October 2013; Published 19 January 2014 Academic Editor: Heather F. Smith Copyright © 2014 Alberto Di Somma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Randomized Study Comparing 3D Virtual Reality and Conventional 2D On-Screen Teaching of Cerebrovascular Anatomy
    NEUROSURGICAL FOCUS Neurosurg Focus 51 (2):E18, 2021 Randomized study comparing 3D virtual reality and conventional 2D on-screen teaching of cerebrovascular anatomy *Ladina Greuter, MD,1 Adriana De Rosa,2 Philippe Cattin, PhD,3 Davide Marco Croci, MD,1,4 Jehuda Soleman, MD,1,2 and Raphael Guzman, MD1–3 1Department of Neurosurgery, University Hospital of Basel; 2Faculty of Medicine and 3Department of Biomedical Engineering, University of Basel, Switzerland; and 4Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah OBJECTIVE Performing aneurysmal clipping requires years of training to successfully understand the 3D neurovascu- lar anatomy. This training has traditionally been obtained by learning through observation. Currently, with fewer operative aneurysm clippings, stricter work-hour regulations, and increased patient safety concerns, novel teaching methods are required for young neurosurgeons. Virtual-reality (VR) models offer the opportunity to either train a specific surgical skill or prepare for an individual surgery. With this study, the authors aimed to compare the spatial orientation between traditional 2D images and 3D VR models in neurosurgical residents or medical students. METHODS Residents and students were each randomly assigned to describe 4 aneurysm cases, which could be either 2D images or 3D VR models. The time to aneurysm detection as well as a spatial anatomical description was assessed via an online questionnaire and compared between the groups. The aneurysm cases were 10 selected patient cases treated at the authors’ institution. RESULTS Overall, the time to aneurysm detection was shorter in the 3D VR model compared to 2D images, with a trend toward statistical significance (25.77 ± 37.26 vs 45.70 ± 51.94 seconds, p = 0.052).
    [Show full text]
  • Virtual Reality Cerebral Aneurysm Clipping Simulation with Real-Time Haptic Feedback
    TECHNIQUE ASSESSMENT Ali Alaraj, MD* Virtual Reality Cerebral Aneurysm Clipping Cristian J. Luciano, PhD‡§ Simulation With Real-Time Haptic Feedback Daniel P. Bailey, PhD¶ Abdussalam Elsenousi, MD* BACKGROUND: With the decrease in the number of cerebral aneurysms treated sur- Ben Z. Roitberg, MDk gically and the increase of complexity of those treated surgically, there is a need for Antonio Bernardo, MD# simulation-based tools to teach future neurosurgeons the operative techniques of P. Pat Banerjee, PhD‡§ aneurysm clipping. Fady T. Charbel, MD* OBJECTIVE: To develop and evaluate the usefulness of a new haptic-based virtual reality simulator in the training of neurosurgical residents. *Department of Neurosurgery, University METHODS: A real-time sensory haptic feedback virtual reality aneurysm clipping of Illinois College of Medicine at Chicago, simulator was developed using the ImmersiveTouch platform. A prototype middle Chicago, Illinois; ‡Department of Mechanical and Industrial Engineering, cerebral artery aneurysm simulation was created from a computed tomographic University of Illinois at Chicago, Chicago, angiogram. Aneurysm and vessel volume deformation and haptic feedback are pro- Illinois; §ImmersiveTouch, Inc., Westmont, vided in a 3-dimensional immersive virtual reality environment. Intraoperative aneurysm Illinois; ¶College of Engineering, University of Illinois at Chicago, Chicago, Illinois; rupture was also simulated. Seventeen neurosurgery residents from 3 residency pro- kDivision of Neurosurgery, Department of grams tested the simulator and provided feedback on its usefulness and resemblance to Surgery, University of Chicago, Chicago, real aneurysm clipping surgery. Illinois; and #Department of Neurosurgery, Weill Cornell Medical College, New York RESULTS: Residents thought that the simulation would be useful in preparing for real- life surgery.
    [Show full text]
  • The Supraorbital Endoscopic Approach for Aneurysms Robert Reisch1, Gerrit Fischer2,3, Axel Stadie4, Ralf Kockro1, Evaldas Cesnulis1, Nikolai Hopf 5
    Peer-Review Reports The Supraorbital Endoscopic Approach for Aneurysms Robert Reisch1, Gerrit Fischer2,3, Axel Stadie4, Ralf Kockro1, Evaldas Cesnulis1, Nikolai Hopf 5 Key words - OBJECTIVE: To review our surgical experience in minimally invasive trans- - Intracranial aneurysms cranial endoscope-assisted microsurgical treatment of intracranial aneurysms, - Keyhole neurosurgery using the supraorbital keyhole craniotomy. - Minimally invasive neurosurgery - Supraorbital craniotomy - METHODS: The supraorbital keyhole approach was performed through an - Transcranial endoscope-assisted microneurosurgery eyebrow skin incision in 793 cases for treatment of 989 intracranial aneurysms. Of patients, 474 were operated on after subarachnoid hemorrhage, and 319 were Abbreviations and Acronyms operated on under elective conditions. After lateral frontobasal burr hole ISAT: International Subarachnoid Aneurysm Trial MCA: Middle cerebral artery trephination, a limited subfrontal craniotomy was created. To achieve adequate mRS: Modified Rankin scale intraoperative exposure through the limited approach, endoscopes were used TEAM: Transcranial endoscope-assisted routinely. Surgical outcome was assessed using the modified Rankin scale. microneurosurgery - RESULTS: The transcranial endoscope-assisted microneurosurgery technique 1 From the Centre for Endoscopic and was used routinely via a supraorbital approach. In 152 operations (19.1%), the Minimally Invasive Neurosurgery, Zurich, Switzerland; 2Department of Neurosurgery, Johannes endoscope provided important
    [Show full text]
  • Neurosurgery
    European Manual of Medicine Neurosurgery Bearbeitet von Christianto B. Lumenta, Concezio Di Rocco, Jens Haase, J.J.A. Mooij 1. Auflage 2009. Taschenbuch. xxviii, 660 S. Paperback ISBN 978 3 540 79564 3 Format (B x L): 19,3 x 26 cm Gewicht: 1404 g Weitere Fachgebiete > Medizin > Chirurgie > Neurochirurgie schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Training and Education Edited by Christianto B. Lumenta 7 2.1 Training in Neurosurgery Hans-Jürgen Reulen 2.1.1 Introduction Of these four years at least three years should be spent in a UEMS member state and not less than three years in the same recognised programme. Training must include ad- National authorities and professional bodies have the re- equate exposure to intensive care and to paediatric neu- sponsibility for monitoring and recognising training in- rosurgery. Because of the future reduction in the hours of stitutions and to provide certification or recognition of work there may be a need to extend the training time in medical specialists. The European Union of Medical Spe- clinical neurosurgery from four to five years. cialists (UEMS) is the responsible authority in the EU for Up to a total of two years may be spent in related disci- harmonisation and improvement of the quality of train- plines (in a surgical discipline, neurology, neuropaediat- ing of medical specialists.
    [Show full text]
  • Three-Dimensional Virtual Reality Simulation of Periarticular Tumors Using Dextroscope Reconstruction and Simulated Surgery : a Preliminary 10 Case Study
    Shi et al._Opmaak 1 20/03/14 15:19 Pagina 132 Acta Orthop. Belg., 2014, 80, 132-138 ORIGINAL STUDY Three-dimensional virtual reality simulation of periarticular tumors using Dextroscope reconstruction and simulated surgery : a preliminary 10 case study JingSheng SHi, Jun Xia, YiBing WEi, SiQun WaNg, Jianguo WU, FeiYan CHEN, gangYong HUaNg, Jie CHEN From the Department of Orthopedics, Huashan Hospital of Fudan University, Shanghai 200040, China A Dextroscope® three-dimensional (3D) imaging has such as drilling and implant placement, are urgently been extensively applied for generation of virtual required. reality (Vr) workspaces for in neurosurgery and laparoscopy, though few applications in orthopedic Keywords : simulation ; virtual surgery ; reconstruc- surgery have been reported. tion ; periarticular tumor; virtual reality Patients undergoing surgery for periarticular tumors (n = 10) from oct. 2008 to Jun. 2010 were enrolled and presurgically subjected to computed tomogra- Abbreviations : virtual reality (VR) ; computed phy (cT), magnetic resonance imaging (MrI), and tomography (CT), magnetic resonance imaging MrI angiography (MrI-A). Imaging data was trans- (MRi), and magnetic resonance angiography (MRi- ferred and integrated in Dextroscope, producing a a) Vr simulation. resultant presurgical 3D anatomical reconstructions and intraoperative anatomical char- InTroDucTIon acteristics (virtual vs. actual data) and surgical approach (virtual vs. actual situation) measurement Multimodal virtual reality (VR) imaging for and subjective appearance were compared. Anatomical characteristics in the area of interest and presurgical visualization is increasingly common in tumor diameters were consistent between virtual and actual data. However, the virtual surgical situations remained inconsistent with the actual intraoperative I situation in many cases, leading to complications. The JingSheng Shi, MS.
    [Show full text]
  • Young Neurosurgeons
    Young Neurosurgeons Fall 2014 Young NeurosurgeonsNEWS Committee Editor: Krystal Tomei, MD, MPH Chairman’s Message: This has been a Med.Navy.Mil), is chairing the YNC Medical landmark year for the Student Committee, and is looking for medical American Association students and seasoned young neurosurgeons to of Neurological become a part of this exciting endeavor. Surgeons (AANS) Under the visionary leadership of Robert Young Neurosurgeons Harbaugh, MD, FAANS, and the AANS board of Committee (YNC). directors, the AANS has launched a nationwide In This Issue… The AANS has network of AANS Medical Student Chapters, shown an incredible for students interested in neurosurgery. Our goal Stacey Quintero Wolfe, commitment to its is to have a chapter at every North American 2 MD, FAANS young constituency, medical school and residency program, and we Secretary’s Message through expanded are currently accepting applications (Follow this membership and support. We are excited about link). We encourage you to become founding 3 the commitment to education and mentorship. members of your local chapter! Additionally, The MISSION Fellowship: A This year, the AANS YNC has expanded the please plan to attend the next AANS Annual Perspective number of voting members by eight, in order to Scientific Meeting in May 2015, which will 4 fill the need for our expanding role in the AANS. feature the first Young Neurosurgeons Science Simulation Training in We now have a liaison position to nearly every and Education Symposium, dedicated to the Neurosurgery: History and Future AANS committee and Joint section, as well as research of neurosurgery residents and students. Directions to the Council of State Neurosurgical Societies My congratulations to our newly elected YNC 7 (CSNS), American Medical Association (AMA) members, as well as all who were nominated.
    [Show full text]
  • The 36Th Annual Meeting of the Aans/Cns Section On
    2007 PROGRAM BOOK THE 36TH ANNUAL MEETING The Program Book is Sponsored in Part by an Educational Grant Provided by OF THE AANS/CNS Codman, a Johnson & Johnson company SECTION ON PEDIATRIC NEUROLOGICAL SURGERY November 26–December 1 Loews Miami Beach Hotel South Beach (Miami), Florida Jointly Sponsored by the AANS AANS/CNS SECTION ON PEDIATRIC TABLE OF CONTENTS NEUROLOGICAL SURGERY Continuing Medical Education Credit ...................................................................2 November 26 – December 1, 2007 South Beach (Miami), Florida Disclaimer......................................................................................................................................2 Annual Meeting Sites..........................................................................................................3 Continuing Medical Education Credit This activity has been planned and implemented in accor- Pediatric Section Chairs.....................................................................................................4 dance with the Essentials and Standards of the Accreditation Officers and Standing Committees..........................................................................4 Council for Continuing Medical Education through the joint of the AANS/CNS Section on sponsorship of the AANS and AANS/CNS Section on Pediatric Pediatric Neurological Surgery Neurological Surgery. The AANS is accredited by the Accredit- Ad Hoc Committees..............................................................................................................4
    [Show full text]
  • Virtual and Augmented Reality in Medical Education Virtual and Augmented Reality in Medical Education
    DOI: 10.5772/intechopen.71963 Provisional chapter Chapter 5 Virtual and Augmented Reality in Medical Education Virtual and Augmented Reality in Medical Education Panteleimon Pantelidis, Angeliki Chorti, PanteleimonIoanna Papagiouvanni, Pantelidis, Georgios Paparoidamis,Angeliki Chorti, IoannaChristos Drosos, Papagiouvanni, Thrasyvoulos Panagiotakopoulos, Georgios Paparoidamis, ChristosGeorgios Lales Drosos, and Thrasyvoulos Michail Sideris Panagiotakopoulos, GeorgiosAdditional information Lales and is available Michail at Sideristhe end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.71963 Abstract Virtual reality (VR) and augmented reality (AR) are two contemporary simulation mod- els that are currently upgrading medical education. VR provides a 3D and dynamic view of structures and the ability of the user to interact with them. The recent technological advances in haptics, display systems, and motion detection allow the user to have a realistic and interactive experience, enabling VR to be ideal for training in hands-on pro- cedures. Consequently, surgical and other interventional procedures are the main fields of application of VR. AR provides the ability of projecting virtual information and struc- tures over physical objects, thus enhancing or altering the real environment. The integra- tion of AR applications in the understanding of anatomical structures and physiological mechanisms seems to be beneficial. Studies have tried to demonstrate the validity and educational effect of many VR and AR applications, in many different areas, employed via various hardware platforms. Some of them even propose a curriculum that integrates these methods. This chapter provides a brief history of VR and AR in medicine, as well as the principles and standards of their function.
    [Show full text]