https://ntrs.nasa.gov/search.jsp?R=20070009873 2019-08-30T00:27:38+00:00Z CORE Metadata, citation and similar papers at core.ac.uk Provided by NASA Technical Reports Server Osmium Isotope Systematics of Ureilites K. Rankenburg1,2*, A. D. Brandon2, M. Humayun1 1National High Magnetic Field Laboratory and Dept. of Geological Sciences, Florida State University, Tallahassee, FL 32310, USA,
[email protected] 2NASA Johnson Space Center, Mail Code KR, Houston, TX 77058, USA *corresponding author Abstract = 198 Words Main Text = 6243 Words 1 Table 6 Figures version 12/01/06 submitted to GCA 1 Abstract The 187Os/188Os for twenty-two ureilite whole rock samples, including monomict, augite-bearing, and polymict lithologies, were examined in order to constrain the prove- nance and subsequent magmatic processing of the ureilite parent body (or bodies). The Re/Os ratios of most ureilites show evidence for a recent disturbance, probably related to Re mobility during weathering, and no meaningful chronological information can be ex- tracted from the present data set. The ureilite 187Os/188Os ratios span a range from 0.11739 to 0.13018, with an average of 0.1258 ± 0.0023 (1σ), similar to typical carbona- ceous chondrites, and distinct from ordinary or enstatite chondrites. The similar mean of 187Os/188Os measured for the ureilites and carbonaceous chondrites suggests that the ureilite parent body probably formed within the same region of the solar nebula as carbo- naceous chondrites. From the narrow range of the 187Os/188Os distribution in ureilite me- teorites it is further concluded that Re was not significantly fractionated from Os during planetary differentiation and was not lost along with the missing ureilitic melt compo- nent.