Shared File Systems: Determining the Best Choice for Your Distributed SAS® Foundation Applications Margaret Crevar, SAS Institute Inc., Cary, NC
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Elastic Storage for Linux on System Z IBM Research & Development Germany
Peter Münch T/L Test and Development – Elastic Storage for Linux on System z IBM Research & Development Germany Elastic Storage for Linux on IBM System z © Copyright IBM Corporation 2014 9.0 Elastic Storage for Linux on System z Session objectives • This presentation introduces the Elastic Storage, based on General Parallel File System technology that will be available for Linux on IBM System z. Understand the concepts of Elastic Storage and which functions will be available for Linux on System z. Learn how you can integrate and benefit from the Elastic Storage in a Linux on System z environment. Finally, get your first impression in a live demo of Elastic Storage. 2 © Copyright IBM Corporation 2014 Elastic Storage for Linux on System z Trademarks The following are trademarks of the International Business Machines Corporation in the United States and/or other countries. AIX* FlashSystem Storwize* Tivoli* DB2* IBM* System p* WebSphere* DS8000* IBM (logo)* System x* XIV* ECKD MQSeries* System z* z/VM* * Registered trademarks of IBM Corporation The following are trademarks or registered trademarks of other companies. Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries. Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom. Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. -
Optimizing the Ceph Distributed File System for High Performance Computing
Optimizing the Ceph Distributed File System for High Performance Computing Kisik Jeong Carl Duffy Jin-Soo Kim Joonwon Lee Sungkyunkwan University Seoul National University Seoul National University Sungkyunkwan University Suwon, South Korea Seoul, South Korea Seoul, South Korea Suwon, South Korea [email protected] [email protected] [email protected] [email protected] Abstract—With increasing demand for running big data ana- ditional HPC workloads. Traditional HPC workloads perform lytics and machine learning workloads with diverse data types, reads from a large shared file stored in a file system, followed high performance computing (HPC) systems consequently need by writes to the file system in a parallel manner. In this case, to support diverse types of storage services. Ceph is one possible candidate for such HPC environments, as Ceph provides inter- a storage service should provide good sequential read/write faces for object, block, and file storage. Ceph, however, is not performance. However, Ceph divides large files into a number designed for HPC environments, thus it needs to be optimized of chunks and distributes them to several different disks. This for HPC workloads. In this paper, we find and analyze problems feature has two main problems in HPC environments: 1) Ceph that arise when running HPC workloads on Ceph, and propose translates sequential accesses into random accesses, 2) Ceph a novel optimization technique called F2FS-split, based on the F2FS file system and several other optimizations. We measure needs to manage many files, incurring high journal overheads the performance of Ceph in HPC environments, and show that in the underlying file system. -
Proxmox Ve Mit Ceph &
PROXMOX VE MIT CEPH & ZFS ZUKUNFTSSICHERE INFRASTRUKTUR IM RECHENZENTRUM Alwin Antreich Proxmox Server Solutions GmbH FrOSCon 14 | 10. August 2019 Alwin Antreich Software Entwickler @ Proxmox 15 Jahre in der IT als Willkommen! System / Netzwerk Administrator FrOSCon 14 | 10.08.2019 2/33 Proxmox Server Solutions GmbH Aktive Community Proxmox seit 2005 Globales Partnernetz in Wien (AT) Proxmox Mail Gateway Enterprise (AGPL,v3) Proxmox VE (AGPL,v3) Support & Services FrOSCon 14 | 10.08.2019 3/33 Traditionelle Infrastruktur FrOSCon 14 | 10.08.2019 4/33 Hyperkonvergenz FrOSCon 14 | 10.08.2019 5/33 Hyperkonvergente Infrastruktur FrOSCon 14 | 10.08.2019 6/33 Voraussetzung für Hyperkonvergenz CPU / RAM / Netzwerk / Storage Verwende immer genug von allem. FrOSCon 14 | 10.08.2019 7/33 FrOSCon 14 | 10.08.2019 8/33 Was ist ‚das‘? ● Ceph & ZFS - software-basierte Storagelösungen ● ZFS lokal / Ceph verteilt im Netzwerk ● Hervorragende Performance, Verfügbarkeit und https://ceph.io/ Skalierbarkeit ● Verwaltung und Überwachung mit Proxmox VE ● Technischer Support für Ceph & ZFS inkludiert in Proxmox Subskription http://open-zfs.org/ FrOSCon 14 | 10.08.2019 9/33 FrOSCon 14 | 10.08.2019 10/33 FrOSCon 14 | 10.08.2019 11/33 ZFS Architektur FrOSCon 14 | 10.08.2019 12/33 ZFS ARC, L2ARC and ZIL With ZIL Without ZIL ARC RAM ARC RAM ZIL ZIL Application HDD Application SSD HDD FrOSCon 14 | 10.08.2019 13/33 FrOSCon 14 | 10.08.2019 14/33 FrOSCon 14 | 10.08.2019 15/33 Ceph Network Ceph Docs: https://docs.ceph.com/docs/master/ FrOSCon 14 | 10.08.2019 16/33 FrOSCon -
Red Hat Openstack* Platform with Red Hat Ceph* Storage
Intel® Data Center Blocks for Cloud – Red Hat* OpenStack* Platform with Red Hat Ceph* Storage Reference Architecture Guide for deploying a private cloud based on Red Hat OpenStack* Platform with Red Hat Ceph Storage using Intel® Server Products. Rev 1.0 January 2017 Intel® Server Products and Solutions <Blank page> Intel® Data Center Blocks for Cloud – Red Hat* OpenStack* Platform with Red Hat Ceph* Storage Document Revision History Date Revision Changes January 2017 1.0 Initial release. 3 Intel® Data Center Blocks for Cloud – Red Hat® OpenStack® Platform with Red Hat Ceph Storage Disclaimers Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Learn more at Intel.com, or from the OEM or retailer. You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade. Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm. -
Gluster Roadmap: Recent Improvements and Upcoming Features
Gluster roadmap: Recent improvements and upcoming features Niels de Vos GlusterFS co-maintainer [email protected] Agenda ● Introduction into Gluster ● Quick Start ● Current stable releases ● History of feature additions ● Plans for the upcoming 3.8 and 4.0 release ● Detailed description of a few select features FOSDEM, 30 January 2016 2 What is GlusterFS? ● Scalable, general-purpose storage platform ● POSIX-y Distributed File System ● Object storage (swift) ● Distributed block storage (qemu) ● Flexible storage (libgfapi) ● No Metadata Server ● Heterogeneous Commodity Hardware ● Flexible and Agile Scaling ● Capacity – Petabytes and beyond ● Performance – Thousands of Clients FOSDEM, 30 January 2016 3 Terminology ● Brick ● Fundamentally, a filesystem mountpoint ● A unit of storage used as a capacity building block ● Translator ● Logic between the file bits and the Global Namespace ● Layered to provide GlusterFS functionality FOSDEM, 30 January 2016 4 Terminology ● Volume ● Bricks combined and passed through translators ● Ultimately, what's presented to the end user ● Peer / Node ● Server hosting the brick filesystems ● Runs the Gluster daemons and participates in volumes ● Trusted Storage Pool ● A group of peers, like a “Gluster cluster” FOSDEM, 30 January 2016 5 Scale-out and Scale-up FOSDEM, 30 January 2016 6 Distributed Volume ● Files “evenly” spread across bricks ● Similar to file-level RAID 0 ● Server/Disk failure could be catastrophic FOSDEM, 30 January 2016 7 Replicated Volume ● Copies files to multiple bricks ● Similar to file-level -
Membrane: Operating System Support for Restartable File Systems Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale, Andrea C
Membrane: Operating System Support for Restartable File Systems Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Michael M. Swift Computer Sciences Department, University of Wisconsin, Madison Abstract and most complex code bases in the kernel. Further, We introduce Membrane, a set of changes to the oper- file systems are still under active development, and new ating system to support restartable file systems. Mem- ones are introduced quite frequently. For example, Linux brane allows an operating system to tolerate a broad has many established file systems, including ext2 [34], class of file system failures and does so while remain- ext3 [35], reiserfs [27], and still there is great interest in ing transparent to running applications; upon failure, the next-generation file systems such as Linux ext4 and btrfs. file system restarts, its state is restored, and pending ap- Thus, file systems are large, complex, and under develop- plication requests are serviced as if no failure had oc- ment, the perfect storm for numerous bugs to arise. curred. Membrane provides transparent recovery through Because of the likely presence of flaws in their imple- a lightweight logging and checkpoint infrastructure, and mentation, it is critical to consider how to recover from includes novel techniques to improve performance and file system crashes as well. Unfortunately, we cannot di- correctness of its fault-anticipation and recovery machin- rectly apply previous work from the device-driver litera- ery. We tested Membrane with ext2, ext3, and VFAT. ture to improving file-system fault recovery. File systems, Through experimentation, we show that Membrane in- unlike device drivers, are extremely stateful, as they man- duces little performance overhead and can tolerate a wide age vast amounts of both in-memory and persistent data; range of file system crashes. -
Storage Virtualization for KVM – Putting the Pieces Together
Storage Virtualization for KVM – Putting the pieces together Bharata B Rao – [email protected] Deepak C Shettty – [email protected] M Mohan Kumar – [email protected] (IBM Linux Technology Center, Bangalore) Balamurugan Aramugam - [email protected] Shireesh Anjal – [email protected] (RedHat, Bangalore) Aug 2012 LPC2012 Linux is a registered trademark of Linus Torvalds. Agenda ● Problems around storage in virtualization ● GlusterFS as virt-ready file system – QEMU-GlusterFS integration – GlusterFS – Block device translator ● Virtualization management - oVirt and VDSM – VDSM-GlusterFS integration ● Storage integration – libstoragemgmt Problems in storage/FS in KVM virtualization ● Multiple choices for file system and virtualization management ● Lack of virtualization aware file systems ● File systems/storage functionality implemented in other layers of virtualization stack – Snapshots, block streaming, image formats in QEMU ● No well defined interface points in the virtualization stack for storage integration ● No standard interface/APIs available for services like backup and restore ● Need for a single FS/storage solution that works for local, SAN and NAS storage – Mixing different types of storage into a single filesystem namespace GlusterFS ● User space distributed file system that scales to several petabytes ● Aggregates storage resources from multiple nodes and presents a unified file system namespace GlusterFS - features ● Replication ● Striping ● Distribution ● Geo-replication/sync ● Online volume extension -
IBM Spectrum Scale CSI Driver for Container Persistent Storage
Front cover IBM Spectrum Scale CSI Driver for Container Persistent Storage Abhishek Jain Andrew Beattie Daniel de Souza Casali Deepak Ghuge Harald Seipp Kedar Karmarkar Muthu Muthiah Pravin P. Kudav Sandeep R. Patil Smita Raut Yadavendra Yadav Redpaper IBM Redbooks IBM Spectrum Scale CSI Driver for Container Persistent Storage April 2020 REDP-5589-00 Note: Before using this information and the product it supports, read the information in “Notices” on page ix. First Edition (April 2020) This edition applies to Version 5, Release 0, Modification 4 of IBM Spectrum Scale. © Copyright International Business Machines Corporation 2020. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. iii iv IBM Spectrum Scale CSI Driver for Container Persistent Storage Contents Notices . vii Trademarks . viii Preface . ix Authors. ix Now you can become a published author, too . xi Comments welcome. xii Stay connected to IBM Redbooks . xii Chapter 1. IBM Spectrum Scale and Containers Introduction . 1 1.1 Abstract . 2 1.2 Assumptions . 2 1.3 Key concepts and terminology . 3 1.3.1 IBM Spectrum Scale . 3 1.3.2 Container runtime . 3 1.3.3 Container Orchestration System. 4 1.4 Introduction to persistent storage for containers Flex volumes. 4 1.4.1 Static provisioning. 4 1.4.2 Dynamic provisioning . 4 1.4.3 Container Storage Interface (CSI). 5 1.4.4 Advantages of using IBM Spectrum Scale storage for containers . 5 Chapter 2. Architecture of IBM Spectrum Scale CSI Driver . 7 2.1 CSI Component Overview. 8 2.2 IBM Spectrum Scale CSI driver architecture. -
Red Hat Data Analytics Infrastructure Solution
TECHNOLOGY DETAIL RED HAT DATA ANALYTICS INFRASTRUCTURE SOLUTION TABLE OF CONTENTS 1 INTRODUCTION ................................................................................................................ 2 2 RED HAT DATA ANALYTICS INFRASTRUCTURE SOLUTION ..................................... 2 2.1 The evolution of analytics infrastructure ....................................................................................... 3 Give data scientists and data 2.2 Benefits of a shared data repository on Red Hat Ceph Storage .............................................. 3 analytics teams access to their own clusters without the unnec- 2.3 Solution components ...........................................................................................................................4 essary cost and complexity of 3 TESTING ENVIRONMENT OVERVIEW ............................................................................ 4 duplicating Hadoop Distributed File System (HDFS) datasets. 4 RELATIVE COST AND PERFORMANCE COMPARISON ................................................ 6 4.1 Findings summary ................................................................................................................................. 6 Rapidly deploy and decom- 4.2 Workload details .................................................................................................................................... 7 mission analytics clusters on 4.3 24-hour ingest ........................................................................................................................................8 -
Developments in GFS2
Developments in GFS2 Andy Price <[email protected]> Software Engineer, GFS2 OSSEU 2018 11 GFS2 recap ● Shared storage cluster filesystem ● High availability clusters ● Uses glocks (“gee-locks”) based on DLM locking ● One journal per node ● Divided into resource groups ● Requires clustered lvm: clvmd/lvmlockd ● Userspace tools: gfs2-utils 22 Not-so-recent developments ● Full SELinux support (linux 4.5) ● Previously no way to tell other nodes that cached labels are invalid ● Workaround was to mount with -o context=<label> ● Relabeling now causes security label invalidation across cluster 33 Not-so-recent developments ● Resource group stripe alignment (gfs2-utils 3.1.11) ● mkfs.gfs2 tries to align resource groups to RAID stripes where possible ● Uses libblkid topology information to find stripe unit and stripe width values ● Tries to spread resource groups evenly across disks 44 Not-so-recent developments ● Resource group LVBs (linux 3.6) ● -o rgrplvb (all nodes) ● LVBs: data attached to DLM lock requests ● Allows resource group metadata to be cached and transferred with glocks ● Decreases resource group-related I/O 55 Not-so-recent developments ● Location-based readdir cookies (linux 4.5) ● -o loccookie (all nodes) ● Uniqueness required by NFS ● Previously 31 bits of filename hash ● Problem: collisions with large directories (100K+ files) ● Cookies now based on the location of the directory entry within the directory 66 Not-so-recent developments ● gfs_controld is gone (linux 3.3) ● dlm now triggers gfs2 journal recovery via callbacks ● -
Globalfs: a Strongly Consistent Multi-Site File System
GlobalFS: A Strongly Consistent Multi-Site File System Leandro Pacheco Raluca Halalai Valerio Schiavoni University of Lugano University of Neuchatelˆ University of Neuchatelˆ Fernando Pedone Etienne Riviere` Pascal Felber University of Lugano University of Neuchatelˆ University of Neuchatelˆ Abstract consistency, availability, and tolerance to partitions. Our goal is to ensure strongly consistent file system operations This paper introduces GlobalFS, a POSIX-compliant despite node failures, at the price of possibly reduced geographically distributed file system. GlobalFS builds availability in the event of a network partition. Weak on two fundamental building blocks, an atomic multicast consistency is suitable for domain-specific applications group communication abstraction and multiple instances of where programmers can anticipate and provide resolution a single-site data store. We define four execution modes and methods for conflicts, or work with last-writer-wins show how all file system operations can be implemented resolution methods. Our rationale is that for general-purpose with these modes while ensuring strong consistency and services such as a file system, strong consistency is more tolerating failures. We describe the GlobalFS prototype in appropriate as it is both more intuitive for the users and detail and report on an extensive performance assessment. does not require human intervention in case of conflicts. We have deployed GlobalFS across all EC2 regions and Strong consistency requires ordering commands across show that the system scales geographically, providing replicas, which needs coordination among nodes at performance comparable to other state-of-the-art distributed geographically distributed sites (i.e., regions). Designing file systems for local commands and allowing for strongly strongly consistent distributed systems that provide good consistent operations over the whole system. -
Glusterfs Documentation Release 3.8.0
GlusterFS Documentation Release 3.8.0 Gluster Community Aug 10, 2016 Contents 1 Quick Start Guide 3 1.1 Single Node Cluster...........................................3 1.2 Multi Node Cluster............................................4 2 Overview and Concepts 7 2.1 Volume Types..............................................7 2.2 FUSE................................................... 10 2.3 Translators................................................ 12 2.4 Geo-Replication............................................. 17 2.5 Terminologies.............................................. 19 3 Installation Guide 23 3.1 Getting Started.............................................. 23 3.2 Configuration............................................... 24 3.3 Installing Gluster............................................. 26 3.4 Overview................................................. 27 3.5 Quick Start Guide............................................ 28 3.6 Setup Baremetal............................................. 29 3.7 Deploying in AWS............................................ 30 3.8 Setting up in virtual machines...................................... 31 4 Administrator Guide 33 5 Upgrade Guide 35 6 Contributors Guide 37 6.1 Adding your blog............................................. 37 6.2 Bug Lifecycle.............................................. 37 6.3 Bug Reporting Guidelines........................................ 38 6.4 Bug Triage Guidelines.......................................... 41 7 Changelog 47 8 Presentations 49 i ii GlusterFS