Programmers Guide Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

Programmers Guide Table of Contents PUBLIC SAP Event Stream Processor 5.1 SP08 Document Version: 1.0 - 2014-06-25 Programmers Guide Table of Contents 1 Introduction.................................................................. 7 1.1 Data-Flow Programming.......................................................... 7 1.2 Continuous Computation Language..................................................9 1.3 SPLASH......................................................................9 1.4 Authoring Methods..............................................................9 2 CCL Project Basics.............................................................11 2.1 Events.......................................................................11 2.2 Operation Codes...............................................................12 2.3 Streams.....................................................................13 2.4 Delta Streams.................................................................14 2.5 Keyed Streams................................................................ 15 2.6 Windows.....................................................................18 2.6.1 Retention............................................................. 19 2.6.2 Named Windows........................................................22 2.6.3 Unnamed Windows......................................................23 2.7 Comparing Streams, Windows, Delta Streams, and Keyed Streams...........................24 2.8 Bindings on Streams, Delta Streams, and Windows...................................... 27 2.9 Input/Output/Local.............................................................30 2.10 Implicit Columns...............................................................31 2.11 Event Block Lifecycle............................................................32 2.12 Schemas.................................................................... 32 2.13 Stores...................................................................... 33 2.14 CCL Continuous Queries......................................................... 34 2.15 Reference Table Queries......................................................... 35 2.16 Adapters.................................................................... 36 2.17 Order of Elements..............................................................36 3 CCL Language Components......................................................37 3.1 Datatypes....................................................................37 3.1.1 Intervals..............................................................40 3.1.2 Choice Between decimal and money Datatypes.................................. 41 3.2 Operators....................................................................41 3.3 Expressions.................................................................. 45 3.4 CCL Comments................................................................46 3.5 Case-Sensitivity............................................................... 47 3.6 Literals......................................................................48 3.6.1 Time Literals...........................................................48 3.6.2 Boolean Literals........................................................ 50 PUBLIC Programmers Guide 2 © 2014 SAP AG or an SAP affiliate company. All rights reserved. Table of Contents 3.6.3 String Literals..........................................................50 3.6.4 Numeric Literals........................................................ 51 4 Developing a Project in CCL..................................................... 53 5 CCL Query Construction........................................................54 5.1 Filtering.....................................................................54 5.2 Splitting Up Incoming Data........................................................54 5.3 Unions......................................................................56 5.3.1 Example: Merging Data from Streams or Windows................................56 5.4 Joins....................................................................... 57 5.4.1 Key Field Rules.........................................................59 5.4.2 Join Examples: ANSI Syntax................................................60 5.4.3 Join Example: Comma-Separated Syntax...................................... 62 5.5 Pattern Matching...............................................................63 5.6 Aggregation..................................................................64 5.7 Reference Table Queries......................................................... 65 5.7.1 Using a Reference Table Query in a Join........................................67 5.7.2 Using a Reference Table Query in a Module.....................................68 5.7.3 Using a Reference Table Query in SPLASH......................................70 5.7.4 Using a Reference Table Query in SPLASH to Get a Single Row from a Table..............72 6 Advanced CCL Programming Techniques........................................... 74 6.1 Declare Blocks................................................................ 74 6.1.1 Typedefs..............................................................75 6.1.2 Parameters............................................................76 6.1.3 Variables..............................................................77 6.1.4 Declaring Project Variables, Parameters, Datatypes, and Functions....................78 6.2 Flex Operators.................................................................79 6.3 Automatic Partitioning...........................................................80 6.3.1 Guidelines for Partitioning Flex Operators......................................83 6.3.2 Guidelines for Partitioning SPLASH...........................................86 6.3.3 Guidelines for Partitioning Elements with Retention Policies.........................88 6.3.4 Guidelines for Partitioning Aggregation........................................90 6.3.5 Guidelines for Partitioning Modules...........................................91 6.3.6 Guidelines for Partitioning Joins.............................................93 6.3.7 Guidelines for Partitioning Elements on Log Stores................................95 6.4 Modularity................................................................... 95 6.4.1 Module Creation and Usage................................................96 6.4.2 Example: Creating and Using Modules.........................................96 6.4.3 Example: Parameters in Modules............................................ 97 6.5 Data Recovery.................................................................98 Programmers Guide PUBLIC Table of Contents © 2014 SAP AG or an SAP affiliate company. All rights reserved. 3 6.5.1 Log Store Optimization Techniques..........................................100 6.6 Error Streams................................................................100 6.6.1 Monitoring Streams for Errors..............................................102 7 Zero Data Loss.............................................................. 104 7.1 Consistent Recovery........................................................... 104 7.2 Auto Checkpoint..............................................................105 7.3 Guaranteed Delivery............................................................107 7.4 Achieving Zero Data Loss........................................................109 8 Creating a Log Store.......................................................... 112 8.1 Log Store Guidelines............................................................113 8.2 Sizing a Log Store..............................................................114 8.3 Log Store Sizing Reference.......................................................118 9 Writing SPLASH Routines...................................................... 122 9.1 Internal Pulsing...............................................................122 9.2 Order Book..................................................................123 10 Integrating SPLASH into CCL................................................... 125 10.1 Access to the Event............................................................125 10.2 Access to Input Windows........................................................ 125 10.3 Output Statement............................................................. 127 10.4 Notes on Transactions..........................................................127 11 Using SPLASH in Projects......................................................128 12 ESP Datatypes in SQL Queries...................................................131 13 SAP PowerDesigner for Event Stream Processor.....................................133 13.1 Getting Started............................................................... 133 13.1.1 Data Modeling Scenarios................................................. 133 13.1.2 Sample PowerDesigner Project.............................................134 13.1.3 Learning More About PowerDesigner.........................................134 13.2 Data Model..................................................................135 13.2.1 ESP Schema Logical Data Model............................................135 13.2.2 Finding an Object in a Diagram............................................. 135 13.2.3 Data Model Tables......................................................136 13.2.4 Extensions............................................................137 13.3 Extended Model Setup..........................................................139
Recommended publications
  • Data Warehouse Logical Modeling and Design
    Data Warehouse 1. Methodological Framework Logical Modeling and Design • Conceptual Design & Logical Design (6) • Design Phases and schemata derivations 2. Logical Modelling: The Multidimensionnal Model Bernard ESPINASSE • Problematic of the Logical Design Professeur à Aix-Marseille Université (AMU) • The Multidimensional Model: fact, measures, dimensions Ecole Polytechnique Universitaire de Marseille 3. Implementing a Dimensional Model in ROLAP • Star schema January, 2020 • Snowflake schema • Aggregates and views 4. Logical Design: From Fact schema to ROLAP Logical schema Methodological framework • From fact schema to relational star-schema: basic rules Logical Modeling: The Multidimensional Model • Examples towards Relational Star Schema • Examples towards Relational Snowflake Schema Logical Design : From Fact schema to ROLAP Logical schema • Advanced logical modelling ROLAP schema in MDX for Mondrian 5. ROLAP schema in MDX for Mondrian Bernard ESPINASSE - Data Warehouse Logical Modelling and Design 1 Bernard ESPINASSE - Data Warehouse Logical Modelling and Design 2 • Livres • Golfarelli M., Rizzi S., « Data Warehouse Design : Modern Principles and Methodologies », McGrawHill, 2009. • Kimball R., Ross, M., « Entrepôts de données : guide pratique de modélisation dimensionnelle », 2°édition, Ed. Vuibert, 2003, ISBN : 2- 7117-4811-1. • Franco J-M., « Le Data Warehouse ». Ed. Eyrolles, Paris, 1997. ISBN 2- 212-08956-2. • Conceptual Design & Logical Design • Cours • Life-Cycle • Course of M. Golfarelli M. and S. Rizzi, University of Bologna
    [Show full text]
  • ENTITY-RELATIONSHIP MODELING of SPATIAL DATA for GEOGRAPHIC INFORMATION SYSTEMS Hugh W
    ENTITY-RELATIONSHIP MODELING OF SPATIAL DATA FOR GEOGRAPHIC INFORMATION SYSTEMS Hugh W. Calkins Department of Geography and National Center for Geographic Information and Analysis, State University of New York at Buffalo Amherst, NY 14261-0023 Abstract This article presents an extension to the basic Entity-Relationship (E-R) database modeling approach for use in designing geographic databases. This extension handles the standard spatial objects found in geographic information systems, multiple representations of the spatial objects, temporal representations, and the traditional coordinate and topological attributes associated with spatial objects and relationships. Spatial operations are also included in this extended E-R modeling approach to represent the instances where relationships between spatial data objects are only implicit in the database but are made explicit through spatial operations. The extended E-R modeling methodology maps directly into a detailed database design and a set of GIS function. 1. Introduction GIS design (planning, design and implementing a geographic information system) consists of several activities: feasibility analysis, requirements determination, conceptual and detailed database design, and hardware and software selection. Over the past several years, GIS analysts have been interested in, and have used, system design techniques adopted from software engineering, including the software life-cycle model which defines the above mentioned system design tasks (Boehm, 1981, 36). Specific GIS life-cycle models have been developed for GIS by Calkins (1982) and Tomlinson (1994). Figure 1 is an example of a typical life-cycle model. GIS design models, which describe the implementation procedures for the life-cycle model, outline the basic steps of the design process at a fairly abstract level (Calkins, 1972; Calkins, 1982).
    [Show full text]
  • SAP IQ Installation and Update Guide for Linux Company
    INSTALLATION GUIDE | PUBLIC SAP IQ 16.1 SP 04 Document Version: 1.0.0 – 2019-04-05 SAP IQ Installation and Update Guide for Linux company. All rights reserved. All rights company. affiliate THE BEST RUN 2019 SAP SE or an SAP SE or an SAP SAP 2019 © Content 1 SAP IQ Installation and Update Guide for Linux..................................... 7 2 Installation Overview.........................................................8 2.1 You are Here in the Implementation Process..........................................8 2.2 Who Should Read This Document?................................................10 2.3 What is SAP IQ?.............................................................10 2.4 By the End of This Document, I Should be Able to....................................... 10 3 Learn What's New and Changed................................................ 12 3.1 Where This Guide Resides in the Information Landscape.................................12 3.2 Where Do I Find Help?.........................................................13 4 Supported Server and Client Operating Systems...................................14 5 Plan the Installation.........................................................15 5.1 Installation Types............................................................ 15 Do I Need the SAP IQ Client? ................................................. 16 Virtualized Environments.................................................... 17 5.2 Product Components..........................................................17 Typical or Custom Installation?................................................18
    [Show full text]
  • Public 1 Agenda
    © 2013 SAP AG. All rights reserved. Public 1 Agenda Welcome Agenda • Introduction to Dobler Consulting • SAP IQ Roadmap – What to Expect • Q&A Presenters • Courtney Claussen - SAP IQ Product Management • Peter Dobler - CEO Dobler Consulting Closing © 2013 SAP AG. All rights reserved. Public 2 Introduction to Dobler Consulting Dobler Consulting is a leading information technology and database services company, offering a broad spectrum of services to their clients; acting as your Trusted Adviser, Provide License Sales, Architectural Review and Design Consulting, Optimization Services, High Availability review and enablement, Training and Cross Training, and lastly ongoing support and preventative maintenance. Founded in 2000, the Tampa consulting firm specializes in SAP/Sybase, Microsoft SQL Server, and Oracle. Visit us online at www.doblerconsulting.com, or contact us at 813 322 3240, or [email protected]. © 2013 SAP AG. All rights reserved. Public 3 Your Data is Your DNA, Dobler Consulting Focus Areas Strategic Database Consulting SAP VAR D&T DBA Database Managed Training Services Programs Cross-Platform Expertise SAP Sybase® SQL Server® Oracle® © 2013 SAP AG. All rights reserved. Public 4 What’s Ahead ISUG-TECH Annual Conference April 14-17, Atlanta • Register at http://my.isug.com/conference/registration • Early Bird ending 2/28/14 (free hotel room with registration) SAPPHIRENOW Annual Conference June 3-5, Orlando • Come visit our kiosk in the exhibition hall © 2013 SAP AG. All rights reserved. Public 5 SAP IQ Roadmap Dobler Events Webinar Courtney Claussen / SAP IQ Product Management February 27, 2014 Disclaimer This presentation outlines our general product direction and should not be relied on in making a purchase decision.
    [Show full text]
  • MDA Transformation Process of a PIM Logical Decision-Making from Nosql Database to Big Data Nosql PSM
    International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-9 Issue-1, October 2019 MDA Transformation Process of A PIM Logical Decision-Making from NoSQL Database to Big Data NoSQL PSM Fatima Kalna, Abdessamad Belangour, Mouad Banane, Allae Erraissi databases managed by these systems fall into four categories: Abstract: Business Intelligence or Decision Support System columns, documents, graphs and key-value [3]. Each of them (DSS) is IT for decision-makers and business leaders. It describes offering specific features. For example, in a the means, the tools and the methods that make it possible to document-oriented database like MongoDB [4], data is stored collect, consolidate, model and restore the data, material or immaterial, of a company to offer a decision aid and to allow a in tables whose lines can be nested. This organization of the decision-maker to have an overview of the activity being treated. data is coupled to operators that allow access to the nested Given the large volume, variety, and data velocity we entered the data. The work we are presenting aims to assist a user in the era of Big Data. And since most of today's BI tools are designed to implementation of a massive database on a NoSQL database handle structured data. In our research project, we aim to management system. To do this, we propose a transformation consolidate a BI system for Big Data. In continuous efforts, this process that ensures the transition from the NoSQL logic paper is a progress report of our first contribution that aims to apply the techniques of model engineering to propose a universal model to a NoSQL physical model ie.
    [Show full text]
  • A Logical Design Methodology for Relational Databases Using the Extended Entity-Relationship Model
    A Logical Design Methodology for Relational Databases Using the Extended Entity-Relationship Model TOBY J. TEOREY Computing Research Laboratory, Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109-2122 DONGQING YANG Computer Science and Technology, Peking Uniuersity, Beijing, The People’s Republic of China JAMES P. FRY Computer and Information Systems, Graduate School of Business Administration, The University of Michigan, Ann Arbor, Michigan 48109-1234 A database design methodology is defined for the design of large relational databases. First, the data requirements are conceptualized using an extended entity-relationship model, with the extensions being additional semantics such as ternary relationships, optional relationships, and the generalization abstraction. The extended entity- relationship model is then decomposed according to a set of basic entity-relationship constructs, and these are transformed into candidate relations. A set of basic transformations has been developed for the three types of relations: entity relations, extended entity relations, and relationship relations. Candidate relations are further analyzed and modified to attain the highest degree of normalization desired. The methodology produces database designs that are not only accurate representations of reality, but flexible enough to accommodate future processing requirements. It also reduces the number of data dependencies that must be analyzed, using the extended ER model conceptualization, and maintains data
    [Show full text]
  • SAP IQ Installation and Configuration Guide Solaris Content
    PUBLIC SAP IQ 16.0 SP 10 Document Version: 1.1 – 2015-08-20 SAP IQ Installation and Configuration Guide Solaris Content 1 About SAP IQ...............................................................4 1.1 Supported Server Platforms.....................................................4 1.2 Supported Client Platforms......................................................5 1.3 Licensing Requirements........................................................5 1.4 Installation Media.............................................................6 2 Preparing for Installation......................................................7 2.1 Planning Your Installation.......................................................7 2.2 Preinstallation Tasks.......................................................... 9 Check for Operating System Patches............................................ 9 Increase the Swap Space....................................................10 License Server Requirements.................................................10 Manage Shared Memory.....................................................11 Set the File Descriptor Limits................................................. 12 Verify Network Functionality..................................................12 Windows Installer Requires Microsoft Visual C++ Redistributable Packages................ 13 3 Licensing Your Software......................................................15 3.1 Product Licensing............................................................15 3.2 Before You Generate Your
    [Show full text]
  • Physical and Logical Schema
    Physical And Logical Schema Which Samuele rebaptizing so alright that Nelsen catcalls her frangipane? Chance often aggravates particularly when nostalgicallydysphonic Denny mark-down misbelieves her old. reluctantly and acquiesces her Clair. Salique and confiscatory Conroy synchronize, but Marc Link copied to take example, stopping in this topic in a specific data models represent a database. OGC and ISO domain standards. Configure various components of the Configure, Price, Quote system. Simulation is extensively used for educational purposes. In counter system, schemas are synonymous with directories but they draft be nested in all hierarchy. Data and physical schemas correspond to an entity relationship between tables, there is logically stored physically turns their fantasy leagues. Source can Work schema to Target. There saying one physical schema for each logical schema a True b False c d. Generally highly dependent ecosystems, logical relationships in real files will also examine internal levels are going to logic physical data warehouse and any way. Enter search insert or a module, class or function name. Dbms schema useful to apply them in virtual simulations, physical warehouse schema level of compression techniques have as. Each record or view the logical schema when should make sure that. Results include opening only a kind data standard, robustly constructed and tested, but the an enhanced method for geospatial data standard design. The internal schema uses a physical data model and describes the complete details of data storage and access paths for create database. Portable alternative to warn students they are specified in its advantages of database without requiring to an sql backends, you can test the simulation include visualization of points.
    [Show full text]
  • Database Reverse Engineering Tools
    7th WSEAS Int. Conf. on SOFTWARE ENGINEERING, PARALLEL and DISTRIBUTED SYSTEMS (SEPADS '08), University of Cambridge, UK, Feb 20-22, 2008 Database Reverse Engineering Tools NATASH ALI MIAN TAUQEER HUSSAIN Faculty of Information Technology University of Central Punjab, Lahore, Pakistan Abstract: - Almost every information system processes and manages huge data stored in a database system. For improvement and maintenance of legacy systems, the conceptual models of such systems are required. With the growing complexity of information systems and the information processing requirements, the need for database reverse engineering is increasing every day. Different Computer Assisted Software Engineering (CASE) tools have been developed as research projects or as commercial products which reverse engineer a given database to its conceptual schema. This paper explores the capabilities of existing CASE tools and evaluates to which extent these tools can successfully reverse engineer a given database system. It also identifies the constructs of a conceptual model which are not yet supported by the database reverse engineering tools. This research provides motivation for software engineers to develop CASE tools which can reverse engineer the identified constructs and can therefore improve the productivity of reverse engineers. Key-Words: - Database reverse engineering, CASE tools, Conceptual schema, ER model, EER model 1 Introduction (OMT), and Entity-Relationship (ER) Database Reverse Engineering (DBRE) is a model. ER model is widely used as a data process of extracting database requirements modeling tool for database applications due from an implemented system. Traditionally, to its ease of use and representation. An legacy systems suffer from poor design Enhance Entity-Relationship (EER) model is documentation and thus make the an extension of ER model which has maintenance job more difficult.
    [Show full text]
  • Managing Data Models Is Based on a “Where-Used” Model Versus the Traditional “Transformation-Mapping” Model
    Data Model Management Whitemarsh Information Systems Corporation 2008 Althea Lane Bowie, Maryland 20716 Tele: 301-249-1142 Email: [email protected] Web: www.wiscorp.com Data Model Management Table of Contents 1. Objective ..............................................................1 2. Topics Covered .........................................................1 3. Architectures of Data Models ..............................................1 4. Specified Data Model Architecture..........................................3 5. Implemented Data Model Architecture.......................................7 6. Operational Data Model Architecture.......................................10 7. Conclusions...........................................................10 8. References............................................................11 Copyright 2006, Whitemarsh Information Systems Corporation Proprietary Data, All Rights Reserved ii Data Model Management 1. Objective The objective of this Whitemarsh Short Paper is to present an approach to the creation and management of data models that are founded on policy-based concepts that exist across the enterprise. Whitemarsh Short Papers are available from the Whitemarsh website at: http://www.wiscorp.com/short_paper_series.html Whitemarsh’s approach to managing data models is based on a “where-used” model versus the traditional “transformation-mapping” model. This difference brings a very great benefit to data model management. 2. Topics Covered The topics is this paper include: ! Architectures of Data
    [Show full text]
  • Entity Chapter 7: Entity-Relationship Model
    Chapter 7: Entity --Relationship Model These slides are a modified version of the slides provided with the book: Database System Concepts, 6th Ed . ©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use The original version of the slides is available at: https://www.db-book.com/ Chapter 7: EntityEntity--RelationshipRelationship Model Design Process Modeling Constraints E-R Diagram Design Issues Weak Entity Sets Extended E-R Features Design of the Bank Database Reduction to Relation Schemas Database Design UML Database System Concepts 7.2 ©Silberschatz, Korth and Sudarshan Design Phases Requirements specification and analysis: to characterize and organize fully the data needs of the prospective database users Conceptual design: the designer translates the requirements into a conceptual schema of the database ( Entity-Relationship model, ER schema – these slides topic) A fully developed conceptual schema also indicates the functional requirements of the enterprise. In a “specification of functional requirements”, users describe the kinds of operations (or transactions) that will be performed on the data Logical Design: deciding on the DBMS schema and thus on the data model (relational data model ). Conceptual schema is “mechanically ” translated into a logical schema ( relational schema ) Database design requires finding a “good” collection of relation schemas Physical Design: some decisions on the physical layout of the database Database System Concepts 7.3 ©Silberschatz, Korth and Sudarshan Outline
    [Show full text]
  • SAP IQ Release Bulletin [Linux] Company
    Installation Guide | PUBLIC SAP IQ 16.0 SP 11 2019-01-15 SAP IQ Release Bulletin [Linux] company. All rights reserved. All rights company. affiliate THE BEST RUN 2020 SAP SE or an SAP SE or an SAP SAP 2020 © Content 1 Important SAP Notes.........................................................3 2 Product Summary........................................................... 4 2.1 Product Compatibilities.........................................................4 2.2 Network Clients and ODBC Kits...................................................4 3 Installation and Upgrade...................................................... 5 3.1 Problem Solutions from Earlier Versions.............................................7 3.2 Database Upgrades........................................................... 7 3.3 SAP IQ and Other SAP Products...................................................8 4 Known Issues..............................................................10 4.1 Restrictions................................................................10 4.2 Installation and Configuration....................................................12 4.3 SAP IQ Operations........................................................... 16 SAP IQ Operations Known Issues from Previous Versions..............................18 4.4 Interactive SQL............................................................. 20 4.5 Multiplex Environment........................................................ 22 5 Documentation Changes..................................................... 25 5.1
    [Show full text]