Supplemental Data

Total Page:16

File Type:pdf, Size:1020Kb

Supplemental Data Article Detecting early myocardial ischemia in rat heart by MALDI imaging mass spectrometry ALJAKNA KHAN, Aleksandra, et al. Abstract Diagnostics of myocardial infarction in human post-mortem hearts can be achieved only if ischemia persisted for at least 6-12 h when certain morphological changes appear in myocardium. The initial 4 h of ischemia is difficult to diagnose due to lack of a standardized method. Developing a panel of molecular tissue markers is a promising approach and can be accelerated by characterization of molecular changes. This study is the first untargeted metabolomic profiling of ischemic myocardium during the initial 4 h directly from tissue section. Ischemic hearts from an ex-vivo Langendorff model were analysed using matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) at 15 min, 30 min, 1 h, 2 h, and 4 h. Region-specific molecular changes were identified even in absence of evident histological lesions and were segregated by unsupervised cluster analysis. Significantly differentially expressed features were detected by multivariate analysis starting at 15 min while their number increased with prolonged ischemia. The biggest significant increase at 15 min was observed for m/z 682.1294 (likely [...] Reference ALJAKNA KHAN, Aleksandra, et al. Detecting early myocardial ischemia in rat heart by MALDI imaging mass spectrometry. Scientific Reports, 2021, vol. 11, no. 1, p. 5135 DOI : 10.1038/s41598-021-84523-z PMID : 33664384 Available at: http://archive-ouverte.unige.ch/unige:150558 Disclaimer: layout of this document may differ from the published version. 1 / 1 Detecting Early Myocardial Ischemia in Rat Heart by MALDI Imaging Mass Spectrometry Online Supplementary Material for Scientific Reports Aleksandra Aljakna Khan1, Nasim Bararpour2,3, Marie Gorka4, Timothée Joye2,3, Sandrine Morel5, Christophe Montessuit5, Silke Grabherr1,2, Tony Fracasso1, Marc Augsburger1,2, Brenda R. Kwak5, Aurélien Thomas1,3, Sara Sabatasso1,2* 1 University Centre of Legal Medicine, Lausanne-Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland 2 University Centre of Legal Medicine, Lausanne-Geneva, Rue Vulliette 04, 1000 Lausanne, Switzerland 3 Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, Rue Vulliette 04, 1000 Lausanne, Switzerland 4 Ecole des Sciences Criminelles/School of Criminal Justice, Faculty of Law, Criminal Justice, and Public Administration, University of Lausanne, 1015 Lausanne-Dorigny, Switzerland 5 Department of Pathology and Immunology, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland Corresponding author: Sara Sabatasso, M.D. University Centre of Legal Medicine Lausanne-Geneva (CURML) Unit of Forensic Medicine, CMU Rue Michel-Servet 1 1211 Geneva Tel: +41 (0)79 556 9118 Switzerland E-mail: [email protected] TABLE OF CONTENTS SUPPLEMENTARY MATERIAL .......................................................................................................................2 Supplementary Methods ...................................................................................................................................2 Animals and ex-vivo Langendorff heart perfusion ....................................................................................2 Immunohistochemistry and immunofluorescence.....................................................................................2 Confirmation of ischemia in the ex-vivo Langendorff model ...................................................................3 Evans blue and TTC staining ......................................................................................................................3 H&E ...............................................................................................................................................................3 Immunohistochemistry for dCx43 ..............................................................................................................3 Changes in left ventricular developed pressure (LVDP) and coronary flow ..........................................4 Supplementary Figures .....................................................................................................................................5 Figure S1 – diagram of the experimental design and workflow ....................................................................5 Figure S2 – Evans blue and TTC staining .....................................................................................................6 Figure S3 – H&E staining .............................................................................................................................7 Figure S4 – immunohistochemistry for dephosphorylated Cx43 (dCx43) ....................................................7 Figure S5 – LVDP and heart rate ..................................................................................................................8 Figure S6 – MS/MS .......................................................................................................................................9 Supplementary Tables ....................................................................................................................................10 1 Aljakna Khan et al., Early Myocardial Ischemia Markers by MALDI IMS SUPPLEMENTARY MATERIAL Supplementary Methods Animals and ex-vivo Langendorff heart perfusion All animal experiments were performed according to the approved protocol by the Swiss veterinary authorities (GE/83/16). Lewis male rats (195-275 g) were housed in controlled, conventional conditions (20-24°C and 30-70% humidity) in an authorized facility under veterinary supervision with free access to food and water. All rats were allowed a minimum one-week adaptation period after arrival to the local animal facility and were randomly assigned into control or ischemic groups. The rats were premedicated by subcutaneous injection of buprenorphine (0.05 mg/kg, Temgesic, Reckitt Benckiser AG, Switzerland). After 20 minutes, the rats were deeply anesthetized by one intraperitoneal injection of ketamine and diazepamum mix (100 mg/kg, Ketasol, Graeub AG, Switzerland and 5 mg/kg, Valium, Roche Pharma AG, Switzerland, respectively). This anesthetic mix was chosen to minimize the adverse cardiovascular effect. After confirmation of deep anesthesia by absence of reflex in the posterior paws, the hearts were rapidly isolated, cannulated via the aorta to the ex-vivo Langendorff system, and retrogradely perfused under constant pressure at 37°C with oxygenated Krebs-Henseleit buffer solution (NaCl 118 mM, KCl 4.7 mM, MgSO4 1.19 mM, KH2PO4 1.2 mM, CaCl2 1.36 mM, NaHCO3 25 mM, Glucose 11 mM) (Fig. S1A). Euthanasia was performed by rapid excision of the heart under deep anesthesia. Throughout the experiments, the temperature was monitored. The left ventricular developed pressure (LVDP) and heart rate were measured via a balloon, which was inserted into the left ventricle, and connected by a pressure transducer to a computer with appropriate software (Lab Chart, ADInstruments). LVDP was fixed around 6 mmHg for all of the hearts at the beginning of the stabilization period. The hearts were stabilized for 20 min and local ischemia was induced by complete ligation of LAD using silk suture (6-0 Perma Hand, BV-1, ETHICON). Hearts were exposed to 15 min, 30 min, 1 h, 2 h, and 4 h ischemia (n = 5 per time point: 5 biological replicates at each time point, 30 samples in total) and were immediately frozen. The use of optimal cutting temperature (OCT) polymer was intentionally omitted because OCT can lead to analyte ion suppression. Control hearts were subjected to the same procedure, except the suture was not tied (it was only passed under LAD). After 20 min of stabilization, control hearts were maintained by Langendorff perfusion for 1h. Success of LAD ligation was confirmed by staining with Evans blue and triphenyltetrazolium chloride (TTC), H&E, immunohistochemistry for connexin43 (Cx43) as well as by monitoring the changes in LVDP and coronary flow (see below, Figs. S2-S5 and Table S1). Immunohistochemistry and immunofluorescence For immunohistochemistry, cryosections from frozen hearts (12 m) were fixed for 5 min in pre-chilled methanol, permeabilized in 0.2% Triton X-100, neutralized with 0.5 M NH4Cl in PBS, incubated with 3% H2O2, blocked with bovine serum albumin (BSA) and avidin/biotin blocking kit (Abcam), probed with primary antibody that recognizes multiple phospho-forms of Cx43 (rabbit polyclonal, Alpha Diagnostic Intl. Inc. Cx43B12-A, 1:100), incubated with biotinylated secondary antibody (anti-rabbit, Vector Laboratories, 1:200) and streptavidin- HRP (1:300), visualized with colorimetric detection kit (Vector AEC, Vector Laboratories), and counterstained with hematoxylin (Fig.1 p-y in the main text of the article). For immunofluorescence, cryosections (7 m) were dried for 15 min at RT, fixed for 10 min in 2 Aljakna Khan et al., Early Myocardial Ischemia Markers by MALDI IMS pre-chilled acetone, blocked and permeabilized with blocking buffer (1% BSA, 10% goat serum, and 0.5% TritonX-100 in PBS), probed with primary antibody for Nav1.5 (custom-made rabbit polyclonal for amino acids 493-511 of rat Nav1.5, gift from Prof. Hugues Abriel, 1:200), and incubated with secondary DyLight 488 antibody (goat anti-rabbit IgG H&L, Abcam, 1:200). Coverslips were mounted with FluorSave (Merck Millipore) (Fig.6 in the main text of the article). Negative controls (the primary antibody
Recommended publications
  • Functional Food Ingredients
    B&H BIOTECHNOLOGY CO. 必致生物科技有限公司 TRADING DIVISION FUNCTIONAL FOOD INGREDIENTS www.bhbiotech.com B&H BIOTECHNOLOGY CO. 必致生物科技有限公司 TRADING DIVISION GREAT PRODUCT OPPORTUNITIES B&H Biotechnology Co., Ltd (Hong Kong) is an international trading company specializing in pharmaceutical products and functional food ingredients. We have more than 20 years of experience in international trading business and have customers in more than 30 countries. Quick response, best service and competitive prices have made us the preferred partner. FUNCTIONAL FOOD INGREDIENTS PRODUCT PORTFOLIO 5’- Nucleotide (NUC) products Fructose – 1,6-diphosphate (FDP) products Alpha-amylase inhibitor (wheat origin) Yeast RNA (Ribonucleic Acid) Casein Phosphopeptides, CPP Citicoline Sodium, CDPC S-Ademetionine, SAM Adenosine Monophophate, AMP Adenosine Cyclphosphate, cAMP Cytidine Monophosphate, CMP Feed Nucleotides Other food ingredients and supplements www.bhbiotech.com B&H BIOTECHNOLOGY CO. 必致生物科技有限公司 TRADING DIVISION 5’- NUCLEOTIDES AND FRUCTOSE-1,6-DIPHOSPHATE PRODUCTS B&H Biotechnology Co., Ltd provides high quality 5′-nucleotides, fructose-1,6- diphosphate salts and their derivatives from the most reliable manufactures. These products are widely used in pharmaceutical and food industries. Among them, 5'-nucleotides are particularly competitive owing to breakthroughs in the bio-catalysis, bio- process and separation technologies. All products have the certifications of HACCP, Halal and Kosher. These products have a strong market position in China, and are exported into EU, USA, South America , Australia and Middle-East. 5’-Nucleotide (NUC) products 5’-nucleotides are widely used in the pharmaceutical and food industries, especially as infant powder milk additives. They can improve the human immunity, enhance the ability of babies to resist bacillary dysentery and can reduce the incidence rate of diarrhea.
    [Show full text]
  • 2'-Deoxyguanosine Toxicity for B and Mature T Lymphoid Cell Lines Is Mediated by Guanine Ribonucleotide Accumulation
    2'-deoxyguanosine toxicity for B and mature T lymphoid cell lines is mediated by guanine ribonucleotide accumulation. Y Sidi, B S Mitchell J Clin Invest. 1984;74(5):1640-1648. https://doi.org/10.1172/JCI111580. Research Article Inherited deficiency of the enzyme purine nucleoside phosphorylase (PNP) results in selective and severe T lymphocyte depletion which is mediated by its substrate, 2'-deoxyguanosine. This observation provides a rationale for the use of PNP inhibitors as selective T cell immunosuppressive agents. We have studied the relative effects of the PNP inhibitor 8- aminoguanosine on the metabolism and growth of lymphoid cell lines of T and B cell origin. We have found that 2'- deoxyguanosine toxicity for T lymphoblasts is markedly potentiated by 8-aminoguanosine and is mediated by the accumulation of deoxyguanosine triphosphate. In contrast, the growth of T4+ mature T cell lines and B lymphoblast cell lines is inhibited by somewhat higher concentrations of 2'-deoxyguanosine (ID50 20 and 18 microM, respectively) in the presence of 8-aminoguanosine without an increase in deoxyguanosine triphosphate levels. Cytotoxicity correlates instead with a three- to fivefold increase in guanosine triphosphate (GTP) levels after 24 h. Accumulation of GTP and growth inhibition also result from exposure to guanosine, but not to guanine at equimolar concentrations. B lymphoblasts which are deficient in the purine salvage enzyme hypoxanthine guanine phosphoribosyltransferase are completely resistant to 2'-deoxyguanosine or guanosine concentrations up to 800 microM and do not demonstrate an increase in GTP levels. Growth inhibition and GTP accumulation are prevented by hypoxanthine or adenine, but not by 2'-deoxycytidine.
    [Show full text]
  • We Have Previously Reported' the Isolation of Guanosine Diphosphate
    VOL. 48, 1962 BIOCHEMISTRY: HEATH AND ELBEIN 1209 9 Ramel, A., E. Stellwagen, and H. K. Schachman, Federation Proc., 20, 387 (1961). 10 Markus, G., A. L. Grossberg, and D. Pressman, Arch. Biochem. Biophys., 96, 63 (1962). "1 For preparation of anti-Xp antisera, see Nisonoff, A., and D. Pressman, J. Immunol., 80, 417 (1958) and idem., 83, 138 (1959). 12 For preparation of anti-Ap antisera, see Grossberg, A. L., and D. Pressman, J. Am. Chem. Soc., 82, 5478 (1960). 13 For preparation of anti-Rp antisera, see Pressman, D. and L. A. Sternberger, J. Immunol., 66, 609 (1951), and Grossberg, A. L., G. Radzimski, and D. Pressman, Biochemistry, 1, 391 (1962). 14 Smithies, O., Biochem. J., 71, 585 (1959). 15 Poulik, M. D., Biochim. et Biophysica Acta., 44, 390 (1960). 16 Edelman, G. M., and M. D. Poulik, J. Exp. Med., 113, 861 (1961). 17 Breinl, F., and F. Haurowitz, Z. Physiol. Chem., 192, 45 (1930). 18 Pauling, L., J. Am. Chem. Soc., 62, 2643 (1940). 19 Pressman, D., and 0. Roholt, these PROCEEDINGS, 47, 1606 (1961). THE ENZYMATIC SYNTHESIS OF GUANOSINE DIPHOSPHATE COLITOSE BY A MUTANT STRAIN OF ESCHERICHIA COLI* BY EDWARD C. HEATHt AND ALAN D. ELBEINT RACKHAM ARTHRITIS RESEARCH UNIT AND DEPARTMENT OF BACTERIOLOGY, THE UNIVERSITY OF MICHIGAN Communicated by J. L. Oncley, May 10, 1962 We have previously reported' the isolation of guanosine diphosphate colitose (GDP-colitose* GDP-3,6-dideoxy-L-galactose) from Escherichia coli 0111-B4; only 2.5 umoles of this sugar nucleotide were isolated from 1 kilogram of cells. Studies on the biosynthesis of colitose with extracts of this organism indicated that GDP-mannose was a precursor;2 however, the enzymatically formed colitose was isolated from a high-molecular weight substance and attempts to isolate the sus- pected intermediate, GDP-colitose, were unsuccessful.
    [Show full text]
  • Nucleotide Metabolism 22
    Nucleotide Metabolism 22 For additional ancillary materials related to this chapter, please visit thePoint. I. OVERVIEW Ribonucleoside and deoxyribonucleoside phosphates (nucleotides) are essential for all cells. Without them, neither ribonucleic acid (RNA) nor deoxyribonucleic acid (DNA) can be produced, and, therefore, proteins cannot be synthesized or cells proliferate. Nucleotides also serve as carriers of activated intermediates in the synthesis of some carbohydrates, lipids, and conjugated proteins (for example, uridine diphosphate [UDP]-glucose and cytidine diphosphate [CDP]- choline) and are structural components of several essential coenzymes, such as coenzyme A, flavin adenine dinucleotide (FAD[H2]), nicotinamide adenine dinucleotide (NAD[H]), and nicotinamide adenine dinucleotide phosphate (NADP[H]). Nucleotides, such as cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), serve as second messengers in signal transduction pathways. In addition, nucleotides play an important role as energy sources in the cell. Finally, nucleotides are important regulatory compounds for many of the pathways of intermediary metabolism, inhibiting or activating key enzymes. The purine and pyrimidine bases found in nucleotides can be synthesized de novo or can be obtained through salvage pathways that allow the reuse of the preformed bases resulting from normal cell turnover. [Note: Little of the purines and pyrimidines supplied by diet is utilized and is degraded instead.] II. STRUCTURE Nucleotides are composed of a nitrogenous base; a pentose monosaccharide; and one, two, or three phosphate groups. The nitrogen-containing bases belong to two families of compounds: the purines and the pyrimidines. A. Purine and pyrimidine bases Both DNA and RNA contain the same purine bases: adenine (A) and guanine (G).
    [Show full text]
  • Mechanisms of Synthesis of Purine Nucleotides in Heart Muscle Extracts
    Mechanisms of Synthesis of Purine Nucleotides in Heart Muscle Extracts David A. Goldthwait J Clin Invest. 1957;36(11):1572-1578. https://doi.org/10.1172/JCI103555. Research Article Find the latest version: https://jci.me/103555/pdf MECHANISMS OF SYNTHESIS OF PURINE NUCLEOTIDES IN HEART MUSCLE EXTRACTS1 BY DAVID A. GOLDTHWAIT2 (From the Departments of Biochemistry and Medicine, Western Reserve University, Cleveland, Ohio) (Submitted for publication February 18, 1957; accepted July 18, 1957) The key role of ATP, a purine nucleotide, in 4. Adenine or Hypoxanthine + PRPP -> AMP the conversion of chemical energy into mechanical or Inosinic Acid (IMP) + P-P. work by myocardial tissue is well established (1, The third mechanism of synthesis is through the 2). The requirement for purine nucleotides has phosphorylation of a purine nucleoside (8, 9): also been demonstrated in the multiple synthetic 5. Adenosine + ATP -, AMP + ADP. reactions which maintain all animal cells in the Several enzymatic mechanisms are known which steady state. Since the question immediately arises result in the degradation of purine nucleotides and whether the purine nucleotides are themselves in nucleosides. The deamination of adenylic acid is a steady state, in which their rates of synthesis well known (10): equal their rates of degradation, it seems reason- 6. AMP -* IMP + NH8. able to investigate first what mechanisms of syn- Non-specific phosphatases (11) as well as spe- thesis and degradation may be operative. cific 5'-nucleotidases (12) have been described At present, there are three known pathways for which result in dephosphorylation: the synthesis of purine nucleotides. The first is 7.
    [Show full text]
  • Calcium 5'-Ribonucleotides
    CALCIUM 5'-RIBONUCLEOTIDES Prepared at the 18th JECFA (1974), published in NMRS 54B (1975) and in FNP 52 (1992). Metals and arsenic specifications revised at the 57th JECFA (2001). An ADI ‘not specified’ was established at the 18th JECFA (1974). SYNONYMS Calcium ribonucleotides, INS No. 634 DEFINITION Chemical names (Mixture of) calcium inosine-5'-monophosphate and calcium guanosine-5'- monophosphate Chemical formula C10H11CaN4O8P · x H2O and C10H12CaN5O8P · x H2O Structural formula Calcium 5’-guanylate Calcium 5’-inosinate Assay Not less than 97% and not more than the equivalent of 102% of C10H11CaN4O8P and C10H12CaN5O8P, calculated on the anhydrous basis. The proportion of C10H11CaN4O8P or C10H12CaN5O8P to the sum of them is between 47% and 53%. DESCRIPTION Odourless, white or off-white crystals or powder FUNCTIONAL USES Flavour enhancer CHARACTERISTICS IDENTIFICATION Solubility (Vol. 4) Sparingly soluble in water Test for ribose (Vol. 4) Passes test Test for organic phosphate Passes test (Vol. 4) Test 5 ml of a 1 in 2,000 solution Test for inosinic acid To 2 ml of a 1 in 2,000 solution add 2 ml of 10% hydrochloric acid and 0.1 g of zinc powder, heat in a water bath for 10 min, and filter. Cool the filtrate in ice water, add 1 ml of a 3 in 1,000 sodium nitrite solution, shake well, and allow to stand for 10 min. Add 1 ml of a 1 in 200 ammonium sulfamate solution, shake well, and allow to stand for 5 min. Add 1 ml of a 1 in 500 N-(1- naphthyl)-ethylenediamine dihydrochloride solution.
    [Show full text]
  • High-Throughput Profiling of Nucleotides and Nucleotide Sugars
    Journal of Biotechnology 229 (2016) 3–12 Contents lists available at ScienceDirect Journal of Biotechnology j ournal homepage: www.elsevier.com/locate/jbiotec High-throughput profiling of nucleotides and nucleotide sugars to evaluate their impact on antibody N-glycosylation a,1 b,1 a c Thomas K. Villiger , Robert F. Steinhoff , Marija Ivarsson , Thomas Solacroup , c c b b b Matthieu Stettler , Hervé Broly , Jasmin Krismer , Martin Pabst , Renato Zenobi , a a,d,∗ Massimo Morbidelli , Miroslav Soos a Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, CH- 8093 Zurich, Switzerland b Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland c Merck Serono SA, Corsier-sur-Vevey, Biotech Process Sciences, ZI B, CH-1809 Fenil-sur-Corsier, Switzerland d Department of Chemical Engineering, University of Chemistry and Technology, Technicka 5, 166 28 Prague, Czech Republic a r t i c l e i n f o a b s t r a c t Article history: Recent advances in miniaturized cell culture systems have facilitated the screening of media additives on Received 5 October 2015 productivity and protein quality attributes of mammalian cell cultures. However, intracellular compo- Received in revised form 16 April 2016 nents are not routinely measured due to the limited throughput of available analytical techniques. In this Accepted 20 April 2016 work, time profiling of intracellular nucleotides and nucleotide sugars of CHO-S cell fed-batch processes Available online 27 April 2016 in a micro-scale bioreactor system was carried out using a recently developed high-throughput method based on matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF- Keywords: MS).
    [Show full text]
  • Effect of Cytidine on Membrane Phospholipid Synthesis in Rat Striatal Slices
    Journal of Neurochemi,enry Raven Press, Ltd ., New York © 1995 International Society for Neurochemistry Effect of Cytidine on Membrane Phospholipid Synthesis in Rat Striatal Slices Vahide Savci and Richard J . Wurtman Delzcartrnent of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, U .S .A . Abstract : Using rat striatal slices, we examined the effect cell culture systems and in vivo experiments, exoge- of cytidine on the conversion of [ 3H]choline to [ 3H]- nous cytidine has been shown to be taken up into cells phosphatidylcholine ([ 3 H]PC), and on net syntheses of and converted sequentially to CMP, CDP, and CTP PC, phosphatidylethanolamine (PE), and phosphatidyl- (Plagemann, 1971a,b ; Trovarelli et al ., 1982 ; 1984 ; serine, when media did or did not also contain choline, Lopez G.-Coviella and Wurtman, 1992) . CTP is re- ethanolamine, or serine . Incubation of striatal slices with quired to form key intermediates in the biosynthesis cytidine (50-500 NM) caused dose-dependent increases in intracellular cytidine and cytidine triphosphate (CTP) of both phosphatidylcholine (PC) and phosphati- levels and in the rate of incorporation of [ 3H]choline into dylethanolamine (PE) (quantitatively the most sig- 3 membrane [ H] PC . In pulse-chase experiments, cytidine nificant phospholipids of eukaryotic cells) via the Ken- (200 N,M) also increased significantly the conversion of nedy pathway (Kennedy and Weiss, 1956 ; Pelech and [ 3H]choline to [ 3 H]PC during the chase period . When Vance, 1984 ; Vance, 1985) and also in the biosynthe- slices were incubated with this concentration of cytidine sis of phosphatidylinositol (Vance, 1985 ; Majerus, for 1 h, small (7%) but significant elevations were ob- 1992 ; Pike, 1992) .
    [Show full text]
  • Effects of Allopurinol and Oxipurinol on Purine Synthesis in Cultured Human Cells
    Effects of allopurinol and oxipurinol on purine synthesis in cultured human cells William N. Kelley, James B. Wyngaarden J Clin Invest. 1970;49(3):602-609. https://doi.org/10.1172/JCI106271. Research Article In the present study we have examined the effects of allopurinol and oxipurinol on thed e novo synthesis of purines in cultured human fibroblasts. Allopurinol inhibits de novo purine synthesis in the absence of xanthine oxidase. Inhibition at lower concentrations of the drug requires the presence of hypoxanthine-guanine phosphoribosyltransferase as it does in vivo. Although this suggests that the inhibitory effect of allopurinol at least at the lower concentrations tested is a consequence of its conversion to the ribonucleotide form in human cells, the nucleotide derivative could not be demonstrated. Several possible indirect consequences of such a conversion were also sought. There was no evidence that allopurinol was further utilized in the synthesis of nucleic acids in these cultured human cells and no effect of either allopurinol or oxipurinol on the long-term survival of human cells in vitro could be demonstrated. At higher concentrations, both allopurinol and oxipurinol inhibit the early steps ofd e novo purine synthesis in the absence of either xanthine oxidase or hypoxanthine-guanine phosphoribosyltransferase. This indicates that at higher drug concentrations, inhibition is occurring by some mechanism other than those previously postulated. Find the latest version: https://jci.me/106271/pdf Effects of Allopurinol and Oxipurinol on Purine Synthesis in Cultured Human Cells WILLIAM N. KELLEY and JAMES B. WYNGAARDEN From the Division of Metabolic and Genetic Diseases, Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina 27706 A B S TR A C T In the present study we have examined the de novo synthesis of purines in many patients.
    [Show full text]
  • Role of Uridine Triphosphate in the Phosphorylation of 1-ß-D- Arabinofuranosylcytosine by Ehrlich Ascites Tumor Cells1
    [CANCER RESEARCH 47, 1820-1824, April 1, 1987] Role of Uridine Triphosphate in the Phosphorylation of 1-ß-D- Arabinofuranosylcytosine by Ehrlich Ascites Tumor Cells1 J. Courtland White2 and Leigh H. Hiñes Department of Biochemistry, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27103 ABSTRACT potent feedback regulation by dCTP (3-9). The level of dCTP in the cell has been shown to be an important determinant of Pyrimidine nucleotide pools were investigated as determinants of the ara-C action in a variety of cell types (10-12). For example, rate of phosphorylation of l-j9-D-arabinofuranosylcytosine (ara-C) by Harris et al. (10) demonstrated that the sensitivity of several Ehrlich ascites cells and cell extracts. Cells were preincubated for 2 h with 10 MMpyrazofurin, 10 imi glucosamine, 50 MM3-deazauridine, or mouse tumor cell lines to ara-C was inversely proportional to 1 HIMuridine in order to alter the concentrations of pyrimidine nucleo- their cellular dCTP level. In addition, these authors observed tides. Samples of the cell suspensions were taken for assay of adenosine that thymidine enhanced ara-C sensitivity in those cell lines S'-triphosphate (ATP), uridine 5'-triphosphate (IIP), cytidine S'-tn- where there was a depression in dCTP levels but not in those phosphate, guanosine S'-triphosphate, deoxycytidine S'-triphosphate cell lines where thymidine did not alter dCTP pools. Cellular (dCTP), and deoxythymidine S'-triphosphate; then l MM[3H|ara-C was pools of dCTP may also be decreased by inhibitors of the de added and its rate of intrazellular uptake was measured for 30 min.
    [Show full text]
  • Nucleotide Metabolism Pathway: the Achilles' Heel for Bacterial Pathogens
    REVIEW ARTICLES Nucleotide metabolism pathway: the achilles’ heel for bacterial pathogens Sujata Kumari1,2,* and Prajna Tripathi1,3 1National Institute of Immunology, New Delhi 110 067, India 2Present address: Department of Zoology, Magadh Mahila College, Patna University, Patna 800 001, India 3Present address: Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110 062, India de novo pathway, the nucleotides are synthesized from Pathogens exploit their host to extract nutrients for their survival. They occupy a diverse range of host simple precursor molecules. In the salvage pathway, the niches during infection which offer variable nutrients preformed nucleobases or nucleosides which are present accessibility. To cause a successful infection a patho- in the cell or transported from external environmental gen must be able to acquire these nutrients from the milieu to the cell are utilized to form nucleotides. host as well as be able to synthesize the nutrients on its own, if required. Nucleotides are the essential me- tabolite for a pathogen and also affect the pathophysi- Purine biosynthesis pathway ology of infection. This article focuses on the role of nucleotide metabolism of pathogens during infection The purine biosynthesis pathway is universally conserved in a host. Nucleotide metabolism and disease pathoge- in living organisms (Figure 1). As an example, we here nesis are closely related in various pathogens. Nucleo- present the pathway derived from well-studied Gram- tides, purines and pyrimidines, are biosynthesized by positive bacteria Lactococcus lactis. In the de novo the de novo and salvage pathways. Whether the patho- pathway the purine nucleotides are synthesized from sim- gen will employ the de novo or salvage pathway dur- ple molecules such as phosphoribosyl pyrophosphate ing infection is dependent on various factors, like (PRPP), amino acids, CO2 and NH3 by a series of enzy- availability of nucleotides, energy condition and pres- matic reactions.
    [Show full text]
  • Consequences of Methotrexate Inhibition of Purine Biosynthesis in L5178Y Cells'
    [CANCER RESEARCH 35, 1427-1432,June 1975] Consequences of Methotrexate Inhibition of Purine Biosynthesis in L5178Y Cells' William M. Hryniuk2 Larry W. Brox,3J. Frank Henderson, and Taiki Tamaoki DepartmentofMedicine, University ofManitoba,and TheManitoba Institute ofCellBiology, Winnipeg,Manitoba [W. M. H.J and CancerResearch Unit (McEachern Laboratory), and DepartmentofBiochemistry, University ofAlberta, Edmonton,Alberta T6G 2E1 [L. W. B.,J. F. H., T. T.J,Canada SUMMARY recently been shown that the cytotoxicity of methotrexate against cultured mouse lymphoma L5178Y cells is in part Addition of 1 @Mmethotrexate to cultures of L5178Y attributable to a “purineless―state(6, 7). Thus, hypoxan cells results in an initial inhibition ofthymidine, uridine, and thine partially prevented the methotrexate-induced inhibi leucine incorporation into acid-insoluble material followed, tion of thymidine, uridine, and leucine incorporation into after about 10 hr. by a partial recovery in the extent of macromolecules and also delayed the loss ofcell viability, as incorporation of these precursors. Acid-soluble adenosine measured by cloning experiments. These studies also triphosphate and guanosine triphosphate concentrations are showed that, during incubation of L5178Y cells with greatly reduced initially, but guanosine triphosphate con methotrexate in the absence of hypoxanthine, incorporation centrations appear to recover partially by 10 hr. Acid of thymidine into DNA was first inhibited but later partially soluble uridine triphosphate and cytidine
    [Show full text]