Projective Line by Paris Pamfilos

Total Page:16

File Type:pdf, Size:1020Kb

Projective Line by Paris Pamfilos Projective Line by Paris Pamfilos Exclusive of the abstract sciences, the largest and worthiest portion of our knowledge consists of aphorisms: and the greatest and best of men is but an aphorism. S. Coleridge, Aids to Reflection XXVII Contents 1 Projective line2 2 Homogeneous coordinates2 3 Projective base3 4 Relation between euclidean and projective base4 5 Change of projective bases5 6 Line projectivities or homographies6 7 The fundamental theorem for line projectivities6 8 Homographic relations7 9 Homographic relations, the group properties8 10 Line perspectivities8 11 Circle and tangents homography9 12 Cross ratio or anaharmonic ratio 10 13 Projectivities defined by cross ratios 11 14 Cross ratio in euclidean coordinates 11 1 Projective line 2 1 Projective line The standard model of the “projective line” consists of the classes »x1; x2¼ of non-zero vectors of R2 modulo non-zero multiplicative constants. For every non-zero vector 2 a = ¹a1; a2º of R , the symbol »a¼ = »a1; a2¼ denotes a “point” of the projective line and 0 a = ¹a1; a2º is called a “representative” of the point. Two representatives fa; a g define the same point if and only if a0 = ka , with a non-zero real number k. The most important examples of projective lines are the usual lines of the euclidean plane to which we add an additional point, called point at infinity. This additional point makes the line closed and is called “projectification” of the line (or “one-point-compactifica- tion”). The projectification is illustrated by figure 1. In this we consider the points of (0,1) α (t,1) t=x1/x2 O(0,0) Figure 1: Projective line represented by (a line + a point at infinity) line α : y = 1; parallel to the x−axis. Each line represented by »x1; x2¼; with non-zero x2; intersects α at the point ¹t;1º with t = x1/x2: The line parallel to α which is the x−axis ∗ is represented by »x1;0¼ considered as an additional point of α . The set A of all lines of the plane through the fixed point A; generalizes this basic model of projective line and is called the “pencil” of lines through A: Figure 2 shows that a pencil A∗ is like a circle. The * t A = A A Figure 2: A pencil of lines is like a circle idea is to pass a circle κ through A and associate to each line through A its intersection with κ: The only line that has no associate is the tangent tA at A . The remedy for this is ∗ to associate to tA the point A . This makes the projective line via its “pencil model” A a “closed” set and “homeomorphic” to a circle. 2 Homogeneous coordinates The pairs f¹x1; x2ºg defining line »x1; x2¼ , considered as a “point” of the projective line are called “homogeneous projective coordinates. They are defined modulo a non-zero multiplica- tive constant, since ¹kx1; kx2º defines the same point. Also they cover all the points of the 0 0 projective line except a single one. Obviously another system ¹x1; x2º of coordinates of 3 Projective base 3 2 R (with the same origin) is related to ¹x1; x2º by an invertible matrix: 0 0 a b x1 x1 x1 a b x1 A = defines a map 0 = A i.e. 0 = : (1) c d x2 x2 x2 c d x2 0 0 0 And for the corresponding quotients t = x1/x2;t = x1/x2 we get the so called “homo- graphic relation” (see file Homographic relation) at + b t0 = : (2) ct + d Notice that a non-zero multiple A0 = k A of the matrix defines the same transformation between the homogeneous coordinates. 3 Projective base Three distinguished points fA; B;Cg on a projective line determine a so-called “projective base” and through it a corresponding “homogeneous coordinates system”. The mechanism can be explained in terms of bases of the vector space R2: α A C B a D b Figure 3: Projective base defined through three collinear points The points fA = »a¼; B = »b¼;C = »c¼g of the projective line determine three lines repre- sented by corresponding vectors fa; b; cg. The vectors are selected so that c = a + b: This condition uniquely determines fa; b; cg from the data fA = »a¼; B = »b¼;C = »c¼g, up to a multiplicative constant. The homogeneous coordinate system results by using the base fa; bg of R2 and writ- ing vor every point D on this line its coordinates with respect to this base D = »d¼; where d = d1a + d2b: Thus, to D we correspond ¹d1; d2º; and it is clear that a non-zero multiple k¹d1; d2º defines the same point D on the projective line, therefore we often write D = d1 A + d2B; (3) using the symbols for the points fA; Bg rather than the symbols fa; bg for the vectors representing them. Obviously in this coordinate system the points fA; B;Cg have correspondingly the co- ordinates f¹1;0º;¹0;1º;¹1;1ºg. Point C is called “coordinator” or “unit” of the projective base fA; B;Cg. It is used to calibrate a basis defined by the other two points. The calibra- tion is done by projecting some vector c; parallel to the other lines determined by fA; Bg and using the base of R2 resulting from these projections fa; bg (See Figure 3). Having this calibration, the point P of the line can be written as a linear combination P = xA + yB (4) 4 Relation between euclidean and projective base 4 Passing from this equation to the vector equation, there is an ambiguity, which we elim- inate using the “unit” C of the base. In fact, we could select two other vectors a0 = µa; and b0 = νb representing the same points fA; Bg and write for the same point P : P = »x0a0 + y0b0¼ = x0 A + y0B = xA + yB = »xa + yb¼: (5) Then, we would obtain two different pairs f¹x0; y0º;¹x; yºg for the same point and this is not good, except if it happens to be ¹x0; y0º = k¹x; yº with a k , 0: But this follows from the requirement to have C = A + B: (6) Thus if we select the vectors fa; bg to represent fA; Bg and then two other fa0; b0g to repre- sent the same base points, the requirement C = A + B implies the vectorial relation c = λ¹a + bº = λ0¹a0 + b0º = λ0¹µa + νbº ) λ = λ0µ = λ0ν ) µ = ν; (7) and we are salvaged. Thus, you have a certain freedom to select two vectors a; b 2 R2 to represent your base points fA; Bg, but you must always respect the rule a + b = kc with a k , 0; so that if you select two others fa0; b0g, this rule will imply that fa0 = ra; b0 = rbg with r , 0: 4 Relation between euclidean and projective base In this section we consider a line " in the euclidean plane, defined by two position vec- tors fa; bg and also a point on this line x = xaa + xb b; where the variables fxa; xb g satisfy xa + xb = 1 (See Figure 4). Often the running point x on the line determined by the po- A=[a] C=[c] X=[x] B=[b] ε b x b bx a c a' b' xa a O Figure 4: Euclidean base fa; bg versus projective base fA; B;Cg sition vectors fa; bg is described parametrically by x = a + ¹b − aºt ) x = ¹1 − tºa + tb ) xa = ¹1 − tº; xb = t; (8) which for the euclidean signed ratio of the segments defined by x imply xa t xb = = − : (9) xb t − 1 xa We consider also the points fA = »a¼; B = »b¼; X = »x¼;g defined by these vectors on the same “extended” projective line. We want to find the expression of the projective ho- mogeneous coordinates of X relative to the projective base fA; B;Cg, where C = »c¼ for 5 Change of projective bases 5 an arbitrary other vector different from fa; bg. We can represent c in the vectorial base a; b through 0 0 c = caa + cb b = a + b : Thus if 0 0 0 0 0 0 x = xaa + xb b = xacaa + xbcb b = xaa + xb b; 0 0 0 0 the projective coordinates of X are fλxa; λxb g, so that X = ¹λxaºA + ¹λxbºB and from the previous equalities we obtain 0 0 xa = xaca; xb = xbcb: Thus, if we know the euclidean (cartesian) coordinates fxa; xb g of x relative to the vecto- 0 0 rial base a; b; then the projective coordinates fxa; xb g of X = »x¼ relative to the projective base fA; B;Cg are 0 0 0 xa 0 xb X = xa A + xb B with xa = λ ; xb = λ ; and λ , 0: (10) ca cb Thus, taking into account the equation9, we obtain the relation between the ratio of the projective coordinates and the euclidean signed ratio of distances xa/xb: 0 xa cb xa cb xb 0 = · = − · : (11) xb ca xb ca xa 5 Change of projective bases Having two projective bases fA; B;Cg, fA0; B0;C0g of the line α; we can express the same point P of the line as linear combination of the base points: P = xA + yB = x0 A0 + yB0; where »a¼ = A;»a0¼ = A0;»b¼ = B;»b0¼ = B: (12) Using a bit of linear algebra and the matrix K for the basis-change in R2 we obtain 0 0 0 k11 k12 a = k11a + k21b; λx = k11 x + k12 y ; with K = ; 0 ) 0 0 (13) k21 k22 b = k12a + k22b; λy = k21 x + k22 y : Thus, we obtain the rule, that by homogeneous bases change the coordinates transform by a matrix and corresponding linear equations: x x0 x0 x λ = K ) = µK−1 : (14) y y0 y0 y Taking the quotients of coordinates in equation 13 we see that they are related by a simple function 0 0 x 0 x k11t + k12 t = and t = 0 ) t = 0 : (15) y y k21t + k22 Such relations between two variables are called “homographic”, so that we can state the following trivial theorem.
Recommended publications
  • Arxiv:1702.00823V1 [Stat.OT] 2 Feb 2017
    Nonparametric Spherical Regression Using Diffeomorphic Mappings M. Rosenthala, W. Wub, E. Klassen,c, Anuj Srivastavab aNaval Surface Warfare Center, Panama City Division - X23, 110 Vernon Avenue, Panama City, FL 32407-7001 bDepartment of Statistics, Florida State University, Tallahassee, FL 32306 cDepartment of Mathematics, Florida State University, Tallahassee, FL 32306 Abstract Spherical regression explores relationships between variables on spherical domains. We develop a nonparametric model that uses a diffeomorphic map from a sphere to itself. The restriction of this mapping to diffeomorphisms is natural in several settings. The model is estimated in a penalized maximum-likelihood framework using gradient-based optimization. Towards that goal, we specify a first-order roughness penalty using the Jacobian of diffeomorphisms. We compare the prediction performance of the proposed model with state-of-the-art methods using simulated and real data involving cloud deformations, wind directions, and vector-cardiograms. This model is found to outperform others in capturing relationships between spherical variables. Keywords: Nonlinear; Nonparametric; Riemannian Geometry; Spherical Regression. 1. Introduction Spherical data arises naturally in a variety of settings. For instance, a random vector with unit norm constraint is naturally studied as a point on a unit sphere. The statistical analysis of such random variables was pioneered by Mardia and colleagues (1972; 2000), in the context of directional data. Common application areas where such data originates include geology, gaming, meteorology, computer vision, and bioinformatics. Examples from geographical domains include plate tectonics (McKenzie, 1957; Chang, 1986), animal migrations, and tracking of weather for- mations. As mobile devices become increasingly advanced and prevalent, an abundance of new spherical data is being collected in the form of geographical coordinates.
    [Show full text]
  • Limits of Geometries
    Limits of Geometries Daryl Cooper, Jeffrey Danciger, and Anna Wienhard August 31, 2018 Abstract A geometric transition is a continuous path of geometric structures that changes type, mean- ing that the model geometry, i.e. the homogeneous space on which the structures are modeled, abruptly changes. In order to rigorously study transitions, one must define a notion of geometric limit at the level of homogeneous spaces, describing the basic process by which one homogeneous geometry may transform into another. We develop a general framework to describe transitions in the context that both geometries involved are represented as sub-geometries of a larger ambi- ent geometry. Specializing to the setting of real projective geometry, we classify the geometric limits of any sub-geometry whose structure group is a symmetric subgroup of the projective general linear group. As an application, we classify all limits of three-dimensional hyperbolic geometry inside of projective geometry, finding Euclidean, Nil, and Sol geometry among the 2 limits. We prove, however, that the other Thurston geometries, in particular H × R and SL^2 R, do not embed in any limit of hyperbolic geometry in this sense. 1 Introduction Following Felix Klein's Erlangen Program, a geometry is given by a pair (Y; H) of a Lie group H acting transitively by diffeomorphisms on a manifold Y . Given a manifold of the same dimension as Y , a geometric structure modeled on (Y; H) is a system of local coordinates in Y with transition maps in H. The study of deformation spaces of geometric structures on manifolds is a very rich mathematical subject, with a long history going back to Klein and Ehresmann, and more recently Thurston.
    [Show full text]
  • Generating Sequences of PSL(2,P) Which Will Eventually Lead Us to Study How This Group Behaves with Respect to the Replacement Property
    Generating Sequences of PSL(2,p) Benjamin Nachmana aCornell University, 310 Malott Hall, Ithaca, NY 14853 USA Abstract Julius Whiston and Jan Saxl [14] showed that the size of an irredundant generating set of the group G = PSL(2,p) is at most four and computed the size m(G) of a maximal set for many primes. We will extend this result to a larger class of primes, with a surprising result that when p 1 mod 10, m(G) = 3 except for the special case p = 7. In addition, we6≡ will ± determine which orders of elements in irredundant generating sets of PSL(2,p) with lengths less than or equal to four are possible in most cases. We also give some remarks about the behavior of PSL(2,p) with respect to the replacement property for groups. Keywords: generating sequences, general position, projective linear group 1. Introduction The two dimensional projective linear group over a finite field with p ele- ments, PSL(2,p) has been extensively studied since Galois, who constructed them and showed their simplicity for p > 3 [15]. One of their nice prop- erties is due to a theorem by E. Dickson, which shows that there are only a small number of possibilities for the isomorphism types of maximal sub- arXiv:1210.2073v2 [math.GR] 4 Aug 2014 groups. There are two possibilities: ones that exist for all p and ones that exist for exceptional primes. A more recent proof of Dickson’s Theorem can be found in [10] and a complete proof due to Dickson is in [3].
    [Show full text]
  • 2-Arcs of Maximal Size in the Affine and the Projective Hjelmslev Plane Over Z25
    Advances in Mathematics of Communications doi:10.3934/amc.2011.5.287 Volume 5, No. 2, 2011, 287{301 2-ARCS OF MAXIMAL SIZE IN THE AFFINE AND THE PROJECTIVE HJELMSLEV PLANE OVER Z25 Michael Kiermaier, Matthias Koch and Sascha Kurz Institut f¨urMathematik Universit¨atBayreuth D-95440 Bayreuth, Germany (Communicated by Veerle Fack) Abstract. It is shown that the maximal size of a 2-arc in the projective Hjelmslev plane over Z25 is 21, and the (21; 2)-arc is unique up to isomorphism. Furthermore, all maximal (20; 2)-arcs in the affine Hjelmslev plane over Z25 are classified up to isomorphism. 1. Introduction It is well known that a Desarguesian projective plane of order q admits a 2-arc of size q + 2 if and only if q is even. These 2-arcs are called hyperovals. The biggest 2-arcs in the Desarguesian projective planes of odd order q have size q + 1 and are called ovals. For a projective Hjelmslev plane over a chain ring R of composition length 2 and size q2, the situation is somewhat similar: In PHG(2;R) there exists a hyperoval { that is a 2-arc of size q2 + q + 1 { if and only if R is a Galois ring of size q2 with q even, see [7,6]. For the case q odd and R not a Galois ring it was recently shown 2 that the maximum size m2(R) of a 2-arc is q , see [4]. In the remaining cases, the situation is less clear. For even q and R not a Galois ring, it is known that the maximum possible size of a 2-arc is lower bounded by q2 + 2 [4] and upper bounded by q2 + q [6].
    [Show full text]
  • Chapter 3 Central Extensions of Groups
    Chapter 3 Central Extensions of Groups The notion of a central extension of a group or of a Lie algebra is of particular importance in the quantization of symmetries. We give a detailed introduction to the subject with many examples, first for groups in this chapter and then for Lie algebras in the next chapter. 3.1 Central Extensions In this section let A be an abelian group and let G be an arbitrary group. The trivial group consisting only of the neutral element is denoted by 1. Definition 3.1. An extension of G by the group A is given by an exact sequence of group homomorphisms ι π 1 −→ A −→ E −→ G −→ 1. Exactness of the sequence means that the kernel of every map in the sequence equals the image of the previous map. Hence the sequence is exact if and only if ι is injec- tive, π is surjective, the image im ι is a normal subgroup, and ∼ kerπ = im ι(= A). The extension is called central if A is abelian and its image im ι is in the center of E, that is a ∈ A,b ∈ E ⇒ ι(a)b = bι(a). Note that A is written multiplicatively and 1 is the neutral element although A is supposed to be abelian. Examples: • A trivial extension has the form i pr 1 −→ A −→ A × G −→2 G −→ 1, Schottenloher, M.: Central Extensions of Groups. Lect. Notes Phys. 759, 39–62 (2008) DOI 10.1007/978-3-540-68628-6 4 c Springer-Verlag Berlin Heidelberg 2008 40 3 Central Extensions of Groups where A × G denotes the product group and where i : A → G is given by a → (a,1).
    [Show full text]
  • Arxiv:1304.1626V2 [Math.RT]
    GEOMETRICAL CHARACTERIZATION OF SEMILINEAR ISOMORPHISMS OF VECTOR SPACES AND SEMILINEAR HOMEOMORPHISMS OF NORMED SPACES MARK PANKOV Abstract. Let V and V ′ be vector spaces over division rings (possible infinite- dimensional) and let P(V ) and P(V ′) be the associated projective spaces. We say that f : P(V ) → P(V ′) is a PGL-mapping if for every h ∈ PGL(V ) there exists h′ ∈ PGL(V ′) such that fh = h′f. We show that for every PGL-bijection the inverse mapping is a semicollineation. Also, we obtain an analogue of this result for the projective spaces associated to normed spaces. 1. Introduction Let V and V ′ be vector spaces over division rings. Denote by P(V ) and P(V ′) the associated projective spaces (the dimensions of our vector spaces are assumed to be not less than 3, possible the vector spaces are infinite-dimensional). We say that f : P(V ) → P(V ′) is a PGL-mapping if for every h ∈ PGL(V ) there exists h′ ∈ PGL(V ′) such that ′ fh = h f (we identify PGL(V ) with the group of all transformation of P(V ) induced by linear automorphisms of V ). Every strong semilinear embedding (a semilinear injection transferring any collection of linearly independent vectors to linearly independent vectors) induces a PGL-mapping. By [8, Theorem 2], every non-constant PGL- mapping of P(V ) to P(V ′) is induced by a strong semilinear embedding of V in V ′ if V ′ is a vector space over a field and the image is contained in a subspace of V ′ whose dimension is not greater than dim V .
    [Show full text]
  • On the Rank Two Geometries of the Groups PSL(2, Q): Part II∗
    Also available at http://amc.imfm.si ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 6 (2013) 365–388 On the rank two geometries of the groups PSL(2; q): part II∗ Francis Buekenhout , Julie De Saedeleer , Dimitri Leemans y Universite´ Libre de Bruxelles, Departement´ de Mathematiques´ - C.P.216 Boulevard du Triomphe, B-1050 Bruxelles Received 30 November 2010, accepted 25 January 2013, published online 15 March 2013 Abstract We determine all firm and residually connected rank 2 geometries on which PSL(2; q) acts flag-transitively, residually weakly primitively and locally two-transitively, in which 0 one of the maximal parabolic subgroups is isomorphic to A4, S4, A5, PSL(2; q ) or PGL(2; q0), where q0 divides q, for some prime-power q. Keywords: Projective special linear groups, coset geometries, locally s-arc-transitive graphs. Math. Subj. Class.: 51E24, 05C25 1 Introduction In [5], we started the classification of the residually weakly primitive and locally two- transitive coset geometries of rank two for the groups PSL(2; q). The aim of this paper is to finish this classification. It remains to focus on the cases in which one of the max- 0 0 imal parabolic subgroups is isomorphic to A4, S4, A5, PSL(2; q ) or PGL(2; q ) where q0 divides q. For motivation, basic definitions, notations and context of the work we refer to [5]. In Section 3, we sketch the proof of our main result: ∼ Theorem 1.1. Let G = PSL(2; q) and Γ(G; fG0;G1;G0\G1g) be a locally two-transitive 0 RWPRI coset geometry of rank two.
    [Show full text]
  • 2 Projective Geometry and Transformations of 2D 1
    2 Projective Geometry and Transformations of 2D 1 2.1 Planar geometry The classical approach of Euclid studied geometry from a “geometric” or coordinate- free viewpoint. Since Descartes, it has been seen that geometry may be algebraicized. In the algebraic approach, geometric entities are described in terms of coordinates and algebraic entities. A significant advantage of the algebraic approach to geometry is that results derived in this way may more easily be used to derive algorithms and practical computational methods. 2.2 The 2D projective plane 2.2.1 Points and lines Homogeneous representation of lines. A line in the plane is represented by an equation such as ax + by + c = 0 or the vector (a, b, c)⊤. Since (a, b, c) and k(a, b, c) (k = 0) represent the same line, an equivalence class ⊤ ⊤ ∕ of vectors is known as a homogeneous vector. The set of equivalence classes of vectors in R3 (0, 0, 0) forms the projective space P2. − ⊤ Homogeneous representation of points. Since (x, y, 1)⊤ and k(x, y, 1)⊤ (k = 0) rep- resent the same point, points as homogeneous vectors are also elements of ∕P2. We distinguish between the homogeneous coordinates x = (x1, x2, x3)⊤ of a point and the inhomogeneous coordinates (x, y)⊤. Result 2.1. The point x lies on the line l if and only if x⊤l = 0. Degrees of freedom (dof). In order to specify a point (or a line), two values must be provided. Namely it has two degrees of freedom. Result 2.2. The intersection of two lines l and l is the point x = l l .
    [Show full text]
  • Lecture 2.2 a Brief Introduction to Projective Geometry
    Lecture 1.3 Basic projective geometry Thomas Opsahl Motivation • For the pinhole camera, the correspondence between observed 3D points in the world and 2D points in the captured image is given by straight lines through a common point (pinhole) • This correspondence can be described by a mathematical model known as “the perspective camera model” or “the pinhole camera model” • This model can be used to describe the imaging geometry of many modern cameras, hence it plays a central part in computer vision 2 Motivation • Before we can study the perspective camera model in detail, we need to expand our mathematical toolbox • We need to be able to mathematically describe the position and orientation of the camera relative to the world coordinate frame • Also we need to get familiar with some basic elements of projective geometry, since this will make it MUCH easier to describe and work with the perspective camera model 3 Introduction • We have seen that the pose of a coordinate frame relative to a coordinate frame , denoted , can be represented as a homogeneous transformation in 2D rrA t AAR t 11 12 Bx AAξ = BB= A∈ B TB r21 r 22 tBx SE (2) 0 1 00 1 Introduction • We have seen that the pose of a coordinate frame relative to a coordinate frame , denoted , can be represented as a homogeneous transformation in 2D and 3D rrrA t 11 12 13 Bx AARt rrrA t AAξ T = BB = 21 22 23 By ∈ SE (3) BBA 0 1 rrr31 32 33 tBz 000 1 Introduction • And we have seen how they can transform points from one reference frame to another if we represent
    [Show full text]
  • Restriction of Spherical Representations of Pgl2 (Q,) to a Discrete Subgroup
    proceedings of the american mathematical society Volume 91. Number 3. July 1984 RESTRICTION OF SPHERICAL REPRESENTATIONS OF PGL2 (Q,) TO A DISCRETE SUBGROUP ALESSANDRO FIGÀ - TALAMANCAAND MASSIMOA. PICARDELLO Abstract. We study the action on the homogeneous tree associated with PGL2(Q/;), of a suitably chosen discrete subgroup which is isomorphic to Z2* • • • *Z2 and is cocompact. We prove that the spherical representations of PGL2(Q;)) remain irreducible when restricted to this subgroup. Introduction. P. Carder's combinatorial approach to the theory of representations of PGLjtQ^,) (the two by two projective linear group over a /?-adic field Qp) is based on the realization of the group as a group of isometries of a homogeneous tree F of order p + 1 [5]. One defines a boundary fi of F and a probability measure on Q by means of the simple random walk. The action of PGL2(Q/)) on F induces an action on ñ, and the measure v is quasi-invariant with respect to the action of PGL2(Q;;). That is, letting vg{E) = v{gE), the measure vg is absolutely continuous with respect to v, and one may define a Poisson kernel as the Radon-Nikodym derivative P(g,u) = dvg(u)/dv, for w e ß. Finally, if z e C, one defines the spherical representations of PGL2(Q;7), on the space of simple functions on Í2, by the formula (^(g)|)(W) = Fz(g,W)|(g-1W). Spherical functions are then obtained integrating Pz(g,a) over the boundary. The same approach was more recently applied to certain discrete groups of isometries of F.
    [Show full text]
  • The Lorentz Group
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Diposit Digital de la Universitat de Barcelona Treball final de grau GRAU DE MATEMATIQUES` Facultat de Matem`atiques Universitat de Barcelona The Lorentz Group Autor: Guillem Cobos Director: Dr. Neil Strickland Realitzat a: Department of Pure Mathematics Barcelona, June 29, 2015 Guillem Cobos Abstract In this project we aim to understand the structure and some properties of the Lorentz group, a mathematical object arising from the theory of special relativity which is said to express some of the main symmetries in the laws of Physics. The first section of the project is concerned about providing physical intuition about the concepts involved in the definition of the Lorentz group. The main goal of the project is to prove an isomorphism between the restricted Lorentz group and the projective linear group PSL2(C). Once achieved this result, we use it to build a scheme that will let us study the conjugacy classes of the restricted Lorentz group. 1 CONTENTS Guillem Cobos Contents 1 Introduction to Special Relativity 3 1.1 Starting Assumptions for SR Model . .4 1.2 Consequences to the Assumptions . .6 1.3 Picturing the Elements of the Restricted Lorentz Group . .7 1.4 Derivation of the Formula of the Lorentz Boost . .8 2 The Lorentz Group 11 2.1 Definition and First Consequences . 11 2.2 Topological Properties of the Lorentz Group . 16 3 Structure of the Restricted Lorentz Group 24 3.1 The Action of PSL2(C) on the Space of Hermitian Matrices . 25 3.2 Using Smooth Structure of Groups to Show the Result .
    [Show full text]
  • Elements of Hyperbolic Geometry
    CHAPTER 2 Elements of Hyperbolic geometry 1. Upper Half-plane Model Consider the upper half plane H2 = (x, y) R2 : y>0 .WeendowH2 with the following (Riemannian) metric: { 2 } dx2 + dy2 ds = . p y To be precise, a piecewise di↵erential path γ :[0, 1] H has the length defined as follows: ! 1 x (t)2 + y (t)2 `(γ)= 0 0 dt y(t) Z0 p where γ =(x(t),y(t)). For two points z,w H,theirhyperbolic distance is as follows 2 d (z,w)=inf `(γ):γ(0) = z,γ(1) = w H { } where the infimum is taken over all piecewise di↵erential paths between z and w. Denote by Isom(H2) the group of all isometries of H2. 1.1. Orientation-preserving isometries. Consider the general linear groups GL(2, C) of invertible 2 2-matrices ⇥ ab cd ✓ ◆ where a, b, c, d C such that ad bc = 0. The group 2(C) of (complex) linear 2 − 6 M fractional transformation (LFT) is a nonconstant function on C of the form az + b T (z)= cz + d for a, b, c, d C with ad bc = 0. Such LFT is also called Mobius transformation. 2 − 6 There is a natural map Φ: GL(2, C) 2(C) as follows: !M ab az + b . cd! cz + d ✓ ◆ Exercise 1.1. Prove that Φ is homomorphism and the kernel is k I2 2 : k { · ⇥ 2 C 0 where I2 2 is the identity matrix. \ } ⇥ For simplicity, we consider the special linear group SL(2,C) consists of the matrices with determinant 1inGL(2, C).
    [Show full text]