Unit 8.1.1 Chapter 8 Portable Fire Extinguishers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
"Using Fire Extinguishers"
PRESENTER'S GUIDE "USING FIRE EXTINGUISHERS" Part of the General Safety Series Quality Safety and Health Products, for Today... and Tomorrow OUTLINE OF MAJOR PROGRAM POINTS OUTLINE OF MAJOR PROGRAM POINTS The following outline summarizes the major points of information presented in the program. The outline can be used to review the program before conducting a classroom session, as well as in preparing to lead a class discussion about the program. You've probably heard the best way to fight a fire is to prevent it, and that's true. — But accidents do happen and fires do start. — When this occurs in a workplace, you or a coworker will often be the first to respond, and fire extinguishers become the first line of defense. Fire extinguishers can enable you to act quickly and effectively to protect people and your facility. — So you need to understand the equipment, as well as how to use it. Fire extinguishers are designed to put out small fires before they grow out of control. — Putting out fires with an extinguisher isn't always easy. — It can be hazardous if you go about it in the wrong way. To use an extinguisher effectively it’s helpful to know what causes things to burn. — Fire always needs three ingredients, fuel, oxygen and heat. The "fuel" is any material that will burn, including: — Combustible solids such as wood, paper, cardboard and some metals. — Flammable and combustible liquids such as gasoline, toluene and some solvents and cleaning solutions. — Ignitable gases such as propane and natural gas. 1 Next, a fire must be in an environment where there is oxygen that it can "breathe". -
Laboratory Safety for Chemistry Students
LABORATORY SAFETY FOR CHEMISTRY STUDENTS ROBERT H. HILL, JR. DAVID C. FINSTER A JOHN WILEY & SONS, INC., PUBLICATION LABORATORY SAFETY FOR CHEMISTRY STUDENTS LABORATORY SAFETY FOR CHEMISTRY STUDENTS ROBERT H. HILL, JR. DAVID C. FINSTER A JOHN WILEY & SONS, INC., PUBLICATION Copyright 2010 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. -
Using Sodium and Potassium Bicarbonates in the Prevention and Treatment of All Sickness and Disease
International Journal of Complementary & Alternative Medicine Using Sodium and Potassium Bicarbonates in the Prevention and Treatment of all Sickness and Disease Abstract Mini Review This article suggests that the use sodium and potassium bicarbonates are non- Volume 9 Issue 6 - 2017 toxic primary alkalizing agents in the prevention and treatment of all cancers, kidney disease, liver disease, Type I & Type II diabetes, Lupus, heart disease, Pharmacological toxicosis, vascular surgery operation, tonsillar herniation due Universal Medical Imaging Group, USA to cerebral edema, lactic acid toxicosis, and hyponatremia or low salt or loss of salts due to excessive or over-exercise! *Corresponding author: Robert O Young, Universal Medical Imaging Group, 16390 Dia Del Sol Valley Center, California Keywords: Cancer; Diabetes; Lupus; Heart disease; Vascular surgery; 92082, USA, Tel: 760 751 8321; Herniation; Cerebral edema; Lactic acid toxicosis; Liver disease; Kidney disease; Email: Hyponatremia; Pharmacological toxicosis Received: January 10, 2016 | Published: December 08, 2017 Introduction Sodium and potassium bicarbonate increases the hydroxyl ions or electron levels through increased alkalinity to the cells Sodium and potassium bicarbonate are excellent agents for buffering the metabolic acids that can cause cancer [20]. It is a natural alkaline approach in the treatment for all sickness and also one of the most basic medicines in allopathic and alternative disease, including cancer. Sodium bicarbonate is the universal medicine we have for the treatment of kidney disease. Research by mainstream treatment of acidosis. It is used every day by British scientists at the Royal London Hospital shows that sodium oncologists to neutralize the heavy acidic nature of their chemical bicarbonate can dramatically slow the progress of chronic kidney and chemotherapeutic agents which are often quite toxic. -
Food and Drug Administration, HHS § 184.1639
Food and Drug Administration, HHS § 184.1639 (2) The ingredient is used in food at Academy Press, 2101 Constitution Ave. levels not to exceed current good man- NW., Washington, DC 20418, or may be ufacturing practice. examined at the National Archives and (d) Prior sanctions for this ingredient Records Administration (NARA). For different from the uses established in information on the availability of this this section do not exist or have been material at NARA, call 202–741–6030, or waived. go to: http://www.archives.gov/ federallregister/ [48 FR 52444, Nov. 18, 1983] codeloflfederallregulations/ § 184.1634 Potassium iodide. ibrllocations.html. (c) The ingredient is used as a dough (a) Potassium iodide (KI, CAS Reg. strengthener as defined in § 170.3(o)(6) No. 7681–11–0) is the potassium salt of of this chapter. hydriodic acid. It occurs naturally in (d) The ingredient is used in the man- sea water and in salt deposits, but can ufacture of bread in accordance with be prepared by reacting hydriodic acid § 184.1(b)(2) of this chapter in an (HI) with potassium bicarbonate amount not to exceed 0.0075 percent (KHCO ). 3 based on the weight of the flour. (b) The ingredient meets the speci- (e) Prior sanctions for this ingredient fications of the ‘‘Food Chemicals different from the uses established in Codex,’’ 3d Ed. (1981), pp. 246–247, which this section do not exist or have been is incorporated by reference. Copies waived. may be obtained from the National Academy Press, 2101 Constitution Ave. [43 FR 11699, Mar. 21, 1978, as amended at 49 NW., Washington, DC 20418, or may be FR 5613, Feb. -
Emergency Management: Smoke Detectors & Fire Extinguishers
s SMOKE DETECTORS es dn re and pa re P 7 FIRE EXTINGUISHERS Taking it one step Ever Vigilant Sentries That May at a time. SAVE YOUR LIFE Half of the home fires and three-fifths of fire deaths occur in homes without smoke detectors. Hundreds of people die each year in homes with smoke detectors that don’t work. It’s important that you not only have a smoke detector, but that you check and maintain it frequently. You Need To Know What Kind Important Information Of Smoke Detector You Have & About Smoke Detectors How To Maintain It •Battery-Powered Make Placement a Priority Battery-powered smoke detectors operate on •At a minimum, there should be a smoke alkaline batteries. Unlike the bunny, they won’t detector in the hallways and corridors keep going forever. The battery should be checked between the sleeping areas and the rest of weekly and replaced twice a year. A good time to the house, and/or a smoke detector in the do this is when you change your clock in the fall and center of the ceiling directly above each spring. stairway. •Hard-Wired without Battery Back-up • Additional measures include installing smoke This type of smoke detector operates on household detectors on a wall or the ceiling in each current. As long as you have electricity, it will sleeping room. function; but if your house loses power, it will no • Because smoke rises, smoke detectors longer function. If you have this type, you should should be mounted high on the wall or also install battery-operated models for back-up. -
Class B Fire-Extinguishing Performance Evaluation of a Compressed Air Foam System at Different Air-To-Aqueous Foam Solution Mixing Ratios
applied sciences Article Class B Fire-Extinguishing Performance Evaluation of a Compressed Air Foam System at Different Air-to-Aqueous Foam Solution Mixing Ratios Dong-Ho Rie 1, Jang-Won Lee 2 and Seonwoong Kim 3,* 1 Fire Disaster Protection Research Center, Incheon National University, Incheon 22012, Korea; [email protected] 2 Department of Safety Engineering, Incheon National University, Incheon 22012, Korea; kofeic5@kfi.or.kr 3 Department of Architecture and Plant Engineering, Youngsan University, 288 Junam-ro, Yangsan-si, Kyungsangnam-do 50510, Korea * Correspondence: [email protected]; Tel.: +82-55-380-9497; Fax: +82-55-380-9249 Academic Editor: Lennart Y. Ljungberg Received: 23 March 2016; Accepted: 25 June 2016; Published: 28 June 2016 Abstract: The purpose of this research is to evaluate the fire-extinguishing performance of a compressed air foam system at different mixing ratios of pressurized air. In this system, compressed air is injected into an aqueous solution of foam and then discharged. The experimental device uses an exclusive fire-extinguishing technology with compressed air foam that is produced based on the Canada National Laboratory and UL (Underwriters Laboratories) 162 standards, with a 20-unit oil fire model (Class B) applied as the fire extinguisher. Compressed air is injected through the air mixture, and results with different air-to-aqueous solution foam ratios of 1:4, 1:7, and 1:10 are studied. In addition, comparison experiments between synthetic surfactant foam and a foam type which forms an aqueous film are carried out at an air-to-aqueous solution foam ratio of 1:4. -
The Next Generation in Firefighting
INDUSTRIES IN WHICH TECHNICAL DATA: COLD FIRE®’S COOLING EFFECT COLD FIRE® IS USED: Underwriters Laboratories Listing: COLD FIRE®’s cooling effect makes • Federal, State, City and it an advantageous fire fighting product. Local Fire, EMS, and UL Classified for Class A & B Fires. Not only does this unique characteristic Police Departments UL Classified #: 2N75 assist in extinguishing the fire faster, but it works to enhance safety and safeguard the • Military/Governmental Tested in accordance with NFPA 18, Standard Entities for Wetting Agents; UL 162, Applicable lives of fire fighters and victims. When ® is applied to a fire, it quickly Port Authorities portions of the Standard for Foam Equipment COLD FIRE • penetrates the hot surface and extracts the and Liquid Concentrate; and UL 711 • Transportation Agencies heat from a fire without steam conversion. for Class B fires. (Water and foam do not have the same • Marine Industry Cold Fire can be used to extinguish aircraft fires and to cool down the fuselage for added safety Underwriters Laboratories of Canada Listing: penetration capability of Cold Fire). • Aviation ® ULC Classified under file #: Cex 1225. COOLING TEST • Manufacturing Facilities ULC Subj. C175. DATA CONDUCTED • Construction, BY INTERTEK TESTING Plumbing, Welding EPA SNAP (Significantly New SERVICES: The Next Generation Alternative Policy) Program Listing & Roofing Industries Procedure: Materials were heated to • Automobile in Firefighting COLD FIRE® has been listed by the United 500ºF using a hand torch. Using a thermal Manufacturing couple, the surface temperature of each of States Environmental Protection Program on the following "Hot" materials was recorded • Motorized their SNAP Program Vendor List. -
Dry Chemical Type Fire Extinguishers
BELL SYSTEM PRACTICES SECTION 770-330-153 Plant Series Iss. 1, January 1971 AT&TCo Standard DRY CHEMICAL TYPE FIRE EXTINGUISHERS 1. GENERAL ficient effectiveness to earn a 1-A rating even though they have some value in extinguishing 1.01 This section describes a multi-purpose small class "A" fires. dry chemical fire extinguisher for use on Class A, B or C fires, i.e those involving general 1.06 ' On occasion a class "D" fire will be re- trash material such as wood, paper etc., flam ported. This fire requires a special chemi mable liquids, such as gasoline, oil, naptha, etc., cal for extinguishment because of the relatively and electrical equipment. high heat generated by the burning metal. There are several dry chemicals available to 1.02 The dry chemical extinguisher is quite extinguish metal fires, but to date only a chemi effective on tire and gasoline fires. For cal identified as MET-L-X, can be applied to the this reason it should be used primarily in ga burning metal with a standard type rages. It can also be used in Paint Storage fire extin guisher. Basically the chemical is sodium areas, Tire Storage rooms, Heater Rooms and chloride with additives to render it free flowing Kitchens. The advantage of the Dry Chemical and cause heat caking. A 30 pound extinguisher over the Carbon Dioxide extinguisher is its is the smallest hand model available, only ability to prevent the re-ignition of a fire. This through the Ansul Company, in Marinette, characteristic is not present in the Carbon Diox Wisconsin. -
Smoke Detectors Carry a Small Amount of a Radioactive Isotope Called Americum 241
CITY AND COUNTY OF DENVER Department of Safety Fire Department Fire Prevention Division P.O. Box 40385 Denver, CO 80204 p: 720.913.3474 f: 720.913.3587 Residential Fire Safety Maintaining and Using Single- and Multiple-station Smoke Alarms, Carbon Monoxide Alarms, Combination Carbon Monoxide and Smoke Alarms, and Fire Extinguishers described below. It’s easy to forget that a smoke alarm’s sole In 2009, the State of Colorado and City and County of function is to sound the warning. Develop and practice an Denver passed ordinances requiring Carbon Monoxide escape plan so that if the alarm sounds, your family can get out (CO) alarms in residences—a new facet added to quickly. governmental requirements for home safety. Requirements and Positioning: This document will tell you how to make sure you’re in compliance with existing requirements for smoke • Smoke alarms are required in every residential dwelling or sleeping unit, including single-family homes. alarms and fire extinguishers, what you need to do to • Every multi-family residential facility is required to have comply with the new CO detector requirements, and smoke alarms, whether battery-operated or hard-wired with best practices for home fire safety. battery backup. • Smoke alarms are required in every bedroom, outside each Background sleeping area, and on every level of the home including the basement. In 2016 there were 1,342,000 fires reported in the United States. These fires caused 3,390 civilian deaths, 14,650 Maintenance – Smoke Alarms: civilian injuries, and $10.6 billion in property damage. (NFPA) Kitchens are the leading area of origin for these fires. -
Theories of Fire
Burlington Fire Department 215 S Church Street, Burlington, NC 27215 336-229-3132 Fire Extinguishers Objectives • Understanding Fire • Classes of Fire • Types of Extinguishers • Extinguisher Ratings • Inspection/Maintenance • Proper use Theory of Fire • Three things must come together to have a flame – Fuel/vapor – Heat – Oxygen • Combustible products are heated until they produce a vapor Theory of Fire • The vapor is what actually burns – This is why gasoline is dangerous, the vapor is always present in our climate – Diesel Fuel is more difficult to light because you have to heat the fuel to produce a vapor Theory of Fire • Fire Triangle FUEL HEAT OXYGEN Theory of Fire • When you use a fire extinguisher you are removing one of the things in the Fire Triangle – Some extinguishers cool the product on fire – Some remove or displace oxygen around the fire – Some displace the vapor – Some do a combination of the above • When do you use a fire extinguisher? – Use an extinguisher when a fire begins or during the incipient stage of fire Incipient Stage of Fire The first or beginning stage: • Slightly over 100 degrees • Rising hot gases • Rising air approximately 20% Oxygen (normal Oxygen levels are 21%) Incipient Stage of Fire • The conditions are still clear – You can see what you are doing – The temperature in the room is still low – Most importantly, you can still breath because of low smoke levels • If you encounter anything other than this…. GET OUT! Class ‘A’ Fires Class ‘A’ Fires • Ordinary combustibles – Wood – Paper – Trash – Plastic -
Fire-Extinguishing Powders
FIRE-EXTINGUISHING POWDERS by Anthony E. Finnerty US. Army Research Laboratory Aberdeen Proving Ground, MD 21005-5066 and Lawrence J. Vande Kieft Faith Farm Street, MD 21 154-1 127 ACKNOWLEDGMENTS The authors are grateful for the financial support and continued consultation and encouragement from Messrs. Steve McCormick and Mike Clauson of US. Army Tank Automotive Research, Development, and Engineering Center (TARDEC). Warren, MI. The U.S. Army is also indebted to them for their zeal and dedication to the search for and identification of appropriate substitute materials for Halon 1301 as a fire- extinguishing agent. 1. BACKGROUND Many finely divided solids (nonflammable salts) have been used to quench hydrocarbon flames. Sodium bicarbonate was widely used into the 1950s as the primary fm-extinguishing powder. The U.S. Navy determined that potassium bicarbonate was superior to the sodium analog and subsequently changed its hand- held extinguishers from sodium bicarbonate to potassium bicarbonate. Other solids, such as Monex, have been proposed, but their fire-extinguishing ability is only marginally superior to potassium bicarbonate. Because of the expense, there has been resistance to a changeover. It is widely believed that fireextinguishing powders can function as both energy-absorbing materials and solid surfaces on which free radicals can be destroyed. Heat may be absorbed by the heat capacity of the solid, the heat of fusion at the melting point, the heat capacity of the liquid, heat of dissociation from breaking of chemical bonds, and heat of vaporization. All of these contribute to the total endothermicity of the fireextinguishing powder (ref. 1). From a chemical aspect (ref. -
Fire Extinguisher Location and Placement
FACT SHEET FIRE EXTINGUISHER LOCATION AND PLACEMENT Code officials are charged with ensuring that occupancies are properly outfitted with fire extinguishers and that they are placed in the right locations. This resource identifies which occupancies require extinguishers and where they should be placed within them. It also outlines related fire extinguisher requirements in NFPA® 10, Standard for Portable Fire Extinguishers. Occupancy Requirements Fire extinguishers are required in the following occupancy types: Ambulatory health care Hotel and dormitory Health care Apartments Industrial Educational Assemblies Lodging and rooming Storage Businesses Mercantile Detention and correctional Day care Occupancies in special structures Residential board and care Fire extinguishers are not required in one- and two-family dwellings. For more information on occupancy requirements, see Table 13.6.1.2 of NFPA 1, Fire Code (2018). Where and How Should Extinguishers Be Located? Fire extinguishers that are placed correctly can be accessed more quickly to help control a fire until the fire department arrives. Fire extinguishers are not intended to be a substitute for evacuating the building safely and quickly. Two key factors for locating extinguishers are that they should be accessible and visible. Accessible Visible Extinguishers should be placed where they are readily If visual obstructions cannot be avoided, then arrows, accessible in the event of a fire, which typically includes lights, or signs are needed to help indicate where a fire normal paths of travel. extinguisher is located. If extinguisher weighs If extinguisher weighs more than 40 lb (18.14 kg) … less than 40 lb (18.14 kg) … Top of extinguisher cannot be more than Top of extinguisher cannot be more than 3.5 ft (1.07 m) from the ground 5 ft (1.53 m) from the ground Bottom of extinguisher must be at least Bottom of extinguisher must be at least 4 in.