A Cross-Platform, High Performance Shared Storage System Master of Science Thesis in the Programme Networks and Distributed Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Elastic Storage for Linux on System Z IBM Research & Development Germany
Peter Münch T/L Test and Development – Elastic Storage for Linux on System z IBM Research & Development Germany Elastic Storage for Linux on IBM System z © Copyright IBM Corporation 2014 9.0 Elastic Storage for Linux on System z Session objectives • This presentation introduces the Elastic Storage, based on General Parallel File System technology that will be available for Linux on IBM System z. Understand the concepts of Elastic Storage and which functions will be available for Linux on System z. Learn how you can integrate and benefit from the Elastic Storage in a Linux on System z environment. Finally, get your first impression in a live demo of Elastic Storage. 2 © Copyright IBM Corporation 2014 Elastic Storage for Linux on System z Trademarks The following are trademarks of the International Business Machines Corporation in the United States and/or other countries. AIX* FlashSystem Storwize* Tivoli* DB2* IBM* System p* WebSphere* DS8000* IBM (logo)* System x* XIV* ECKD MQSeries* System z* z/VM* * Registered trademarks of IBM Corporation The following are trademarks or registered trademarks of other companies. Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries. Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom. Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. -
What Is the Difference Between San and Nas and How Can I Use Them in My Qlikview Environment?
WHAT IS THE DIFFERENCE BETWEEN SAN AND NAS AND HOW CAN I USE THEM IN MY QLIKVIEW ENVIRONMENT? QlikView Technical Brief February 2012 qlikview.com This document will highlight some of the conceptual differences between the terms SAN and NAS and describe how they fit into a QlikView Server environment by suggesting some recommended implementations. It will also describe the definition of DAS (Direct-Attached Storage) and how it applies in SAN configurations. Using SAN and NAS in the QlikView Environment | Page 2 Table of Contents Definitions 4 SAN - Storage Area Network 4 Host adapters 4 Typical architecture 5 NAS - Network Attached Storage 7 Typical architecture 7 DAS - Direct-Attached Storage 8 Using SAN/NAS and QlikView Server 8 QlikView Server and Distribution Service cluster inter-communication 8 QlikView Server file storage conformity 9 QlikView file types explained 9 A note on the usage of .shared files 10 Considerations 10 Conclusions 11 Some suggestions 12 QlikView Server Configurations 12 QlikView Server cluster utilizing a virtual Windows based NAS using a SAN 12 QlikView Server cluster utilizing a physical NAS using a SAN 13 Single QlikView Server using a SAN as local storage 14 QlikView Server using a pure Windows based NAS as local storage 14 Using SAN and NAS in the QlikView Environment | Page 3 Definitions It is important to differentiate between the two terms SAN and NAS. Also, the term DAS will be involved to nuance the usage of a SAN. SAN - STORAGE AREA NETWORK A typical definition of a SAN could be; “SANs primarily are used to make storage devices (such as disk arrays, tape libraries, and optical jukeboxes) accessible to servers so that the devices appear as locally attached to the operating system.” (Wikipedia.org) SANs are often used in larger virtualization scenarios or where larger areas of high-speed access storage space is required. -
Membrane: Operating System Support for Restartable File Systems Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale, Andrea C
Membrane: Operating System Support for Restartable File Systems Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Michael M. Swift Computer Sciences Department, University of Wisconsin, Madison Abstract and most complex code bases in the kernel. Further, We introduce Membrane, a set of changes to the oper- file systems are still under active development, and new ating system to support restartable file systems. Mem- ones are introduced quite frequently. For example, Linux brane allows an operating system to tolerate a broad has many established file systems, including ext2 [34], class of file system failures and does so while remain- ext3 [35], reiserfs [27], and still there is great interest in ing transparent to running applications; upon failure, the next-generation file systems such as Linux ext4 and btrfs. file system restarts, its state is restored, and pending ap- Thus, file systems are large, complex, and under develop- plication requests are serviced as if no failure had oc- ment, the perfect storm for numerous bugs to arise. curred. Membrane provides transparent recovery through Because of the likely presence of flaws in their imple- a lightweight logging and checkpoint infrastructure, and mentation, it is critical to consider how to recover from includes novel techniques to improve performance and file system crashes as well. Unfortunately, we cannot di- correctness of its fault-anticipation and recovery machin- rectly apply previous work from the device-driver litera- ery. We tested Membrane with ext2, ext3, and VFAT. ture to improving file-system fault recovery. File systems, Through experimentation, we show that Membrane in- unlike device drivers, are extremely stateful, as they man- duces little performance overhead and can tolerate a wide age vast amounts of both in-memory and persistent data; range of file system crashes. -
Mac OS X Server Administrator's Guide
034-9285.S4AdminPDF 6/27/02 2:07 PM Page 1 Mac OS X Server Administrator’s Guide K Apple Computer, Inc. © 2002 Apple Computer, Inc. All rights reserved. Under the copyright laws, this publication may not be copied, in whole or in part, without the written consent of Apple. The Apple logo is a trademark of Apple Computer, Inc., registered in the U.S. and other countries. Use of the “keyboard” Apple logo (Option-Shift-K) for commercial purposes without the prior written consent of Apple may constitute trademark infringement and unfair competition in violation of federal and state laws. Apple, the Apple logo, AppleScript, AppleShare, AppleTalk, ColorSync, FireWire, Keychain, Mac, Macintosh, Power Macintosh, QuickTime, Sherlock, and WebObjects are trademarks of Apple Computer, Inc., registered in the U.S. and other countries. AirPort, Extensions Manager, Finder, iMac, and Power Mac are trademarks of Apple Computer, Inc. Adobe and PostScript are trademarks of Adobe Systems Incorporated. Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. Netscape Navigator is a trademark of Netscape Communications Corporation. RealAudio is a trademark of Progressive Networks, Inc. © 1995–2001 The Apache Group. All rights reserved. UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company, Ltd. 062-9285/7-26-02 LL9285.Book Page 3 Tuesday, June 25, 2002 3:59 PM Contents Preface How to Use This Guide 39 What’s Included -
Developments in GFS2
Developments in GFS2 Andy Price <[email protected]> Software Engineer, GFS2 OSSEU 2018 11 GFS2 recap ● Shared storage cluster filesystem ● High availability clusters ● Uses glocks (“gee-locks”) based on DLM locking ● One journal per node ● Divided into resource groups ● Requires clustered lvm: clvmd/lvmlockd ● Userspace tools: gfs2-utils 22 Not-so-recent developments ● Full SELinux support (linux 4.5) ● Previously no way to tell other nodes that cached labels are invalid ● Workaround was to mount with -o context=<label> ● Relabeling now causes security label invalidation across cluster 33 Not-so-recent developments ● Resource group stripe alignment (gfs2-utils 3.1.11) ● mkfs.gfs2 tries to align resource groups to RAID stripes where possible ● Uses libblkid topology information to find stripe unit and stripe width values ● Tries to spread resource groups evenly across disks 44 Not-so-recent developments ● Resource group LVBs (linux 3.6) ● -o rgrplvb (all nodes) ● LVBs: data attached to DLM lock requests ● Allows resource group metadata to be cached and transferred with glocks ● Decreases resource group-related I/O 55 Not-so-recent developments ● Location-based readdir cookies (linux 4.5) ● -o loccookie (all nodes) ● Uniqueness required by NFS ● Previously 31 bits of filename hash ● Problem: collisions with large directories (100K+ files) ● Cookies now based on the location of the directory entry within the directory 66 Not-so-recent developments ● gfs_controld is gone (linux 3.3) ● dlm now triggers gfs2 journal recovery via callbacks ● -
Globalfs: a Strongly Consistent Multi-Site File System
GlobalFS: A Strongly Consistent Multi-Site File System Leandro Pacheco Raluca Halalai Valerio Schiavoni University of Lugano University of Neuchatelˆ University of Neuchatelˆ Fernando Pedone Etienne Riviere` Pascal Felber University of Lugano University of Neuchatelˆ University of Neuchatelˆ Abstract consistency, availability, and tolerance to partitions. Our goal is to ensure strongly consistent file system operations This paper introduces GlobalFS, a POSIX-compliant despite node failures, at the price of possibly reduced geographically distributed file system. GlobalFS builds availability in the event of a network partition. Weak on two fundamental building blocks, an atomic multicast consistency is suitable for domain-specific applications group communication abstraction and multiple instances of where programmers can anticipate and provide resolution a single-site data store. We define four execution modes and methods for conflicts, or work with last-writer-wins show how all file system operations can be implemented resolution methods. Our rationale is that for general-purpose with these modes while ensuring strong consistency and services such as a file system, strong consistency is more tolerating failures. We describe the GlobalFS prototype in appropriate as it is both more intuitive for the users and detail and report on an extensive performance assessment. does not require human intervention in case of conflicts. We have deployed GlobalFS across all EC2 regions and Strong consistency requires ordering commands across show that the system scales geographically, providing replicas, which needs coordination among nodes at performance comparable to other state-of-the-art distributed geographically distributed sites (i.e., regions). Designing file systems for local commands and allowing for strongly strongly consistent distributed systems that provide good consistent operations over the whole system. -
Design and Implementation Considerations for Storage Area Networks
Designing and Implementing a SAN 1 Running head: DESIGNING AND IMPLEMENTING A SAN Considerations for the Design and Implementation of a Storage Area Network (SAN) Al Spraker 15 July 2006 Designing and Implementing a SAN 2 Abstract With the ever-increasing need for businesses and organizations to maintain and manage large amounts of data, storage issues have become a concern and an investment priority. Organizations and business must have a good understanding of the features and characteristics of network storage in order to design and implement a network storage system that addresses their present and future needs. This paper will define and compare the storage area networks (SAN) with network-attached storage (NAS) as well as a historical perspective of directly-attached storage (DAS). Some of the benefits associated with establishing a network storage system will also be identified. This paper will identify some of the general characteristics of SAN architecture and protocols, such as Fibre Channel and iSCSI. Another area addressed will be management software issues and its critical role as part of successful SAN deployment. Not only must data be reliable and available at all times, data must also be kept confidential and protected. While the data is being transmitted over the network, security is also a concern that must be addressed. Designing and Implementing a SAN 3 Considerations for the Design and Implementation of a Storage Area Network (SAN) Today’s enterprises are using more complex, sophisticated, and resource-intensive software that generates massive amounts of data. The demand for businesses to maintain and manage large amounts of data has elevated storage issues to a level of significant priority. -
HP Storageworks Clustered File System Command Line Reference
HP StorageWorks Clustered File System 3.0 Command Line reference guide *392372-001* *392372–001* Part number: 392372–001 First edition: May 2005 Legal and notice information © Copyright 1999-2005 PolyServe, Inc. Portions © 2005 Hewlett-Packard Development Company, L.P. Neither PolyServe, Inc. nor Hewlett-Packard Company makes any warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Neither PolyServe nor Hewlett-Packard shall be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material. This document contains proprietary information, which is protected by copyright. No part of this document may be photocopied, reproduced, or translated into another language without the prior written consent of Hewlett-Packard. The information is provided “as is” without warranty of any kind and is subject to change without notice. The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. Neither PolyServe nor HP shall be liable for technical or editorial errors or omissions contained herein. The software this document describes is PolyServe confidential and proprietary. PolyServe and the PolyServe logo are trademarks of PolyServe, Inc. PolyServe Matrix Server contains software covered by the following copyrights and subject to the licenses included in the file thirdpartylicense.pdf, which is included in the PolyServe Matrix Server distribution. Copyright © 1999-2004, The Apache Software Foundation. Copyright © 1992, 1993 Simmule Turner and Rich Salz. -
OS X Support Essentials 10.9 Apple Pro Training Series
Apple Pro Training Series: OS X Support Essentials 10.9 Apple Pro Training Series Training Apple Pro Network Configuration Locations: One selected by user Automatic Work Home Test Ethernet Wi-Fi Ethernet 2 FireWire VPN Services: Multiple services activate and prioritized based on service order Understand OS X Mavericks underlying technologies, Configurestand-alone and networked Mac Troubleshoot software and hardware issues software components, and industry-standard protocols. computers with step-by-step instructions. using Apple-recommended procedures and tools. OS X Mavericks Supporting and Troubleshooting OS X Support Essentials 10.9 The Apple-Certified Way to Learn This is the official curriculum of the Apple Mavericks 101: OS X The Apple Pro Training Series is both a self-paced Support Essentials 10.9 course and preparation for Apple learning tool and the official curriculum of the Apple Training and Certified Support Professional (ACSP) 10.9 certification— Certification program. Upon completing the course material in this as well as a top-notch primer for anyone who needs to support, book, you can become an Apple Certified Support Professional by troubleshoot, or optimize OS X Mavericks. This guide provides passing the OS X Support Essentials 10.9 Exam. Work through this comprehensive coverage of Mavericks and is part of the Apple book as self-study material or attend a class at an Apple Authorized Pro Training series—the only Apple-certified books on the Training Center. To learn more, please visit training.apple.com. market. Designed for support technicians, help desk specialists, and ardent Mac users, this guide takes you deep inside the Also in the Apple Pro Training Series: Mavericks operating system. -
Computer Service Technician- CST Competency Requirements
Computer Service Technician- CST Competency Requirements This Competency listing serves to identify the major knowledge, skills, and training areas which the Computer Service Technician needs in order to perform the job of servicing the hardware and the systems software for personal computers (PCs). The present CST COMPETENCIES only address operating systems for Windows current version, plus three older. Included also are general common Linux and Apple competency information, as proprietary service contracts still keep most details specific to in-house service. The Competency is written so that it can be used as a course syllabus, or the study directed towards the education of individuals, who are expected to have basic computer hardware electronics knowledge and skills. Computer Service Technicians must be knowledgeable in the following technical areas: 1.0 SAFETY PROCEDURES / HANDLING / ENVIRONMENTAL AWARENESS 1.1 Explain the need for physical safety: 1.1.1 Lifting hardware 1.1.2 Electrical shock hazard 1.1.3 Fire hazard 1.1.4 Chemical hazard 1.2 Explain the purpose for Material Safety Data Sheets (MSDS) 1.3 Summarize work area safety and efficiency 1.4 Define first aid procedures 1.5 Describe potential hazards in both in-shop and in-home environments 1.6 Describe proper recycling and disposal procedures 2.0 COMPUTER ASSEMBLY AND DISASSEMBLY 2.1 List the tools required for removal and installation of all computer system components 2.2 Describe the proper removal and installation of a CPU 2.2.1 Describe proper use of Electrostatic Discharge -
Linux Journal | System Administration Special Issue | 2009
Cfengine VNC Billix Zenoss Thin Clients MySQL Heartbeat ™ SPECIAL SYSTEM ADMINISTRATION ISSUE Since 1994: The Original Magazine of the Linux Community 2009 | Supplement Issue | www.linuxjournal.com MAY THE SOURCE BE WITH YOU Billix: the Sysadmin Toolkit for Your Pocket Authentication with Fedora Directory Server Remote Desktop Administration with OpenSSH or VNC Manage Configuration Files with Cfengine Setting Up a PXE Boot Server Network Monitoring with Zenoss SPECIAL SYSTEM CONTENTS ADMINISTRATION ISSUE 5 SPECIAL_ISSUE.TAR.GZ 26 PXE MAGIC: FLEXIBLE System Administration: Instant NETWORK BOOTING WITH Gratification Edition MENUS Shawn Powers What if you never had to carry around an install or rescue CD 6 CFENGINE FOR again? Set up a PXE boot server ENTERPRISE with menus and put them all on CONFIGURATION the network. MANAGEMENT Kyle Rankin How to use cfengine to manage configuration files across large 30 CREATING VPNS WITH 17 ZENOSS numbers of machines. IPSEC AND SSL/TLS Scott Lackey The two most common and current techniques for creating VPNs. 10 SECURED REMOTE Rami Rosen Linux Journal DESKTOP/APPLICATION SESSIONS 34 MYSQL 5 STORED 2009 Lineup Different ways to control a Linux PROCEDURES: RELIC OR system over a network. REVOLUTION? JANUARY Mick Bauer Do MySQL 5 Stored Procedures Security produce tiers of joy or sorrow? FEBRUARY Guy Harrison Web Development 38 GETTING STARTED WITH MARCH Desktop HEARTBEAT Availability in a heartbeat. APRIL Daniel Bartholomew System Administration 14 BILLIX: A SYSADMIN’S MAY SWISS ARMY KNIFE 42 FEDORA DIRECTORY Cool Projects SERVER: THE EVOLUTION Build a toolbox in your pocket by JUNE installing Billix on that spare USB key. -
Shared File Systems: Determining the Best Choice for Your Distributed SAS® Foundation Applications Margaret Crevar, SAS Institute Inc., Cary, NC
Paper SAS569-2017 Shared File Systems: Determining the Best Choice for your Distributed SAS® Foundation Applications Margaret Crevar, SAS Institute Inc., Cary, NC ABSTRACT If you are planning on deploying SAS® Grid Manager and SAS® Enterprise BI (or other distributed SAS® Foundation applications) with load balanced servers on multiple operating systems instances, , a shared file system is required. In order to determine the best shared file system choice for a given deployment, it is important to understand how the file system is used, the SAS® I/O workload characteristics performed on it, and the stressors that SAS Foundation applications produce on the file system. For the purposes of this paper, we use the term "shared file system" to mean both a clustered file system and shared file system, even though" shared" can denote a network file system and a distributed file system – not clustered. INTRODUCTION This paper examines the shared file systems that are most commonly used with SAS and reviews their strengths and weaknesses. SAS GRID COMPUTING REQUIREMENTS FOR SHARED FILE SYSTEMS Before we get into the reasons why a shared file system is needed for SAS® Grid Computing, let’s briefly discuss the SAS I/O characteristics. GENERAL SAS I/O CHARACTERISTICS SAS Foundation creates a high volume of predominately large-block, sequential access I/O, generally at block sizes of 64K, 128K, or 256K, and the interactions with data storage are significantly different from typical interactive applications and RDBMSs. Here are some major points to understand (more details about the bullets below can be found in this paper): SAS tends to perform large sequential Reads and Writes.