Automatic Test Data Generation Using Constraint Programming and Search Based Software Engineering Techniques

Total Page:16

File Type:pdf, Size:1020Kb

Automatic Test Data Generation Using Constraint Programming and Search Based Software Engineering Techniques UNIVERSITE´ DE MONTREAL´ AUTOMATIC TEST DATA GENERATION USING CONSTRAINT PROGRAMMING AND SEARCH BASED SOFTWARE ENGINEERING TECHNIQUES ABDELILAH SAKTI DEPARTEMENT´ DE GENIE´ INFORMATIQUE ET GENIE´ LOGICIEL ECOLE´ POLYTECHNIQUE DE MONTREAL´ THESE` PRESENT´ EE´ EN VUE DE L'OBTENTION DU DIPLOME^ DE PHILOSOPHIÆ DOCTOR (GENIE´ INFORMATIQUE) DECEMBRE´ 2014 c Abdelilah Sakti, 2014. UNIVERSITE´ DE MONTREAL´ ECOLE´ POLYTECHNIQUE DE MONTREAL´ Cette th`eseintitul´ee: AUTOMATIC TEST DATA GENERATION USING CONSTRAINT PROGRAMMING AND SEARCH BASED SOFTWARE ENGINEERING TECHNIQUES pr´esent´ee par: SAKTI Abdelilah en vue de l'obtention du dipl^ome de: Philosophiæ Doctor a ´et´ed^ument accept´eepar le jury d'examen constitu´ede: M. BELTRAME Giovanni, Ph.D., pr´esident M. PESANT Gilles, Ph.D., membre et directeur de recherche M. GUEH´ ENEUC´ Yann-Ga¨el, Doctorat, membre et codirecteur de recherche M. ANTONIOL Giuliano, Ph.D., membre M. HARMAN Mark, Ph.D., membre externe iii This dissertation is dedicated to my wife, Khadija, my sons, Adam and Anas, and to my mother, A¨ıcha. Their support, encouragement, patience, and understanding have sustained me throughout my life. iv ACKNOWLEDGMENTS First of all, I would like to thank almighty ALLAH. Without his wish nothing is possible. Completion of this doctoral research would not have been possible without the contribu- tions of many people throughout the research project. Foremost are the generous support and patience of my supervisors. I would like to take this opportunity to express my appreciation to my principal super- visor, Prof. Dr. Gilles Pesant, and associate supervisor Prof. Dr. Yann-Ga¨el Gu´eh´eneuc, for their encouragement, advice, guidance, and inspiration throughout the duration of this research project. I have learned much from them about the attitudes and skills for conducting research and presenting ideas. They brought forth this research and allowed me to extend my education beyond the formal studies leading to this dissertation. They could not even realize how much I have learned from them. I am very obliged for their motivation and immense knowledge in Software Engineering that, taken together, make them great mentors. I would also thank Prof. Dr. Giuliano Antoniol, for his feedback and productive discus- sions during the various stages of the research project. I would also like to thank the members of my Ph.D. committee who enthusiastically accepted to monitor and read my dissertation. I am very thankful to all my colleagues of Quosseca laboratory and Ptidej teams for their feedback and the productive discussions. I am deeply grateful for the support my family provided during every stage of this disser- tation. Finally, appreciation is extended to the staff of the Ecole´ Polytechnique de Montr´eal for their support throughout my research project. v RESUM´ E´ Prouver qu'un logiciel correspond `asa sp´ecification ou exposer des erreurs cach´ees dans son impl´ementation est une t^ache de test tr`es difficile, fastidieuse et peut co^uter plus de 50% de co^ut total du logiciel. Durant la phase de test du logiciel, la g´en´eration des donn´ees de test est l'une des t^aches les plus co^uteuses. Par cons´equent, l'automatisation de cette t^ache permet de r´eduire consid´erablement le co^ut du logiciel, le temps de d´eveloppement et les d´elais de commercialisation. Plusieurs travaux de recherche ont propos´edes approches automatis´eespour g´en´erer des donn´ees de test. Certains de ces travaux ont montr´eque les techniques de g´en´eration des donn´ees de test qui sont bas´ees sur des m´etaheuristiques (SB-STDG) peuvent g´en´erer au- tomatiquement des donn´eesde test. Cependant, ces techniques sont tr`essensibles `aleur orientation qui peut avoir un impact sur l'ensemble du processus de g´en´eration des donn´ees de test. Une insuffisance d'informations pertinentes sur le probl`eme de g´en´eration des don- n´eesde test peut affaiblir l'orientation et affecter n´egativement l'efficacit´eet l'effectivit´ede SB-STDG. Dans cette th`ese, notre proposition de recherche est d'analyser statiquement le code source pour identifier et extraire des informations pertinentes afin de les exploiter dans le proces- sus de SB-STDG pourrait offrir davantage d'orientation et ainsi d'am´eliorer l'efficacit´eet l'effectivit´ede SB-STDG. Pour extraire des informations pertinentes pour l'orientation de SB-STDG, nous analysons de mani`ere statique la structure interne du code source en se concentrant sur six caract´eristiques, i.e., les constantes, les instructions conditionnelles, les arguments, les membres de donn´ees, les m´ethodes et les relations. En mettant l'accent sur ces caract´eristiques et en utilisant diff´erentes techniques existantes d'analyse statique, i.e, la programmation par contraintes (CP), la th´eorie du sch´ema et certains analyses statiques l´eg`eres, nous proposons quatre approches : (1) en mettant l'accent sur les arguments et les instructions conditionnelles, nous d´efinissons une approche hybride qui utilise les techniques de CP pour guider SB-STDG `ar´eduire son espace de recherche ; (2) en mettant l'accent sur les instructions conditionnelles et en utilisant des techniques de CP, nous d´efinissons deux nouvelles m´etriques qui mesurent la difficult´e`asatisfaire une branche (i.e., condition), d'o`u nous tirons deux nouvelles fonctions objectif pour guider SB-STDG ; (3) en mettant l'accent sur les instructions conditionnelles et en utilisant la th´eorie du sch´ema, nous adaptons l'al- gorithme g´en´etique pour mieux r´epondre au probl`eme de la g´en´eration de donn´eesde test ; (4) en mettant l'accent sur les arguments, les instructions conditionnelles, les constantes, les membres de donn´ees,les m´ethodes et les relations, et en utilisant des analyses statiques vi l´eg`eres, nous d´efinissons un g´en´erateur d'instance qui g´en`ere des donn´eesde test candidates pertinentes et une nouvelle repr´esentation du probl`eme de g´en´eration des donn´ees de test orient´e-objet qui r´eduit implicitement l'espace de recherche de SB-STDG. Nous montrons que les analyses statiques aident `aam´eliorer l'efficacit´eet l'effectivit´ede SB-STDG. Les r´esultats obtenus dans cette th`esemontrent des am´eliorations importantes en termes d'efficacit´eet d'effectivit´e.Ils sont prometteurs et nous esp´erons que d'autres re- cherches dans le domaine de la g´en´eration des donn´ees de test pourraient am´eliorer davantage l'efficacit´eou l'effectivit´e. vii ABSTRACT Proving that some software system corresponds to its specification or revealing hidden errors in its implementation is a time consuming and tedious testing process, accounting for 50% of the total software. Test-data generation is one of the most expensive parts of the soft- ware testing phase. Therefore, automating this task can significantly reduce software cost, development time, and time to market. Many researchers have proposed automated approaches to generate test data. Among the proposed approaches, the literature showed that Search-Based Software Test-data Generation (SB-STDG) techniques can automatically generate test data. However, these techniques are very sensitive to their guidance which impact the whole test-data generation process. The insufficiency of information relevant about the test-data generation problem can weaken the SB-STDG guidance and negatively affect its efficiency and effectiveness. In this dissertation, our thesis is statically analyzing source code to identify and extract relevant information to exploit them in the SB-STDG process could offer more guidance and thus improve the efficiency and effectiveness of SB-STDG. To extract information relevant for SB-STDG guidance, we statically analyze the internal structure of the source code focusing on six features, i.e., constants, conditional statements, arguments, data members, methods, and relationships. Focusing on these features and using different existing techniques of static analysis, i.e., constraints programming (CP), schema theory, and some lightweight static analyses, we propose four approaches: (1) focusing on arguments and conditional statements, we define a hybrid approach that uses CP techniques to guide SB-STDG in reducing its search space; (2) focusing on conditional statements and using CP techniques, we define two new metrics that measure the difficulty to satisfy a branch, hence we derive two new fitness functions to guide SB-STDG; (3) focusing on conditional statements and using schema theory, we tailor genetic algorithm to better fit the problem of test-data generation; (4) focusing on arguments, conditional statements, constants, data members, methods, and relationships, and using lightweight static analyses, we define an instance generator that generates relevant test-data candidates and a new representation of the problem of object-oriented test-data generation that implicitly reduces the SB-STDG search space. We show that using static analyses improve the SB-STDG efficiency and effectiveness. The achieved results in this dissertation show an important improvements in terms of effectiveness and efficiency. They are promising and we hope that further research in the field of test-data generation might improve efficiency or effectiveness. viii TABLE OF CONTENTS DEDICATION . iii ACKNOWLEDGMENTS . iv RESUM´ E...........................................´ v ABSTRACT ......................................... vii TABLE OF CONTENTS . viii LIST OF TABLES . xiii LIST OF FIGURES . xiv LIST OF ABBREVATIONS . xvi CHAPTER 1 INTRODUCTION . 1 1.1 ProblemandMotivation ..............................2 1.2 Thesis ........................................4 1.3 Contributions ....................................6 1.4 Organization of the Dissertation . .7 I Background 10 CHAPTER 2 AUTOMATIC TEST DATA GENERATION . 11 2.1 White-boxTesting ................................. 11 2.1.1 Control Flow Graph (CFG) . 12 2.1.2 Coverage Criterion . 12 2.1.3 Data Flow Analysis . 12 2.2 Search Based Software Test Data Generation (SB-STDG) . 14 2.2.1 Fitness Function .
Recommended publications
  • The Design and Implementation of Object-Constraint Programming
    Felgentreff, The Design and Implementation of Object-Constraint Programming The Design and Implementation of Object-Constraint Programming von Tim Felgentreff Dissertation zur Erlangung des akademischen Grades des Doktor der Naturwissenschaften (Doctor rerum naturalium) vorgelegt der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam. Betreuer Prof. Dr. Robert Hirschfeld Fachgebiet Software-Architekturen Hasso-Plattner-Institut Universität Potsdam 21. April 2017 Erklärung Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertation selbst angefertigt und nur die im Literaturverzeichnis aufgeführten Quellen und Hilfsmittel verwendet habe. Diese Dissertation oder Teile davon wurden nicht als Prüfungsarbeit für eine staatliche oder andere wissenschaftliche Prüfung eingereicht. Ich versichere weiterhin, dass ich diese Arbeit oder eine andere Abhandlung nicht bei einer anderen Fakultät oder einer anderen Universität eingereicht habe. Potsdam, den 21. April 2017 Tim Felgentreff v Abstract Constraints allow developers to specify properties of systems and have those properties be main- tained automatically. This results in compact declarations to describe interactive applications avoid- ing scattered code to check and imperatively re-satisfy invariants in response to user input that perturbs the system. Constraints thus provide flexibility and expressiveness for solving complex problems and maintaining a desired system state. Despite these advantages, constraint program- ming is not yet widespread, with imperative programming still being the norm. There is a long history of research on constraint programming as well as its integration with general purpose programming languages, especially from the imperative paradigm. However, this integration typically does not unify the constructs for encapsulation and abstraction from both paradigms and often leads to a parallel world of constraint code fragments and abstractions inter- mingled with the general purpose code.
    [Show full text]
  • Constraint Programming and Operations Research
    Noname manuscript No. (will be inserted by the editor) Constraint Programming and Operations Research J. N. Hooker and W.-J. van Hoeve November 2017 Abstract We present an overview of the integration of constraint program- ming (CP) and operations research (OR) to solve combinatorial optimization problems. We interpret CP and OR as relying on a common primal-dual solution approach that provides the basis for integration using four main strategies. The first strategy tightly interweaves propagation from CP and relaxation from OR in a single solver. The second applies OR techniques to domain filtering in CP. The third decomposes the problem into a portion solved by CP and a portion solved by OR, using CP-based column generation or logic-based Benders decomposition. The fourth uses relaxed decision diagrams developed for CP propagation to help solve dynamic programming models in OR. The paper cites a significant fraction of the literature on CP/OR integration and concludes with future perspectives. Keywords Constraint Programming, Operations Research, Hybrid Optimization 1 Introduction Constraint programming (CP) and operations research (OR) have the same overall goal. They strive to capture a real-world situation in a mathematical model and solve it efficiently. Both fields use constraints to build the model, often in conjunction with an objective function to evaluate solutions. It is therefore only natural that the two fields join forces to solve problems. J. N. Hooker Carnegie Mellon University, Pittsburgh, USA E-mail: [email protected] W.-J. van Hoeve Carnegie Mellon University, Pittsburgh, USA E-mail: [email protected] 2 J. N.
    [Show full text]
  • Chapter 1 GLOBAL CONSTRAINTS and FILTERING ALGORITHMS
    Chapter 1 GLOBAL CONSTRAINTS AND FILTERING ALGORITHMS Jean-Charles R´egin ILOG 1681, route des Dolines, Sophia Antipolis, 06560 Valbonne, France [email protected] Abstract Constraint programming (CP) is mainly based on filtering algorithms; their association with global constraints is one of the main strengths of CP. This chapter is an overview of these two techniques. Some of the most frequently used global constraints are presented. In addition, the filtering algorithms establishing arc consistency for two useful con- straints, the alldiff and the global cardinality constraints, are fully de- tailed. Filtering algorithms are also considered from a theoretical point of view: three different ways to design filtering algorithms are described and the quality of the filtering algorithms studied so far is discussed. A categorization is then proposed. Over-constrained problems are also mentioned and global soft constraints are introduced. Keywords: Global constraint, filtering algorithm, arc consistency, alldiff, global car- dinality constraint, over-constrained problems, global soft constraint, graph theory, matching. 1. Introduction A constraint network (CN) consists of a set of variables; domains of possible values associated with each of these variables; and a set of con- straints that link up the variables and define the set of combinations of values that are allowed. The search for an instantiation of all vari- ables that satisfies all the constraints is called a Constraint Satisfaction Problem (CSP), and such an instantiation is called a solution of a CSP. A lot of problems can be easily coded in terms of CSP. For instance, CSP has already been used to solve problems of scene analysis, place- 1 2 ment, resource allocation, crew scheduling, time tabling, scheduling, fre- quency allocation, car sequencing, and so on.
    [Show full text]
  • Prolog Lecture 6
    Prolog lecture 6 ● Solving Sudoku puzzles ● Constraint Logic Programming ● Natural Language Processing Playing Sudoku 2 Make the problem easier 3 We can model this problem in Prolog using list permutations Each row must be a permutation of [1,2,3,4] Each column must be a permutation of [1,2,3,4] Each 2x2 box must be a permutation of [1,2,3,4] 4 Represent the board as a list of lists [[A,B,C,D], [E,F,G,H], [I,J,K,L], [M,N,O,P]] 5 The sudoku predicate is built from simultaneous perm constraints sudoku( [[X11,X12,X13,X14],[X21,X22,X23,X24], [X31,X32,X33,X34],[X41,X42,X43,X44]]) :- %rows perm([X11,X12,X13,X14],[1,2,3,4]), perm([X21,X22,X23,X24],[1,2,3,4]), perm([X31,X32,X33,X34],[1,2,3,4]), perm([X41,X42,X43,X44],[1,2,3,4]), %cols perm([X11,X21,X31,X41],[1,2,3,4]), perm([X12,X22,X32,X42],[1,2,3,4]), perm([X13,X23,X33,X43],[1,2,3,4]), perm([X14,X24,X34,X44],[1,2,3,4]), %boxes perm([X11,X12,X21,X22],[1,2,3,4]), perm([X13,X14,X23,X24],[1,2,3,4]), perm([X31,X32,X41,X42],[1,2,3,4]), perm([X33,X34,X43,X44],[1,2,3,4]). 6 Scale up in the obvious way to 3x3 7 Brute-force is impractically slow There are very many valid grids: 6670903752021072936960 ≈ 6.671 × 1021 Our current approach does not encode the interrelationships between the constraints For more information on Sudoku enumeration: http://www.afjarvis.staff.shef.ac.uk/sudoku/ 8 Prolog programs can be viewed as constraint satisfaction problems Prolog is limited to the single equality constraint: – two terms must unify We can generalise this to include other types of constraint Doing so leads
    [Show full text]
  • Quantum-Accelerated Constraint Programming
    Quantum-accelerated constraint programming Kyle E. C. Booth1,2, Bryan O’Gorman1,3, Jeffrey Marshall1,2, Stuart Hadfield1,2, and Eleanor Rieffel1 1Quantum Artificial Intelligence Laboratory (QuAIL), NASA Ames Research Center, Moffett Field, CA 94035, USA 2USRA Research Institute for Advanced Computer Science (RIACS), Mountain View, CA 94043, USA 3Berkeley Quantum Information and Computation Center, University of California, Berkeley, CA 94720, USA Constraint programming (CP) is a paradigm used to model and solve con- straint satisfaction and combinatorial optimization problems. In CP, problems are modeled with constraints that describe acceptable solutions and solved with backtracking tree search augmented with logical inference. In this paper, we show how quantum algorithms can accelerate CP, at both the levels of in- ference and search. Leveraging existing quantum algorithms, we introduce a quantum-accelerated filtering algorithm for the alldifferent global constraint and discuss its applicability to a broader family of global constraints with sim- ilar structure. We propose frameworks for the integration of quantum filtering algorithms within both classical and quantum backtracking search schemes, including a novel hybrid classical-quantum backtracking search method. This work suggests that CP is a promising candidate application for early fault- tolerant quantum computers and beyond. 1 Introduction Constraint programming (CP) is a paradigm used to model and solve constraint satisfaction and combinatorial optimization problems [1]. In CP, a problem is expressed in terms of a declarative model, identifying variables and constraints, and the model is evaluated using a general-purpose constraint solver, leveraging techniques from a variety of fields including artificial intelligence, computer science, and operations research. CP has successfully been used to approach challenging problems in areas such as scheduling, planning, and vehicle routing [1–3].
    [Show full text]
  • Handbook of Constraint Programming
    Handbook of Constraint Programming Francesca Rossi, Peter van Beek, Toby Walsh Elsevier Contents Contents v I First part 1 1 Modelling 3 Barbara M. Smith 1.1 Preliminaries ................................ 4 1.2 Representing a Problem . ......................... 5 1.3 Propagation and Search . ......................... 5 1.4 Viewpoints . ................................ 7 1.5 Expressing the Constraints ......................... 8 1.6 Auxiliary Variables . ......................... 12 1.7 Implied constraints . ......................... 13 1.8 Reformulations of CSPs . ......................... 17 1.9 Combining Viewpoints . ......................... 20 1.10 Symmetry and Modelling . ......................... 24 1.11 Optimization Problems . ......................... 26 1.12 Supporting modelling & reformulation . ................. 28 Bibliography 31 Appendices 35 v Part I First part Handbook of Constraint Programming 3 Francesca Rossi, Peter van Beek, Toby Walsh c 2006 Elsevier All rights reserved Chapter 1 Modelling Barbara M. Smith Constraint programming can be a successful technology for solving practical problems; however, there is abundant evidence that how the problem to be solved is modelled as a Constraint Satisfaction Problem (CSP) can have a dramatic effect on how easy it is to find a solution, or indeed whether it can realistically be solved at all. The importance of modelling in constraint programming has long been recognized e.g. in invited talks by Freuder [14] and Puget [34]. In this chapter, it will be assumed that the problem to be solved can be represented as a CSP whose domains are finite; infinite domains are discussed in Chapter 16, “Continuous and Interval Constraints”. In most of the examples, the variable domains will be sets of integers; see Chapter 17, “Constraints over Structured Domains”, for more on set variables and other variable types.
    [Show full text]
  • Non-Systematic Backtracking for Mixed Integer Programs
    From: AAAI Technical Report WS-02-14. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved. Non-Systematic Backtracking for Mixed Integer Programs Steven Prestwich Armagan Tarim Cork Constraint Computation Centre Artificial Intelligence Group University College, Cork, Ireland Department of Computer Science [email protected] University of York,York, U.K. [email protected] Abstract The aim is to solve large MIPs that combine hard optimisa- tion with few feasible solutions. The remainder of this sec- Avariety of hybrids of Constraint Programming, Arti- tion provides background material. ficial Intelligence and Operations Research techniques have given impressive results. Three recent approaches are (i) the use of relaxations in constraint systems, (ii) Propagation and relaxation non-systematic backtracking to boost the scalability of Constraint programming systems use constraint propagation constraint solvers, and (iii) non-systematic backtrack- to eliminate infeasible variable assignments, and is the tool ing to boost the scalability of branch-and-bound search. of choice for combinatorial problems in which feasible so- This paper describes a hybrid of all three approaches lutions are hard to find. Operations Research, on the other that combines non-systematic backtracking, SAT-based hand, uses more sophisticated cost reasoning to prune search inference and linear relaxation. It is intended for large MIPs that are hard for reasons of both optimisation and spaces, and to locate high-quality solutions. The two disci- feasibility. Such problems are of practical as well as plines have complementary strengths and weaknesses, and theoretical interest and we expect the hybrid to find their combination can yield results that are superior to either many applications.
    [Show full text]
  • Towards Flexible Goal-Oriented Logic Programming
    FACULTY OF SCIENCES Towards Flexible Goal-Oriented Logic Programming ir. Benoit Desouter Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Computer Science Supervisors: prof. dr. ir. Tom Schrijvers prof. dr. ir. Marko van Dooren Department of Applied Mathematics, Computer Science and Statistics Faculty of Sciences, Ghent University ii Acknowledgments As it feels more natural to thank people in the language that we have used on a daily basis during the journey towards completing this PhD thesis, I'll use Dutch for most of the next few pages. In de eerste plaats wil ik mijn promotoren Tom en Marko bedanken. Tom, bedankt voor het geduld als ik occasioneel iets maar half begreep, en om er altijd vertrouwen in te blijven hebben. Je hebt me heel wat kansen aangereikt, waardoor ik van heel wat onderwerpen iets heb opgestoken. Marko, hoewel je er pas halverwege bijkwam, toonde je al snel interesse voor het onderwerp en heb je er vanuit je eigen expertise heel wat aan toegevoegd. Je deur stond altijd voor me open als ik even een tussentijdse statusupdate wou geven. Bedankt voor de babbels over vanalles en nog wat, en om me grondig te betrekken bij het geven van Programmeren 1. Ik heb nog heel wat bijgeleerd over objec- tori¨entatie door jouw visie, slides en codevoorbeelden. Daarnaast ook bedankt om mijn lokale LATEX-goeroe te zijn: niettegenstaande ik LATEX al tien jaar lang gebruik, heb ik voor het precies goed krijgen van deze thesis heel wat nieuwe pakketten en trucjes moeten gebruiken, met regelmatig vreemde out- put of cryptische foutmeldingen tot gevolg die ik niet altijd alleen kon oplossen | of het zou me op zijn minst veel meer tijd gekost hebben.
    [Show full text]
  • Overview of the Monadic Constraint Programming Framework
    Overview of the Monadic Constraint Programming Framework Tom Schrijvers Dept. of Computer Science, K.U.Leuven Celestijnenlaan 200A 3001 Heverlee, Belgium [email protected] Abstract. A constraint programming system combines two essential components: a constraint solver and a search engine. The constraint solver reasons about satisfiability of conjunctions of constraints, and the search engine controls the search for solutions by iteratively exploring a disjunctive search tree defined by the constraint program. The Monadic Constraint Programming framework gives a monadic defi- nition of constraint programming where the solver is defined as a monad threaded through the monadic search tree. Search and search strategies can then be defined as firstclass objects that can themselves be built or extended by composable search transformers. Search transformers give a powerful and unifying approach to viewing search in constraint program- ming, and the resulting constraint programming system is first class and extremely flexible. 1 Introduction A constraint programming (CP) [11] system combines two essential components: a constraint solver and a search engine. The constraint solver reasons about conjunctions of constraints and its principal job it to determine unsatisfiability of a conjunction. The search engine controls the search for solutions by iteratively exploring an OR search tree defined by the program. Whenever the conjunction of constraints in one path defined by the search tree is unsatisfiable, search changes to explore another part of the search tree. Constraint programming is a declarative programming formalism, where the constraints are defined declaratively, but the underlying constraint solvers are highly stateful, and indeed to specify complex search CP programs rely on reflect- ing state information from the solver.
    [Show full text]
  • Constraint Programming
    Constraint programming Alexander Bockmayr John N. Hooker May 2003 Contents 1 Introduction 2 1.1 ConstraintsasProcedures . ... 2 1.2 ParallelswithBranchandCut . .. 3 1.3 ConstraintSatisfaction. .... 4 1.4 HybridMethods ................................. 6 1.5 PerformanceIssues ............................... 7 2 Constraints 8 2.1 WhatisaConstraint? .............................. 8 2.2 Arithmeticversus SymbolicConstraints . ....... 9 2.3 GlobalConstraints ............................... 9 2.4 LocalConsistency ................................ 10 2.5 ConstraintPropagation . .. 11 2.6 Filtering Algorithms for Global Constraints . ......... 12 2.7 Modeling in Constraint Programming : An Illustrating Example ...... 14 3 Search 17 3.1 VariableandValueOrdering . .. 17 3.2 CompleteSearch ................................. 18 3.3 HeuristicSearch ................................. 19 4 Hybrid Methods 19 4.1 Branch,InferandRelax . .. ... ... ... ... ... .. ... ... .. 20 4.2 BendersDecomposition . .. ... ... ... ... ... .. ... ... .. 22 4.3 MachineSchedulingExample . .. 23 4.4 Continuous Relaxations for Global Constraints . ......... 25 4.5 OtherApplications............................... 26 5 Constraint Programming Languages and Systems 26 5.1 High-levelModelingLanguages . .... 27 5.2 ConstraintProgrammingSystems. .... 27 1 Introduction A discrete optimization problem can be given a declarative or procedural formulation, and both have their advantages. A declarative formulation simply states the constraints and objective function. It allows one to describe
    [Show full text]
  • The Constraint Programming Solver This Document Is an Individual Chapter from SAS/OR® 15.1 User’S Guide: Mathematical Programming
    SAS/OR® 15.1 User’s Guide Mathematical Programming The Constraint Programming Solver This document is an individual chapter from SAS/OR® 15.1 User’s Guide: Mathematical Programming. The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2018. SAS/OR® 15.1 User’s Guide: Mathematical Programming. Cary, NC: SAS Institute Inc. SAS/OR® 15.1 User’s Guide: Mathematical Programming Copyright © 2018, SAS Institute Inc., Cary, NC, USA All Rights Reserved. Produced in the United States of America. For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc. For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication. The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted materials. Your support of others’ rights is appreciated. U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S.
    [Show full text]
  • Constraint Programming and Scheduling Materials from the Course Taught at HTWG Constanz, Germany
    Constraint Programming and Scheduling Materials from the course taught at HTWG Constanz, Germany Hana Rudová Faculty of Informatics, Masaryk University Brno, Czech Republic http://www.fi.muni.cz/~hanka May 2009 Hana Rudová (FI MU, CR) Constraint Programming and Scheduling May 2009 1 / 132 Constraint Programming and Scheduling: Outline Constraint Programming Introduction Modeling Propagation Search Constraint-based Scheduling Introduction Modeling Propagation Search Hana Rudová (FI MU, CR) Constraint Programming and Scheduling May 2009 2 / 132 Constraint Programming: Introduction 1 CSP 2 CP Approach 3 Complexity Hana Rudová (FI MU, CR) Constraint Programming and Scheduling May 2009 3 / 132 Materials on Constraint Programming Rina Dechter: Constraint processing. Morgan Kaufmann Publishers, 2003. http://www.ics.uci.edu/~dechter/books/ Francesca Rossi, Peter Van Beek, Toby Walsh (editors): Handbook of Constraint Programming, Elsevier, 2006 Edward Tsang: Foundations of Constraint Satisfaction. Academic Press, 1993. full text available: http://cswww.essex.ac.uk/Research/CSP/edward/FCS.html Roman Barták: On-line guide to constraint programming. http://ktilinux.ms.mff.cuni.cz/~bartak/constraints/ Constraint Programming Online http://slash.math.unipd.it/cp/index.php Hana Rudová (FI MU, CR) Constraint Programming and Scheduling May 2009 4 / 132 Constraint Given set of domain variables Y = fy1;:::; yk g finite set of values (domain) D = D1 [ ::: [ Dk constraint c defined on Y is a subset of D1 × ::: × Dk i.e. relation it constrains values which can
    [Show full text]