Caspase-8 and Caspase-9 Functioned Differently at Different Stages of the Cyclic Stretch-Induced Apoptosis in Human Periodontal Ligament Cells

Total Page:16

File Type:pdf, Size:1020Kb

Caspase-8 and Caspase-9 Functioned Differently at Different Stages of the Cyclic Stretch-Induced Apoptosis in Human Periodontal Ligament Cells RESEARCH ARTICLE Caspase-8 and Caspase-9 Functioned Differently at Different Stages of the Cyclic Stretch-Induced Apoptosis in Human Periodontal Ligament Cells Yaqin Wu1,2☯, Dan Zhao1,2☯, Jiabao Zhuang1,2, Fuqiang Zhang1,2, Chun Xu1,2* 1 Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, 2 Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, a11111 Shanghai, China ☯ These authors contributed equally to this work. * [email protected] Abstract OPEN ACCESS Citation: Wu Y, Zhao D, Zhuang J, Zhang F, Xu C Background (2016) Caspase-8 and Caspase-9 Functioned Differently at Different Stages of the Cyclic Stretch- Human periodontal ligament (PDL) cells underwent apoptosis after mechanical stretch load- Induced Apoptosis in Human Periodontal Ligament ing. However, the exact signalling pathway remains unknown. This study aimed to elucidate Cells. PLoS ONE 11(12): e0168268. doi:10.1371/ how the apoptotic caspases functioned in the cyclic stretch-induced apoptosis in human journal.pone.0168268 PDL cells. Editor: Ferenc Gallyas, Jr., University of PECS Medical School, HUNGARY Received: October 1, 2016 Materials and Methods Accepted: November 29, 2016 In the present study, 20% cyclic stretch was selected to load the cells for 6 or 24 h. The fol- lowing parameters were analyzed: apoptotic rates, the protein levels of caspase-3, -7, -8 Published: December 12, 2016 and -9 and the activities of caspase-8 and -9. Subsequently, the influences of caspase-8 Copyright: © 2016 Wu et al. This is an open access and caspase-9 inhibitors on the apoptotic rate and the protein level of the activated cas- article distributed under the terms of the Creative Commons Attribution License, which permits pase-3 were assessed as well. unrestricted use, distribution, and reproduction in any medium, provided the original author and Results source are credited. The apoptotic rates increased in response to cyclic stretch, but the cells entered different Data Availability Statement: All relevant data are within the paper and its Supporting Information apoptotic stages after 6 and 24 h stretches. Caspase-3, -7, -8 and -9 were all activated after files. stretch loading. The stretch-induced apoptosis and the protein level of the activated cas- Funding: This work was supported by National pase-3 were inhibited after inhibiting both caspase-8 and caspase-9 in both 6 and 24 h Natural Science Foundation of China (grant stretched cells and after inhibiting caspase-9 in 24 h stretched cells. numbers 31470903, 31270991, 30900282); Shanghai Pujiang Program (grant number 13PJD021); Science and Technology Commission Conclusion of Shanghai (grant numbers 10QA1404200, Caspase-8 and -9 functioned differently at different apoptotic stages in human PDL cells 08411961500, 07ZR14070); Shanghai Summit & Plateau Disciplines; Shanghai Leading Academic after cyclic stretch. Discipline Project (grant numbers S30206-sms02, PLOS ONE | DOI:10.1371/journal.pone.0168268 December 12, 2016 1 / 15 Caspase-8 and Caspase-9 in Cyclic Stretch-Induced Apoptosis T0202). The funders had no role in study design, data collection and analysis, decision to publish, or Introduction preparation of the manuscript. Periodontal ligament (PDL) is a fibrous structure interfacing the tooth with its surrounding Competing Interests: The authors have declared bone [1]. PDL cells sensitively perceive mechanical stimuli from normal mastication, occlusal that no competing interests exist. trauma or orthodontic forces [2]. There are growing evidences showing that the maintenance of periodontal health requires for physiological mechanical stimulations [3], while aberrant mechanical stimulations can be associated with pathological changes and cell death in peri- odontal tissue [4]. Apoptosis has been defined as a type of programmed cell death [2, 5], and can be conducted in two classic signalling pathways: the extrinsic pathway and the intrinsic pathway [6]. The extrinsic pathway is a caspase-dependent pathway and is extensively used to describe the pro- cess of apoptosis induced by extracellular stimulations which are recognized and propagated by the specific membrane receptors. The intrinsic pathway involves a mitochondrion-centered control mechanism via either a caspase-dependent pathway or a caspase-independent path- way, and can be triggered by multiple intracellular stimulations [7]. The extrinsic pathway is mediated by caspase-8 while the intrinsic pathway can be initiated through caspase-9, and both pathways trigger apoptosis through the cleavage of the downstream executioner proteins, caspase-3 and -7 [8]. Mechanical stress can lead to a series of biological responses in periodontal ligament, including alterations of cellular behavior, gene expression and protein production [9, 10]. Sev- eral studies revealed cell apoptosis in PDL under orthodontic forces in animal experiments in vivo [11, 12]. In our previous studies, cell death via apoptosis was also found in human PDL cells in response to cyclic stretching [13, 14]. The early and the late apoptosis were induced notably after 6 and 24 h 20% cyclic stretch loading, respectively [13, 14]. Wang et al. also reported that apoptosis of certain extent was induced by 20% cyclic stretching force, with a higher apoptotic rate after 24 h stretch than that after 6 h stretch [15]. Meanwhile, our recent study uncovered that apoptosis in human PDL cells after cyclic stretch occurred through the activation of caspase-3 via caspase-9 [14]. The differential expression of some force-sensing genes with regard to apoptosis, such as FAS and so on, was also detected [16]. Results of previous researches indicated that different duration of cyclic stretches induced apoptosis of different stages in human PDL cells, and the stretch-induced apoptosis involved a complicated signalling pathway. However, the precise mechanism underlying the stretch- induced apoptotic pathway in human PDL cells is unknown. The present study aimed to pro- vide novel insight into the roles of caspase-8 and caspase-9 at different stages of the stretch- induced apoptosis in in vitro cultured human PDL cells. We hope the findings in this study will help us better understand the mechanism of the force-driven apoptosis in PDL cells. Materials and Methods Cell culture The experimental protocol is approved by the Ethics Committee of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. The relevant Judgement's reference num- ber: [2008]17. Human PDL tissues were harvested from extracted premolars of teenagers (11± 13 years old) undergoing orthodontic treatments. Written informed consents were obtained from their parents. Human PDL cells were prepared in vitro according to the protocols described previously [17, 18]. High glucose DMEM (HyClone, Logan, Utah, USA), FBS (Gibco, Carlsbad, CA, USA) and antibiotics (HyClone) were applied to cell culture. Pieces of human PDL tissues were incubated in the DMEM supplemented with 20% (v/v) FBS and five- fold reinforced antibiotics (500 U/mL penicillin and 500 μg/mL streptomycin). When cells PLOS ONE | DOI:10.1371/journal.pone.0168268 December 12, 2016 2 / 15 Caspase-8 and Caspase-9 in Cyclic Stretch-Induced Apoptosis grew out from the tissue pieces and reached 80%-90% confluence, they were passaged and cul- tured in DMEM with 10% (v/v) FBS and antibiotics (100 U/mL penicillin and 100 μg/mL streptomycin). Human PDL cells were cultured in a 37ÊC humidified incubator with 5% CO2 in air. Cells at passage 4 to 6 were used for the subsequent experiments. Loading of cyclic stretch The CSU was applied to stretch the human PDL cells, as described in our recent studies previ- ously [13, 14, 16±18]. The CSU is comprised of three components, a strainer, a controller and a PC. Cells were passaged onto a cell culture dish (diameter 60 mm), with an elastic silicon rubber membrane (Q7-4750, Dow Corning Co., Midland, MI, USA) in the bottom. The flexi- ble membrane was deformed by the spherical cap moving up and down repeatedly, and there- fore, the attached cells were stretched. The controller and the PC controlled all changes in the stretch strain and the movement of the spherical cap. The human PDL cells were passaged at a concentration of 1.5 ×106 cells per dish onto the flexible-bottomed cell culture dishes. When the cells achieved 70%-80% confluence, they were subjected to the cyclic stretch with 20% strain for 6 or 24 h at a frequency of 6 cycles/min (5 s stretch and 5 s relaxation). PDL cells cultured in a similar condition but without stretch load- ing served as non-stretching controls. Yamaguchi et al. reported that stretching strain less than 24% is appropriate to mimic the strain confronted by human PDL cells in vivo [19]. Addition- ally, our recent studies reported that the early and the late apoptosis were apparently enhanced in response to 6 and 24 h 20% stretch strains, respectively [13, 14]. Therefore, the cultured cells were stretched by cyclic stretch of 20% strain for 6 or 24 h in the present study. The loading frequency of 6 cycles/min (5 s stretch and 5 s relaxation) was the same as that in our previous studies [18]. For experiments of apoptosis analysis, caspases activity analysis and Western Blot analysis, three independent treatments were carried out in every group. Morphological observation At the end of the stretch loading, the cells were observed under an inverted phase-contrast light microscope (Leica DMRIRB, Bensheim, Germany) to determine the morphological changes after cyclic stretch. Analysis of apoptosis by flow cytometry Apoptotic rate was detected by annexin V/PI double staining method using an FITC Annexin V Apoptosis Detection Kit (Becton Dickinson, San Jose, CA, USA), according to the manufac- turer's instruction. The supernatant and the cells of the sample were collected and were centri- fuged in 1000 r/min for 5 min to get the sediment. After re-suspension in Binding Buffer, the cells were stained with FITC Annexin V and PI for 15 min at room temperature in darkness.
Recommended publications
  • Apoptotic Threshold Is Lowered by P53 Transactivation of Caspase-6
    Apoptotic threshold is lowered by p53 transactivation of caspase-6 Timothy K. MacLachlan*† and Wafik S. El-Deiry*‡§¶ʈ** *Laboratory of Molecular Oncology and Cell Cycle Regulation, Howard Hughes Medical Institute, and Departments of ‡Medicine, §Genetics, ¶Pharmacology, and ࿣Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 Communicated by Britton Chance, University of Pennsylvania School of Medicine, Philadelphia, PA, April 23, 2002 (received for review January 11, 2002) Little is known about how a cell’s apoptotic threshold is controlled Inhibition of the enzyme reduces the sensitivity conferred by after exposure to chemotherapy, although the p53 tumor suppres- overexpression of p53. These results identify a pathway by which sor has been implicated. We identified executioner caspase-6 as a p53 is able to accelerate the apoptosis cascade by loading the cell transcriptional target of p53. The mechanism involves DNA binding with cell death proteases so that when an apoptotic signal is by p53 to the third intron of the caspase-6 gene and transactiva- received, programmed cell death occurs rapidly. tion. A p53-dependent increase in procaspase-6 protein level al- lows for an increase in caspase-6 activity and caspase-6-specific Materials and Methods Lamin A cleavage in response to Adriamycin exposure. Specific Western Blotting and Antibodies. Immunoblotting was carried out by inhibition of caspase-6 blocks cell death in a manner that correlates using mouse anti-human p53 monoclonal (PAb1801; Oncogene), with caspase-6 mRNA induction by p53 and enhances long-term rabbit anti-human caspase-3 (Cell Signaling, Beverly, MA), mouse survival in response to a p53-mediated apoptotic signal.
    [Show full text]
  • XIAP's Profile in Human Cancer
    biomolecules Review XIAP’s Profile in Human Cancer Huailu Tu and Max Costa * Department of Environmental Medicine, Grossman School of Medicine, New York University, New York, NY 10010, USA; [email protected] * Correspondence: [email protected] Received: 16 September 2020; Accepted: 25 October 2020; Published: 29 October 2020 Abstract: XIAP, the X-linked inhibitor of apoptosis protein, regulates cell death signaling pathways through binding and inhibiting caspases. Mounting experimental research associated with XIAP has shown it to be a master regulator of cell death not only in apoptosis, but also in autophagy and necroptosis. As a vital decider on cell survival, XIAP is involved in the regulation of cancer initiation, promotion and progression. XIAP up-regulation occurs in many human diseases, resulting in a series of undesired effects such as raising the cellular tolerance to genetic lesions, inflammation and cytotoxicity. Hence, anti-tumor drugs targeting XIAP have become an important focus for cancer therapy research. RNA–XIAP interaction is a focus, which has enriched the general profile of XIAP regulation in human cancer. In this review, the basic functions of XIAP, its regulatory role in cancer, anti-XIAP drugs and recent findings about RNA–XIAP interactions are discussed. Keywords: XIAP; apoptosis; cancer; therapeutics; non-coding RNA 1. Introduction X-linked inhibitor of apoptosis protein (XIAP), also known as inhibitor of apoptosis protein 3 (IAP3), baculoviral IAP repeat-containing protein 4 (BIRC4), and human IAPs like protein (hILP), belongs to IAP family which was discovered in insect baculovirus [1]. Eight different IAPs have been isolated from human tissues: NAIP (BIRC1), BIRC2 (cIAP1), BIRC3 (cIAP2), XIAP (BIRC4), BIRC5 (survivin), BIRC6 (apollon), BIRC7 (livin) and BIRC8 [2].
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • HMGB1 in Health and Disease R
    Donald and Barbara Zucker School of Medicine Journal Articles Academic Works 2014 HMGB1 in health and disease R. Kang R. C. Chen Q. H. Zhang W. Hou S. Wu See next page for additional authors Follow this and additional works at: https://academicworks.medicine.hofstra.edu/articles Part of the Emergency Medicine Commons Recommended Citation Kang R, Chen R, Zhang Q, Hou W, Wu S, Fan X, Yan Z, Sun X, Wang H, Tang D, . HMGB1 in health and disease. 2014 Jan 01; 40():Article 533 [ p.]. Available from: https://academicworks.medicine.hofstra.edu/articles/533. Free full text article. This Article is brought to you for free and open access by Donald and Barbara Zucker School of Medicine Academic Works. It has been accepted for inclusion in Journal Articles by an authorized administrator of Donald and Barbara Zucker School of Medicine Academic Works. Authors R. Kang, R. C. Chen, Q. H. Zhang, W. Hou, S. Wu, X. G. Fan, Z. W. Yan, X. F. Sun, H. C. Wang, D. L. Tang, and +8 additional authors This article is available at Donald and Barbara Zucker School of Medicine Academic Works: https://academicworks.medicine.hofstra.edu/articles/533 NIH Public Access Author Manuscript Mol Aspects Med. Author manuscript; available in PMC 2015 December 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Mol Aspects Med. 2014 December ; 0: 1–116. doi:10.1016/j.mam.2014.05.001. HMGB1 in Health and Disease Rui Kang1,*, Ruochan Chen1, Qiuhong Zhang1, Wen Hou1, Sha Wu1, Lizhi Cao2, Jin Huang3, Yan Yu2, Xue-gong Fan4, Zhengwen Yan1,5, Xiaofang Sun6, Haichao Wang7, Qingde Wang1, Allan Tsung1, Timothy R.
    [Show full text]
  • The Role of Caspase-2 in Regulating Cell Fate
    cells Review The Role of Caspase-2 in Regulating Cell Fate Vasanthy Vigneswara and Zubair Ahmed * Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; [email protected] * Correspondence: [email protected] Received: 15 April 2020; Accepted: 12 May 2020; Published: 19 May 2020 Abstract: Caspase-2 is the most evolutionarily conserved member of the mammalian caspase family and has been implicated in both apoptotic and non-apoptotic signaling pathways, including tumor suppression, cell cycle regulation, and DNA repair. A myriad of signaling molecules is associated with the tight regulation of caspase-2 to mediate multiple cellular processes far beyond apoptotic cell death. This review provides a comprehensive overview of the literature pertaining to possible sophisticated molecular mechanisms underlying the multifaceted process of caspase-2 activation and to highlight its interplay between factors that promote or suppress apoptosis in a complicated regulatory network that determines the fate of a cell from its birth and throughout its life. Keywords: caspase-2; procaspase; apoptosis; splice variants; activation; intrinsic; extrinsic; neurons 1. Introduction Apoptosis, or programmed cell death (PCD), plays a pivotal role during embryonic development through to adulthood in multi-cellular organisms to eliminate excessive and potentially compromised cells under physiological conditions to maintain cellular homeostasis [1]. However, dysregulation of the apoptotic signaling pathway is implicated in a variety of pathological conditions. For example, excessive apoptosis can lead to neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease, whilst insufficient apoptosis results in cancer and autoimmune disorders [2,3]. Apoptosis is mediated by two well-known classical signaling pathways, namely the extrinsic or death receptor-dependent pathway and the intrinsic or mitochondria-dependent pathway.
    [Show full text]
  • Caspase-7 Expanded Function and Intrinsic Expression Level Underlies Strain-Specific Brain Phenotype of Caspase-3-Null Mice
    The Journal of Neuroscience, November 3, 2004 • 24(44):9977–9984 • 9977 Development/Plasticity/Repair Caspase-7 Expanded Function and Intrinsic Expression Level Underlies Strain-Specific Brain Phenotype of Caspase-3-Null Mice Caroline Houde,1 Kathleen G. Banks,2 Nathalie Coulombe,3 Dita Rasper,3 Erich Grimm,3 Sophie Roy,1,4 Elizabeth M. Simpson,2 and Donald W. Nicholson1,4 1Biochemistry Department, McGill University, Montreal, Quebec H3G 1Y6, Canada, 2Centre for Molecular Medicine and Therapeutics, British Columbia Institute for Children’s and Women’s Health, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada, 3Merck Frosst Canada and Company, Pointe-Claire–Dorval, Quebec H9R 4P8, Canada, and 4Merck Research Laboratories, San Diego, California 92121 Caspase-3-deficient mice of the 129S1/SvImJ (129) strain show severe brain development defects resulting in brain overgrowth and perinatal lethality, whereas on the C57BL/6J (B6) background, these mice develop normally. We therefore sought to identify the strain- Ϫ Ϫ dependent ameliorating gene. We biochemically isolated caspase-7 from B6-caspase-3-null (Casp3 / ) tissues as being the enzyme with caspase-3-like properties and capability of performing a caspase-3 surrogate function, apoptotic DNA fragmentation. Moreover, we show that, in contrast to the human enzymes, mouse caspase-7 is as efficient as caspase-3 at cleaving and thus inactivating ICAD (inhibitor of caspase-activated DNase), the inhibitor of apoptotic DNA fragmentation. Low levels of caspase-7 expression and activation correlate with Ϫ Ϫ Ϫ Ϫ lack of DNA fragmentation in 129-Casp3 / apoptotic precursor neurons, whereas B6-Casp3 / cells, which can fragment their DNA, show higher levels of caspase-7 expression and activation.
    [Show full text]
  • Proteases to Die For
    Downloaded from genesdev.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Proteases to die for Vincent Cryns1 and Junying Yuan2,3 1Center for Endocrinology, Metabolism and Molecular Medicine, Northwestern University School of Medicine, Chicago, Illinois 60611 USA; 2Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 USA Apoptosis or programmed cell death (PCD) is a geneti- have identified two genes (ced-3 and ced-4) that are each cally regulated, cellular suicide mechanism that plays a required for the execution of cell death and one (ced-9) crucial role in development and in the defense of homeo- that inhibits cell death (Hengartner et al. 1992; Yuan and stasis. Cells respond to a variety of disparate signals by Horvitz 1992; Yuan et al. 1993). Mutational analyses of committing suicide through a series of dramatic but re- these genes in C. elegans have defined a sequential cell markably uniform events. Morphologically, cells under- death pathway. Inactivating mutations of ced-9 result in going apoptosis demonstrate nuclear/cytoplasmic con- inappropriate cell deaths, but only if both ced-3 and densation and membrane protrusions. These initial ced-4 are functional (Hengartner et al. 1992). Targeted changes are followed by fragmentation of the nuclear overexpression of either ced-4 or ced-3 induces cell contents and subsequent encapsulation of these frag- death, these cell deaths are inhibited by ced-9. In trans- ments into ‘‘apoptotic bodies’’ that are quickly and un- genic worms, maximal cell death induced by ced-4 over- obtrusively consumed by adjacent cells, thereby leaving expression requires ced-3, whereas ced-3-mediated cell little trace of the apoptotic cell’s prior existence (Kerr et death is independent of ced-4.
    [Show full text]
  • Bax Transmembrane Domain Interacts with Prosurvival Bcl-2 Proteins in Biological Membranes
    Bax transmembrane domain interacts with prosurvival Bcl-2 proteins in biological membranes Vicente Andreu-Fernándeza,b,c, Mónica Sanchoa, Ainhoa Genovésa, Estefanía Lucendoa, Franziska Todtb, Joachim Lauterwasserb,d, Kathrin Funkb,d, Günther Jahreise, Enrique Pérez-Payáa,f,1, Ismael Mingarroc,2, Frank Edlichb,g,2, and Mar Orzáeza,2 aLaboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain; bInstitute for Biochemistry and Molecular Biology, University of Freiburg, 79104 Freiburg, Germany; cDepartament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina, Universitat de València, 46100 Burjassot, Spain; dFaculty of Biology, University of Freiburg, 79104 Freiburg, Germany; eDepartment of Biochemistry/Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; fInstituto de Biomedicina de Valencia, Instituto de Biomedicina de Valencia–Consejo Superior de Investigaciones Científicas, 46010 Valencia, Spain; and gBIOSS, Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany Edited by William F. DeGrado, School of Pharmacy, University of California, San Francisco, CA, and approved November 29, 2016 (received for review July 28, 2016) The Bcl-2 (B-cell lymphoma 2) protein Bax (Bcl-2 associated X, across bilayers via changes in the oligomeric state or protein con- apoptosis regulator) can commit cells to apoptosis via outer mito- formation (22–24). The Bax TMD targets fusion proteins to the chondrial membrane permeabilization. Bax activity is controlled in OMM; its deletion results in cytosolic Bax localization and impaired healthy cells by prosurvival Bcl-2 proteins. C-terminal Bax trans- Bax activity (25). Analysis of the active Bax membrane topology membrane domain interactions were implicated recently in Bax pore suggests that the TMD could play a central role in Bax oligomeri- formation.
    [Show full text]
  • Cordycepin Induces Apoptosis in Human Liver Cancer Hepg2 Cells Through Extrinsic and Intrinsic Signaling Pathways
    ONCOLOGY LETTERS 12: 995-1000, 2016 Cordycepin induces apoptosis in human liver cancer HepG2 cells through extrinsic and intrinsic signaling pathways LE-WEN SHAO1, LI-HUA HUANG1, SHENG YAN2, JIAN-DI JIN3 and SHAO-YAN REN3 1Nursing Department; Departments of 2Hepato-Biliary-Pancreatic Surgery and 3Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China Received March 6, 2015; Accepted April 12, 2016 DOI: 10.3892/ol.2016.4706 Abstract. Cordycepin, also termed 3'-deoxyadenosine, is a to have natural medicinal properties, such as anti-angiogenic, nucleoside analogue from Cordyceps sinensis and has been anti‑tumor, anti‑viral, anti‑inflammatory and hypoglycemic reported to demonstrate numerous biological and pharma- effects (1-8). cological properties. Our previous study illustrated that the Cordycepin, also termed 3'-deoxyadenosine, is a nucleo- anti-tumor effect of cordycepin may be associated with apop- side analogue from C. militaris (9) and has been reported tosis. In the present study, the apoptotic effect of cordycepin to demonstrate numerous notable biological and pharma- on HepG2 cells was investigated using 4',6-diamidino-2-phe- cological properties, including immunological stimulation, nylindole, tetraethylbenzimidazolylcarbocyanine iodide and anti-cancer and anti-viral effects (10-15), a stimulating effect propidium iodide staining analysis and flow cytometry. The on interlukin-10 production as an immune modulator (16) and results showed that cordycepin exhibited the ability to inhibit preventing hyperlipidermia (17). HepG2 cells in a time- and dose-dependent manner when cells Apoptosis, also termed programmed cell death, is a key produced typical apoptotic morphological changes, including regulator of tissue homeostasis and is characterized by chromatin condensation, the accumulation of sub-G1 cells and typical morphological and biochemical hallmarks, including change mitochondrial permeability.
    [Show full text]
  • Caspase-6 Induces 7A6 Antigen Localization to Mitochondria During FAS-Induced Apoptosis of Jurkat Cells HIROAKI SUITA, TAKAHISA SHINOMIYA and YUKITOSHI NAGAHARA
    ANTICANCER RESEARCH 37 : 1697-1704 (2017) doi:10.21873/anticanres.11501 Caspase-6 Induces 7A6 Antigen Localization to Mitochondria During FAS-induced Apoptosis of Jurkat Cells HIROAKI SUITA, TAKAHISA SHINOMIYA and YUKITOSHI NAGAHARA Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University, Hatoyama, Japan Abstract. Background: Mitochondria are central to caspases (caspase-8 and -9) that activate effector caspases (1). apoptosis. However, apoptosis progression involving Caspases are constructed of a pro-domain, a large subunit, and mitochondria is not fully understood. A factor involved in a small subunit. Upon caspase activation, cleavage of the mitochondria-mediated apoptosis is 7A6 antigen. 7A6 caspase occurs. Caspase-6 and -7, which are effector caspases, localizes to mitochondria from the cytosol during apoptosis, each have a large subunit that is 20 kDa (p20) and a small which seems to involve ‘effector’ caspases. In this study, we subunit that is 10 kDa (p10), but caspase-3, which is also an investigated the precise role of effector caspases in 7A6 effector caspase, has a large subunit of 17 kDa and a small localization to mitochondria during apoptosis. Materials and subunit of 12 kDa (p12) (2-4). Moreover, the large and small Methods: Human T-cell lymphoma Jurkat cells were treated subunits of caspase-6 and -7 are connected by a linker, but with an antibody against FAS. 7A6 localization was analyzed caspase-3 does not have a linker (Figure 1). The difference by confocal laser scanning microscopy and flow cytometry. between effector and initiator caspases is that the pro-domain Caspases activation was determined by western blot of an initiator caspase is long and that the pro-domain of an analysis.
    [Show full text]
  • Caspase Substrates and Inhibitors
    Downloaded from http://cshperspectives.cshlp.org/ on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Caspase Substrates and Inhibitors Marcin Pore˛ba1, Aleksandra Stro´z˙yk1, Guy S. Salvesen2, and Marcin Dra˛g1 1Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, 50-370 Wrocław, Poland 2Program in Cell Death Research, Sanford-Burnham Medical Research Institute, La Jolla, California 92024 Correspondence: [email protected] Caspases are proteases at the heart of networks that govern apoptosis and inflammation. The past decade has seen huge leaps in understanding the biology and chemistry of the caspases, largely through the development of synthetic substrates and inhibitors. Such agents are used to define the role of caspases in transmitting life and death signals, in imaging caspases in situ and in vivo, and in deconvoluting the networks that govern cell behavior. Additionally, focused proteomics methods have begun to reveal the natural substrates of caspases in the thousands. Together, these chemical and proteomics technologies are setting the scene for designing and implementing control of caspase activity as appropriate targets for disease therapy. WHAT IT TAKES TO BE A CASPASE group, known as cysteine protease clan CD that he need to recycle scarce amino acids in early also contains the plant metacaspases (Vercam- Tbiotic environments required that proteases men et al. 2004), and mammalian and plant were among the first proteins to appear in the proteases of the legumain family (involved in most primitive replicating organisms. Since that specific processing events), the eukaryotic pro- distant origin, proteases have diversified into tease separase (required for sisterchromatid sep- every biological niche, occupied every cellular aration during mitosis), and the bacterial prote- and extracellular compartment, and are encod- ases clostripain and gingipain (Chen et al.
    [Show full text]
  • Executioner Caspase-3 and Caspase-7 Are Functionally Distinct Proteases
    Executioner caspase-3 and caspase-7 are functionally distinct proteases John G. Walsh, Sean P. Cullen, Clare Sheridan, Alexander U. Luthi,¨ Christopher Gerner*, and Seamus J. Martin† Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland Edited by Doug R. Green, St. Jude Children’s Research Hospital, Memphis, TN, and accepted by the Editorial Board July 8, 2008 (received for review August 15, 2007) Members of the caspase family of cysteine proteases play central CASP-3 and CASP-7 on the B6 background die immediately roles in coordinating the stereotypical events that occur during after birth because of defective heart development (9). The latter apoptosis. Because the major executioner caspases, caspase-3 and result suggests that there may be a degree of functional com- caspase-7, exhibit almost indistinguishable activity toward certain pensation in operation between caspase-3 and caspase-7, synthetic peptide substrates, this has led to the widespread view whereas the knockout phenotypes observed on the 129 back- that these proteases occupy functionally redundant roles within ground suggest that caspase-3 and caspase-7 serve distinct roles. the cell death machinery. However, the distinct phenotypes of mice However, a major problem in interpreting these data is that the deficient in either of these caspases, as well as mice deficient in relative expression levels of caspase-3 and caspase-7 may vary both, is at odds with this view. These distinct phenotypes could be dramatically between mouse strains, as well as within particular related to differences in the relative expression levels of caspase-3 tissues.
    [Show full text]