<<

ASTE 520 Spacecraft Design Section 00, Part 1

ASTE 520

Spacecraft Design Fall 2019

Mike Gruntman

Department of Astronautical Engineering Viterbi School of Engineering University of Southern Los Angeles

 1997–2019 by Mike Gruntman 1/18 2019-Fall_ASTE-520_Sec-00_part-1_no_pswd ASTE 520 Spacecraft Design Section 00, Part 1

Spacecraft Design, Fall 2019 (set of notes on spacecraft design) Mike Gruntman, 2019

Copyright 1997–2019 by Mike Gruntman

All rights reserved

No part of these materials may be reproduced, in any form or by any means, or utilized, in any form or by any means, by any information storage and retrieval system, without the written permission of the author.

 1997–2019 by Mike Gruntman 2/18 2019-Fall_ASTE-520_Sec-00_part-1_no_pswd ASTE 520 Spacecraft Design Section 00, Part 1

ASTE 520 Spacecraft Systems Design Required for Astronautical Engineering Regardless of your engineering or science major (electrical, mechanical, aerospace, systems, computer, etc. or physics, astronomy, chemistry, math, etc.) and regardless of your job function (research, development, design, test, manufacturing, management, marketing, etc.) – if you work or plan/desire to work in the space/defense industry or in government space R&D centers or in space operations, then ... This is a course (on space systems) that you must take. ASTE520 focuses on fundamentals of space systems. It will help you to put into perspective your area of specialization and enable professional communications with other subsystem specialists. The course is popular at USC. It is among largest graduate space systems and courses in the United States, with more than 1260 students during the last 12 years alone.

Academic year 2019–2020 ASTE520 Spacecraft Systems Design is offered only in the fall (2019) semester. Fall 2019 Class enrollment is unlimited.

For students enrolled in the class: Course materials for ASTE-520 Spacecraft Systems Design will be posted on the class web site at DEN around August 14, 2018. Spring 2020 Course not offered

ASTE-520 public web site ( http://astronauticsnow.com/aste520/ ) provides information on the syllabus, textbooks, and much more.

 1997–2019 by Mike Gruntman 3/18 2019-Fall_ASTE-520_Sec-00_part-1_no_pswd ASTE 520 Spacecraft Design Section 00, Part 1

Spacecraft Design – ASTE 520 Thursday, 6:40–9:20 p.m., OHE-100D Fall 2019

W&E&P New SMAD HW Class Date Subject NS (L&W SMAD) Due Chapters Organization of the class. 0 1 Aug 29 History of rocketry and space (self study). 1 1 Universe, galaxy, solar system. 2

2 Sep 05 Space environment. 3 7 (8) 1,2

3 Sep 12 Orbital mechanics. 4 9 (5,6,7) 3,4,5

Orbital mechanics. 4 8,9 (5,6,7) 4 Sep 19 6, 7, 8 Space mission geometry. 5 8,9 (5,6,7)

Space mission geometry. 5 8 (5) 5 Sep 26 9,10,11 Attitude determination and control (ADC). 7 19 (10,11)

6 Oct 03 Attitude determination and control (ADC). 7 19 (10,11) 12,13,14

7 Oct 10 MID-TERM 7:00–9:00 p.m., on campus, room TBD

Spacecraft and mission design overview. Fall Fall 1,3,4,6,14,24,28,29 Facilities. Operations. Reliability 6 recess recess (1,3,4,10,14,15,19) watch lecture NS-6; no HW; 2-day recess

8 Oct 24 . 8 18 (17,18) 15,16,17,18

Launch systems. 9 26,27 (17,18) 9 Oct 31 19,20 Communications 10 16,21 (10,11,13)

16,21 10 Nov 07 Communications 10 21,22 (10,11,13,16)

11 Nov 14 Electric Power systems. 11 21 (10,11) 23,24,25

12 Nov 21 Thermal control. 12 22 (10,11) 26,27

13 Dec 05 Structures and mechanisms 13 22 (10,11) 28,29,30

Dec 12 FINAL EXAM 7:00–8:30 p.m., on campus, room TBD

W&E&P New SMAD = Wertz, Everett, Puschell, The New SMAD L&W SMAD = Larson and Wertz, SMAD NS = Notes Section; HW = homework

 1997–2019 by Mike Gruntman 4/18 2019-Fall_ASTE-520_Sec-00_part-1_no_pswd ASTE 520 Spacecraft Design Section 00, Part 1

ASTE 520 Spacecraft Design Notes Contents

Section 0, Part 1 and Part 2  spacecraft distribution at Organization of the Class LEO and GEO  atmospheric drag  syllabus  atomic oxygen  contents  spacecraft charging  organization of the class  trapped radiation  homework, exams, grading  radiation shielding  books, WWWeb resources  South Atlantic Anomaly  survey  cosmic rays  micrometeoroids and debris Section HW Home Work problems Section 04 Orbital Mechanics Section 01 Brief History  motion in gravitational field  two-body approximation Section 02  elliptical orbit Universe, Galaxy, solar system  circular and escape velocities  Universe  classical orbital elements  Galaxy  hyperbolic excess velocity  solar system  orbital transfers  planets  Hohmann transfer  coordinate systems  orbit plane change  time  rocket launch

 launch sites Section 03  transfer to geostationary Space environment orbit

 gravity-assist maneuvers  Sun  orbit perturbations  solar cycle  sun-synchronous orbit  plasma  Molniya orbit  solar wind  eclipses  Earth’s magnetic field  geosynchronous orbit  atmosphere  Hill’s equations  ionosphere  libration points   The "Big One" geomagnetic storm

 1997–2019 by Mike Gruntman 5/18 2019-Fall_ASTE-520_Sec-00_part-1_no_pswd ASTE 520 Spacecraft Design Section 00, Part 1

Section 05  control loop Mission geometry  attitude representation  disturbance torques  coordinate systems  magnetic torques  horizon  gravity gradient / stability  swath  aerodynamic torques  satellite ground track  solar radiation torques  coverage, repeating orbits  attitude measurements  satellite constellations  magnetometers  sun sensors  horizon sensors  star sensors Section 06  inertial-measurement units Spacecraft and Mission Design (IMU) Overview. Operations. Reliability  gyroscopes (rate,

integrating, laser)  space missions  angular momentum  national security space  nutation damping  mission life cycle  spacecraft attitude control  reviews configurations (spin,  mission design and reaction wheels, .....) planning  stability of spinners  flowdown of requirements  examples of problems  technology readiness levels (bang-bang, precession (TRL) control)  system engineering  reaction/momentum wheel  learning from mistakes  example of problems  science payloads (reaction/momentum  ground stations wheels)  Deep Space network (DSN)  Global Positioning System  STDN, SGLS, SLR (GPS)  TDRSS  reliability  mean time between failures (MTBF)  failure rates Section 08 Spacecraft Propulsion

 propulsion requirements Section 07  rocket classification Spacecraft Attitude Determination  thrust, specific impulse, total and Control impulse  rocket equation  ADCS  multistaging  configuration constraints

 1997–2019 by Mike Gruntman 6/18 2019-Fall_ASTE-520_Sec-00_part-1_no_pswd ASTE 520 Spacecraft Design Section 00, Part 1

 flow parameters in the Section 10 nozzles Communications  nozzles and diffusers  thrust coefficient,  frequency bands characteristic velocity  evolution of  nozzles communications  rocket heat transfer and  communications cooling architecture  propellant feed systems  constraints on spacecraft  propellant tanks systems  propellant expulsion  decibel language  liquid propellants  electromagnetic waves  monopropellants and  EIRP monopropellant thrusters  antenna gain  gelled propellants  antennas  solid rockets  beam patterns  grains  polarization loss  thrust vector control  digital vs. analog  electric propulsion  Nyquist’s and Carson’s  electrostatic thrusters rules  field emission electric  sampling and digitization propulsion (FEEP) and  data rate colloid thrusters  Shannon’s Law  resistojet  origins of noise  arcjet  noise figure  magnetoplasmadynamic  link design thrusters (MPD)  effect of atmosphere, rain, snow  modulation  encoding  BER Section 09  multiplexing Launch Systems  multiple access techniques  data compression  launch issues  telemetry functions  selection process  transponder  Atlas family  telemetry data formats  Delta family)  data handling  ground data systems

 space computer systems

 1997–2019 by Mike Gruntman 7/18 2019-Fall_ASTE-520_Sec-00_part-1_no_pswd ASTE 520 Spacecraft Design Section 00, Part 1

Section 11 Electric Power Systems Section 13 Structures and Mechanisms  requirements  classification  purposes  subsystem elements  sources of structural loads  design drivers  launch  orbital effects  acoustic environment  bus voltage  basics of mechanics of  solar cells materials  solar arrays  flexible-body dynamics  batteries  finite-element analysis  nickel-cadmium batteries  materials  nickel-hydrogen batteries  primary structure  power processing  examples  spacecraft weight estimate  tests and simulations

Section 12 Thermal Control

 thermal control problems  environmental loads  blackbody concept  Planck and Stefan- Boltzmann Laws  thermal control components  coatings  multilayer insulation (MLI)  heaters  louvers  heat pipes  radiators  thermal analysis  thermal testing

 1997–2019 by Mike Gruntman 8/18 2019-Fall_ASTE-520_Sec-00_part-1_no_pswd ASTE 520 Spacecraft Design Section 00, Part 1

ASTE 520 Spacecraft Design Fall 2019 Home Work Schedule

Problem due date 1 09/05/2019 2 09/05/2019 3 09/12/2019 4 09/12/2019 5 09/12/2019 6 09/19/2019 7 09/19/2019 8 09/19/2019 9 09/26/2019 10 09/26/2019 11 09/26/2019 12 10/03/2019 13 10/03/2019 14 10/03/2019 no HW – midterm exam 10/10/2019 15 10/24/2019 16 10/24/2019 17 10/24/2019 18 10/24/2019 19 10/31/2019 20 10/31/2019 21 11/07/2019 22 11/07/2019 23 11/14/2019 24 11/14/2019 25 11/14/2019 26 11/21/2019 27 11/21/2019 28 12/05/2019 29 12/05/2019 30 12/05/2019

 1997–2018 by Mike Gruntman 9/18 2019-Fall_ASTE-520_Sec-00_part-1_no_pswd ASTE 520 Spacecraft Design Section 00, Part 1

Mike Gruntman, Professor of tel. 213–740–5536 Department of Astronautical Engineering, MC–1192 [email protected] University of Southern California http://astronauticsnow.com Los Angeles, California 90089–1192 Mike Gruntman was graduated (M.Sc.) from the Department of Aerophysics and Space Research of the Moscow Physical-Technical Institute in 1977 and received his Ph.D. in physics from the Space Research Institute (IKI) of the USSR Academy of Sciences in 1984. He received specialized training in servicing liquid rocket engines. Dr. Gruntman actively worked on the development of space technology, in particular novel instrumentation for laboratory and space applications, and conducted research in experimental and space physics. He has been especially active in the development of imaging photon-counting detectors for ground and space telescopes. Gruntman excelled in the study of the neutral components of space plasmas and developed new instrumentation for detection of energetic neutral atoms. He was a visiting scientist at the FOM-Institute for Atomic and Molecular Physics in Amsterdam. In March 1990, Gruntman joined the University of Southern California (USC), where he initially worked on reduction and evaluation of the data from Pioneer 10/11 spacecraft and actively participated in sounding rocket and space instrument development programs. He worked on the sounding rocket payload integration and testing at White Sands Missile Range. Dr. Gruntman is Professor of Astronautics at USC since 1993. (He is also Professor of Aerospace Engineering and Professor of System Architecture Engineering.) He was/is Principal Investigator and Co-Investigator in theoretical and experimental programs funded by NASA and Air Force; he is Co-Investigator on current NASA missions TWINS and IBEX. His interests include astronautics, space mission and spacecraft design, satellite technologies, rocket and spacecraft propulsion, space sensors and instrumentation, local interstellar medium, heliospheric and magnetospheric physics, space plasmas and environment, particle and photon analyzers and detector systems, ion and neutral particle beams, atomic collisions, and particle interactions with surfaces. Dr. Gruntman authored and co-authored 300+ scholarly publications, including four books, in various fields of astronautics, space technology, space physics, space and laboratory sensors and instrumentation, history of rocketry, spacecraft, and , and space education. He presented results of his research at numerous international and national scientific and technological conferences and symposia and at scientific seminars at leading American and foreign research institutions and universities. Prof. Gruntman taught/teaches courses in astronautics, spacecraft design, spacecraft propulsion, and space sciences. He also teaches short courses on space technology for government and industry. Prof. Gruntman is the founder of the USC Astronautics Program that today offers BS, BS Minor, MS, Engineer, and PhD degrees and Graduate Certificate in Astronautical Engineering. In August 2004, Dr. Mike Gruntman was appointed the first (founding) Chairman (2004–2007) of the new space-engineering-focused (unique for American universities) academic unit in the USC Viterbi School of Engineering, known today as the Department of Astronautical Engineering (ASTE). He again served as the department chairman from 2016-2019. Gruntman is Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA) and he served as Vice Chair (elected) for Education of the Los Angeles Section of AIAA from 1996–1998. He is Member (Academician) of the International Academy of Astronautics (IAA). Dr. Gruntman is also a member of the American Physical Society (APS) and American Geophysical Union (AGU). Gruntman is a recipient of NASA’s Group Achievement Awards (2000, 2001, 2011) and the USC School of Engineering Exceptional Service Award (1999). He served (elected) on the USC Engineering Faculty Council in 1996–1998, 1998–2000, 2008–2010, 2011–2012, 2014–2016. In 2006, his AIAA-published book on history of rocketry and spacecraft received an award from the International Academy of Astronautics. Mike served (2001–2003) on the editorial board of the world leading journal on experimental techniques and scientific instrumentation, the Review of Scientific Instruments. He reviews manuscripts for several scientific journals, for book publishers, and for NASA. He organized (convened) sessions at major scientific conferences (AGU, COSPAR). Dr. Gruntman served/serves on advisory panels on science and technology programs at NASA Headquarters, NASA centers, and in other government agencies.

 1997–2018 by Mike Gruntman 10/18 2019-Fall_ASTE-520_Sec-00_part-1_no_pswd ASTE 520 Spacecraft Design Section 00, Part 1

Department of Astronautical Engineering (ASTE)

In August 2004, Dean of Engineering (later USC President) Prof. Max Nikias established a new independent academic unit to take the full advantage of rapidly growing opportunities in space exploration and technology. This Department of Astronautical Engineering (ASTE) offers the full set of degrees (BS, BS Minor, MS, Engineer, PhD, and Graduate Certificate) in Astronautical Engineering. USC’s Master’s program in Astronautical Engineering (MS ASTE) is highly visible nationally and internationally and among largest in the United States. More information on history of Astronautical Engineering at USC – see next page. ASTE is responsible for VSoE programs in astronautics and space technology, concentrating on meeting the educational and research needs of interest to the space and defense industries, government research and development centers, and academia. Please contact Astronautics faculty and ASTE Senior Administrator Ms. Dell Cuason (RRB–228; tel. 213–821–5817; [email protected]) and Student Adviser Ms. Nicole Valdez (RRB–223; tel. 213–821–4234; [email protected]) should you have any questions. Dell and Nicole are your contact persons for all questions regarding class registration and admission or transfer to the program in astronautical engineering.

Student Transfer to Degrees in Astronautical Engineering (code ASTE)

Transfer Process – Viterbi Engineering Students Please refer to VSOE change of major form and contact ASTE Student Services Director Ms. Nicole Valdez (RRB–223; tel. 213–821–4234; [email protected]) for further details of the process.

Transfer Process – Non-Engineering Students Transfer to a program in Astronautical Engineering, Code ASTE, requires a non-engineering student to file the USC application for graduate admission to the program in Astronautical Engineering. Processing of the application does not require re-submission of supporting documents (e.g., transcripts) that have been previously submitted to USC. Check with ASTE Student Services Director Ms. Nicole Valdez (RRB–223; tel. 213–821–4234; [email protected]).

Restrictions Transfer to a program in Astronautical Engineering, Code ASTE, cannot be requested during the first semester of student studies at USC.

Questions? Please contact ASTE Senior Administrator Ms. Dell Cuason (RRB–225; tel. 213–821–5817; [email protected]).

More information on MS ASTE – http://astronauticsnow.com/msaste/ Frequently asked questions – http://astronauticsnow.com/msaste/faq.html

 1997–2018 by Mike Gruntman 11/18 2019-Fall_ASTE-520_Sec-00_part-1_no_pswd ASTE 520 Spacecraft Design Section 00, Part 1

USC Astronautics program history, focus, rationale, and organization

Article in Acta Astronautica v. 103, 92–105, 2014

Abstract

Ten years ago in the summer of 2004, the University of Southern California established a new unique academic unit focused on space engineering. Initially known as the Astronautics and Space Technology Division, the unit operated from day one as an independent academic department, successfully introduced the full set of degrees in Astronautical Engineering, and was formally renamed the Department of Astronautical Engineering in 2010. The largest component of Department’s educational programs has been and continues to be its flagship Master of Science program, specifically focused on meeting engineering workforce development needs of the space industry and government space research and development centers. The program successfully grew from a specialization in astronautics developed in mid-1990s and expanded into a large nationally-visible program. In addition to on-campus full-time students, it reaches many working students on-line through distance education. This article reviews the origins of the Master’s degree program and its current status and accomplishments; outlines the program structure, academic focus, student composition, and enrollment dynamics; and discusses lessons learned and future challenges.

Article download http://astronauticsnow.com/2014aste.pdf

Article on the Master’s ASTE degree online (DEN) http://astronauticsnow.com/2018aste.pdf

 1997–2018 by Mike Gruntman 12/18 2019-Fall_ASTE-520_Sec-00_part-1_no_pswd ASTE 520 Spacecraft Design Section 00, Part 1

Admission Requirements for Graduate Degrees in Astronautical Engineering – Code ASTE

The Department of Astronautical Engineering (ASTE) of the USC Viterbi School of Engineering offers degrees in astronautical engineering, code ASTE. The admission to MS ASTE is based on the totality of applicant's record which includes GPA, GRE, and two letters of recommendation. Required items: Send To Application Office of Grad. and Int’l Admission Official Transcript(s) Office of Grad. and Int’l Admission General Record Exam Office of Grad. and Int’l Admission TOEFL (international students only) Office of Grad. and Int’l Admission Recommendation Letters Office of Grad. and Int’l Admission Application All applications should be submitted on-line at http://www.usc.edu/admission/graduate/apply/ Official Transcript(s) The University requires official transcripts from the accredited colleges or universities the applicant has attended. The MS Degree Program in Astronautical Engineering (Code ASTE) requires a minimum GPA of 3.0. General Record Exam The Department of Astronautical Engineering requires the general GRE. The GRE must be taken within five years of the application date. USC’s ETS school code is 4852. Applicants taking the GRE should use this code to ensure official submission of test scores. English Language Proficiency for International Applicants In addition to the general admission criteria listed above, international students whose first language is not English are required to take the TOEFL or IELTS examination to be considered a candidate for admission. There is no minimum TOEFL or IELTS score required for admission to the Viterbi School. For possible exemption from additional language requirements, you must achieve an Internet Based TOEFL (iBT) score of 90, with no less than 20 on each section or an IELTS score of 6.5, with no less than 6 on each band score. For more details on English Proficiency Criteria for the University of Southern California, please visit https://www.usc.edu/admission/graduate/international/englishproficiency.html. Recommendation Letters Please provide two professional letters of reference (former instructors, supervisors, professional colleagues, advisors, etc.) to be filed through the on-line application process. Mailing addresses, if needed Office of Graduate and International Admission University of Southern California, Los Angeles, CA 90089-0911 Department of Astronautical Engineering ASTE Graduate Program, 854 W. Downey Way University of Southern California, Los Angeles, CA 90089-1192 Application deadline: 15 June for fall; 1 October for spring; 1 February for summer. Please note that verification and processing of materials by the Office of Graduate and International Admission may take four to six weeks. Transfer to Astronautics Program and other Questions: Please contact ASTE Senior Administrator Ms. Dell Cuason (RRB–225; tel. 213–821–5817; [email protected]) and visit http://astronautics.usc.edu.

 1997–2018 by Mike Gruntman 13/18 2019-Fall_ASTE-520_Sec-00_part-1_no_pswd ASTE 520 Spacecraft Design Section 00, Part 1

Integrity

Academic integrity of all students participating in this course is of the fundamental importance for this instructor and is one of the most important components of the University rules and regulations. Students who violate University standards of academic integrity are subject to disciplinary sanctions, including failure in the course and suspension from the University. Since dishonesty in any form harms the individual, other students and the University, policies on academic integrity will be strictly enforced. I expect you will familiarize yourself with Section 11, Behavior Violating University Standards in Scampus. HomeWork, Exams, etc. are individual efforts

Academic Conduct Plagiarism – presenting someone else’s ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in SCampus in Section 11, Behavior Violating University Standards https://scampus.usc.edu/1100-behavior- violating-university-standards-and-appropriate-sanctions/. Other forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university policies on scientific misconduct, http://policy.usc.edu/scientific-misconduct/. Discrimination, sexual assault, and harassment are not tolerated by the university. You are encouraged to report any incidents to the Office of Equity and Diversity http://equity.usc.edu/ or to the Department of Public Safety http://capsnet.usc.edu/department/department-public- safety/online-forms/contact-us. This is important for the safety whole USC community. Another member of the university community – such as a friend, classmate, advisor, or faculty member – can help initiate the report, or can initiate the report on behalf of another person. The Center for Women and Men http://www.usc.edu/student-affairs/cwm/ provides 24/7 confidential support, and the sexual assault resource center webpage [email protected] describes reporting options and other resources. Support Systems A number of USC’s schools provide support for students who need help with scholarly writing. Check with your advisor or program staff to find out more. Students whose primary language is not English should check with the American Language Institute http://dornsife.usc.edu/ali, which sponsors courses and workshops specifically for international graduate students. The Office of Disability Services and Programs http://sait.usc.edu/academicsupport/centerprograms/dsp/home_index.html provides certification for students with disabilities and helps arrange the relevant accommodations. If an officially declared emergency makes travel to campus infeasible, USC Emergency Information http://emergency.usc.edu/ will provide safety and other updates, including ways in which instruction will be continued by means of blackboard, teleconferencing, and other technology.

 1997–2018 by Mike Gruntman 14/18 2019-Fall_ASTE-520_Sec-00_part-1_no_pswd ASTE 520 Spacecraft Design Section 00, Part 1

Some Useful Math (1) Taylor’s theorem

Let f x be analytic at a. Then

23 n xa xa xa n  xa  fx fa  f'  a  f '' a  f ''' a  ... f a  ... 1! 2! 3!n !

An alternative form hh23 h hn fa h fa  f' a  f '' a  f ''' a  ... fn  a  ... 1! 2! 3!n !

Maclaurin’s series: the special case when a  0 xx23 x xn fx f 0 f '  0  f '' 0  f ''' 0  ... fn  0  ... 1! 2! 3!n !

Examples (elementary functions):

n nn112 nn n n! 1xnxx 123  x  ... xk  ... , x  1 2! 3!nk ! k !

xx23 exx 1    ... 2! 3! xxx234 ln 1xx ... , x  1 234 xxx357 sinxx    ... 3! 5! 7! xxx246 cosx  1    ... 2! 4! 6! xx3521762 x 7 x 9  tanxxx tg ... , x  3 15 315 2835 2 1xx24 5 61 x 6 1385 x 6  secxx 1  ... ,  cosx 2! 4! 6! 8! 2 xx3513 135 x 7 sin1 xxx arcsin ... , x 1 62452467 xxx357 tan1 xxx arctan ... , x 1 357

 1997–2018 by Mike Gruntman 15/18 2019-Fall_ASTE-520_Sec-00_part-1_no_pswd ASTE 520 Spacecraft Design Section 00, Part 1

Some Useful Math (2) Indefinite integral of functions  dF() x F () x C Integration by parts udv uv vdu

Change of variables Consider two sets of coordinates, or variables, xyz,, and uvw,, such that xxuvw ,, , yyuvw ,, , and zzuvw ,, . As an example, think about uvw,, being a set of spherical coordinates R,,  . Then the function Fxyz,, would be

 F xyz,, F xuwz  ,, , yuwz ,, , yuwz ,, Guvw ,, and xyx,, F x,, y x dxdydz G  u ,, v w dudvdw   uvw,, xyz uuu  xyx,, xyz where the Jacobian determinant is   uvw,, vvv xyz www

Plane oblique triangle

ABC 180 

abc Law of sines:  sinABC sin sin

Law of cosines: ca222cos abCb  2

 1997–2018 by Mike Gruntman 16/18 2019-Fall_ASTE-520_Sec-00_part-1_no_pswd ASTE 520 Spacecraft Design Section 00, Part 1

Some Useful Math (3) Vector relations

Consider a set of mutually perpendicular unit vectors ijk,, pointing along the three mutually perpendicular axes  X ,,YZ .

Consider vector Viabcj k . Its magnitude is V V abc222 .

Consider vectors Vi111abcj 1k and Vi222abcj 2k .

Scalar (dot) product. The scalar (or dot) product of these two vectors is

VV12 VV 21 VV 1 2cos  V 12 V cos

where  is the angle between vectors V1 and V2 . Expressed through vector components, the scalar product is

VV1 2 VV 2 1aa 12  bb 12  cc 12 .

Vector (cross) product. The vector (or cross) product of two vectors V1 and V2 is

VV12 VV 21 VV 12sin u where  is the angle between vectors V1 and V2 and the unit vector u is

perpendicular to both V1 and V2 . Expressed through vector components, the vector product is ijk

VV12 VV 21abc 111  bcbc 122112211221  i  caca j  abab  k

abc222

Consider now three vectors a , b , and c. abc bca  cab abcbaccab  

 1997–2018 by Mike Gruntman 17/18 2019-Fall_ASTE-520_Sec-00_part-1_no_pswd ASTE 520 Spacecraft Design Section 00, Part 1

Some Useful Math (4) Vector relations  Differential operator  (del) ijk   x yz

Gradient. The gradient of a scalar function   x,,yz   grad ijk   x yz

Divergence. The divergence of the vector finction A ,

AAx,,yz Axyz xyz ,, i  A xyz ,, j  A xyz ,, k A

A A A divAA x y  z x yz

Curl. The curl, or rotation, of the vector finction A ijk AAAAAA  curlAA rot A zzyy i xx j  k   xyz  y  z  z  x   x  y AAAxyz

Laplacian 222  2 div grad     x222yz

Gauss’s theorem (divergence theorem) divAAndV da VS

Stoke’s theorem Aldcurlda An  CS

 1997–2018 by Mike Gruntman 18/18 2019-Fall_ASTE-520_Sec-00_part-1_no_pswd 0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW $67(6SDFHFUDIW'HVLJQ

)DOO

0LNH*UXQWPDQ

'HSDUWPHQWRI$VWURQDXWLFDO(QJLQHHULQJ 9LWHUEL6FKRRORI(QJLQHHULQJ 6HFWLRQ3DUW 8QLYHUVLW\RI6RXWKHUQ&DOLIRUQLD /RV$QJHOHV 2UJDQL]DWLRQRIWKH&ODVV

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO 

0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW 6SDFHFUDIW'HVLJQ

‡ 2UJDQL]DWLRQRIWKHFODVV ‡ &RQWHQW ‡ 6FKHGXOH ‡ $VWURQDXWLFV3URJUDP ‡ &RXUVHQRWHV ‡ 2WKHUVXSSRUWLQJPDWHULDO ‡ +RPHZRUN ‡ ([DPV ‡ 'LVWDQFH(GXFDWLRQ1HWZRUN'(1

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO  0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW

2UJDQL]DWLRQRIWKH&ODVV± )LUVW/HFWXUH

‡ &ODVV1RWHVDUHHVVHQWLDODQGPDQGDWRU\IRU$67( ‡ 2QFDPSXVDQGUHPRWHVWXGHQWVGRZQORDG&ODVV1RWHVIURPWKH FODVVZHEVLWHDW'(1 KWWSFRXUVHVXVFGHQQHW SDVVZRUGUHTXLUHG VHH6OLGHV± ‡ 7HDFKLQJZLOOEHGRQHGLUHFWO\IURPWKHQRWHV± EULQJWKHUHTXLUHG PDWHULDOVWRWKHFODVV

‡ )LOHVIRUWKHILUVWFODVVPHHWLQJRQ$XJXVW )DOOB$67(B6HFBBSDUWBQRBSVZGSGI )DOOB$67(B6HFBSDUWBQRBSVZGSGI WKLVILOH )DOOB0*B6&'BSGI VHOIVWXG\IRUKRPHZRUN )DOOB0*B6&'BSGI

$WWHQWLRQUHDGWKLVVHFWLRQRI&ODVV1RWHVIRUUXOHV

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO 

0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW &RQWHQWV± $67(

‡ 6HFWLRQ ‡ 6HFWLRQ ‡ 6HFWLRQ 3DUWDQG3DUW 2UELWDO0HFKDQLFV 6SDFHFUDIW3URSXOVLRQ 2UJDQL]DWLRQRIWKH ‡ 6HFWLRQ ‡ 6HFWLRQ &ODVV 0LVVLRQ*HRPHWU\ /DXQFK6\VWHPV ‡ 6HFWLRQ+: ‡ 6HFWLRQ VHOIVWXG\ ‡ 6HFWLRQ +RPHZRUN3UREOHPV 6SDFHFUDIWDQG &RPPXQLFDWLRQV ‡ 6HFWLRQ 0LVVLRQ'HVLJQ ‡ 6HFWLRQ %ULHI+LVWRU\ 2YHUYLHZ2SHUDWLRQV (OHFWULF3RZHU6\VWHPV 5HOLDELOLW\ ‡ 6HFWLRQ ‡ 6HFWLRQ 8QLYHUVH*DOD[\ ‡ 6HFWLRQ 7KHUPDO&RQWURO 6RODU6\VWHP 6SDFHFUDIW$WWLWXGH ‡ 6HFWLRQ ‡ 6HFWLRQ 'HWHUPLQDWLRQDQG &RQWURO 6WUXFWXUHVDQG 6SDFH(QYLURQPHQW 0HFKDQLVPV

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO  0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW

2EMHFWLYHVRIWKH&RXUVH

‡ 7KLVFRXUVHLVRIDVXUYH\QDWXUHPHDQWWRDFTXDLQWWKH VWXGHQWZLWKNH\DVSHFWVRIVSDFHFUDIWV\VWHPGHVLJQ ‡ 7KHFODVVQRWHVDQGWH[WERRNSURYLGHPRVWRIWKHGHWDLOVDQG WKHKRPHZRUNLVGHVLJQHGWRSURYLGHDILUVWOHYHO XQGHUVWDQGLQJ ‡ :HZLOOOHDUQWKHEDVLFQRPHQFODWXUHDQGYRFDEXODU\VRWKDW \RXFDQFRQYHUVHZLWKXQGHUVWDQGLQJZLWKVXEV\VWHP VSHFLDOLVWV ‡ 1RSXQGLWZLOOHYHU³VQRZ´\RX

6SDFHFUDIWGHVLJQLVHVVHQWLDOO\DQLQWHUGLVFLSOLQDU\VSRUWWKDW FRPELQHVVFLHQFHHQJLQHHULQJDQGH[WHUQDOSKHQRPHQD7KH FRXUVHSURYLGHVEDVLFVRIV\VWHPVHQJLQHHULQJRIVSDFHV\VWHPV

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO 

0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW

2EMHFWLYHVRIWKH&RXUVH

‡ :KHQHYHUSRVVLEOH\RXZLOOOHDUQWKHGHVLJQFRQVLGHUDWLRQV ZKLFKFRPHLQWRSOD\LQOD\LQJRXWDPLVVLRQDQGD SUHOLPLQDU\GHVLJQ ‡

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO  0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW

0LNH*UXQWPDQ 3URIHVVRURI$VWURQDXWLFV &KDLUPDQ IRXQGLQJ  ,QVWUXFWRU  Department of Astronautical Engineering

‡ GHWDLOHGELRJUDSKLFDO 7HO±± 2IILFH55%± VNHWFKLQSection 00, PLNHJ#XVFHGX Part 1 6SHFLDOLVWLQDVWURQDXWLFVVSDFH ‡ FRPPXQLFDWLRQVRQ SK\VLFVVSDFHVHQVRUVDQG WKHILUVWQDPHEDVLV LQVWUXPHQWDWLRQVSDFHPLVVLRQV URFNHWU\VSDFHFUDIWWHFKQRORJLHV PRVWZHOFRPH VSDFHHGXFDWLRQDQGVSDFHDQGURFNHW KLVWRU\&R,QYHVWLJDWRU &R, DQG ‡ (PDLOPLNHJ#XVFHGX SDUWLFLSDQWLQVHYHUDO1$6$PLVVLRQV VFKRODUO\SXEOLFDWLRQV ‡ 85/ KWWSDVWURQDXWLFVQRZFRP LQFOERRNV LQFO,$$DZDUG

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO 

0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW $67(± ,V7KLV&RXUVHIRU

‡ ,I\RXDUHDVWXGHQWHQJLQHHURUVFLHQWLVWLQDVWURQRP\SK\VLFV FKHPLVWU\PDWKHPDWLFV$VWURQDXWLFDO(QJLQHHULQJ ( $HURVSDFH( $HURQDXWLFDO(&LYLO((OHFWULFDO(0HFKDQLFDO(,QGXVWULDO(6\VWHPV (1XFOHDU(&KHPLFDO(&RPSXWHU(««« DQGRU ‡ ,I\RXZRUNRUSODQ ZDQW WRZRUNLQWKHVSDFHRUGHIHQVHLQGXVWU\RULQ JRYHUQPHQWVSDFHUHVHDUFKDQGGHYHORSPHQWFHQWHUV 1$6$$LU)RUFH 1DY\$UP\,&'2(12$$« RUVSDFHPLVVLRQRSHUDWLRQVDQG FRQWUROFHQWHUV

7KLVFRXUVH± $67(± ,6)25<28

,QDGGLWLRQWRFODVVURRP$67(Spacecraft Design LVVLPXOWDQHRXVO\ RIIHUHGWKURXJKWKH86&9LWHUEL¶V'LVWDQFH(GXFDWLRQ1HWZRUN '(1 DQG FDQEHWDNHQE\VWXGHQWVDQ\ZKHUHLQWKH8QLWHG6WDWHV

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO  0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW

$67(6SDFHFUDIW'HVLJQ

$67( Spacecraft Design UHDFKHVVWXGHQWV DQ\ZKHUHLQWKH 8QLWHG6WDWHVDQG DEURDGWKURXJK WKH'LVWDQFH (GXFDWLRQ 1HWZRUN '(1

(QUROOHGQHDUO\ VWXGHQWV VLQFH

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO 

0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW $VWURQDXWLFVRQWKH:HVW&RDVW

‡ $67( LVDUHTXLUHGFRUHFODVV IRUWKH86&JUDGXDWH GHJUHHSURJUDPLQastronautical engineering ¾ 0DQ\VWXGHQWVLQRWKHUVFLHQFHDQGHQJLQHHULQJJUDGXDWHSURJUDPV WDNH$67(DVWHFKQLFDOHOHFWLYH ‡86&$VWURQDXWLFV3URJUDP ZDVHVWDEOLVKHGLQ± ‡ 7RGD\LWLVDFRPSUHKHQVLYHSURJUDP WKDWRIIHUV%6%60LQRU06(QJLQHHU DQG3K' GHJUHHVDQG*UDGXDWH &HUWLILFDWH LQ$VWURQDXWLFDO(QJLQHHULQJ ¾ 3URJUDPKLVWRU\IRFXVDQGRUJDQL]DWLRQLVDW KWWSDVWURQDXWLFVQRZFRPDVWHSGI GRZQORDGDEOHDUWLFOHIURPActa Astronautica DQG,$&DQG$,$$SDSHUV

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO  0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW

'HSDUWPHQWRI$VWURQDXWLFDO(QJLQHHULQJ $67(

‡ 86&HVWDEOLVKHGWKHAstronautics and Space Technology Division $67' LQ $XJXVW³WRSRVLWLRQWKH86&9LWHUEL6FKRRORI(QJLQHHULQJWRWDNHIXOO DGYDQWDJHRIUDSLGO\JURZLQJRSSRUWXQLWLHVLQVSDFH´ ¾ LQGHSHQGHQWDFDGHPLFXQLWZLWKLQWKH86&9LWHUEL6FKRRORI(QJLQHHULQJRSHUDWLQJDVDQ DFDGHPLFGHSDUWPHQWIURPGD\RQH EDVHGRQ$VWURQDXWLFVVSHFLDOL]DWLRQIURPPLGV ¾ UHQDPHG -XO\ Department of Astronautical Engineering $67( DXQLTXHSXUHVSDFHHQJLQHHULQJ'HSDUWPHQWLQWKH8QLWHG6WDWHV ‡ RIIHUV%6%60LQRU06(QJLQHHUDQG 3K' GHJUHHVDQG*UDGXDWH&HUWLILFDWH LQ astronautical engineering SRVWFRGH$67(

‡ $67(LVUHVSRQVLEOHIRU SURJUDPVLQDVWURQDXWLFV 86&$VWURQDXWLFVSURJUDP DQGVSDFHWHFKQRORJ\DW KLVWRU\IRFXVUDWLRQDOH 86&FRQFHQWUDWLQJRQ DQGRUJDQL]DWLRQ PHHWLQJWKHHGXFDWLRQDODQG Acta AstronauticaY UHVHDUFKQHHGVRIWKHVSDFH DQGGHIHQVHLQGXVWULHV DOVR,$&DQG$,$$SDSHUV± GRZQORDG JRYHUQPHQW5 'FHQWHUV KWWSDVWURQDXWLFVQRZFRPDVWHSGI DQGDFDGHPLD

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO 

0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW

'HSDUWPHQWRI$VWURQDXWLFDO(QJLQHHULQJ

‡ 86&$VWURQDXWLFV3URJUDP &RPELQHVVFLHQFHDQGHQJLQHHULQJIXQGDPHQWDOVZLWKKLJKO\VSHFLDOL]HG FODVVHVWDXJKWE\DVWURQDXWLFVDGMXQFWIDFXOW\DQGSDUWWLPHOHFWXUHUV WRSVSHFLDOLVWVLQWKHWUHQFKHV

‡ 06$67(ZHEVLWHV KWWSVYLWHUELJUDGDGPLVVLRQXVFHGXSURJUDPVPDVWHUVPVSURJUDPVDVWURQDXWLFDOHQJLQHHULQJ KWWSDVWURQDXWLFVQRZFRPPVDVWH

‡ ZHEVLWH06$67(Frequently Asked Questions FAQ KWWSDVWURQDXWLFVQRZFRPPVDVWHIDTKWPO

‡ ORQJWHUPFODVVVFKHGXOH² KWWSDVWURQDXWLFVQRZFRPPVDVWHDVWGBPVBFODVVBVFKHGXOHSGI

‡ DOZD\VFKHFNZLWK$67(6WXGHQW$GYLVHUIRUWKHXSGDWHGFODVVVFKHGXOH

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO  0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW

‡ 1DWLRQDOVWDWLVWLFV $PHULFDQ6RFLHW\RI (QJLQHHULQJ(GXFDWLRQ± $6(( FRPELQHV VWXGHQWVLQDVWURQDXWLFDODHURQDXWLFDODQG 6RPHVWDWLVWLFV DHURVSDFHHQJLQHHULQJLQRQHEURDGJURXS !GHSDUWPHQWVLQWKH8QLWHG6WDWHV DQG!0DVWHU¶VSURJUDPV

!QDWLRQDOO\DZDUGHG 0DVWHU¶VGHJUHHVLQ DVWURQDXWLFDODHURQDXWLFDO DHURVSDFHHQJLQHHULQJ

 06$67( GHJUHHVDZDUGHG IURP±

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO 

0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW

$67(± 6SDFHFUDIW'HVLJQ

‡ 3UHUHTXLVLWH *UDGXDWH VWDQGLQJ LQ HQJLQHHULQJ RU VFLHQFH

‡ &ODVV 1RWHV &ODVV 1RWHV DUH HVVHQWLDO DQG PDQGDWRU\ IRU WKH FRXUVH 'RZQORDG 1RWHV IURP WKH FODVV ZHE VLWH DW '(1 KWWSFRXUVHVXVFGHQQHW 

‡ &ODVV 3URFHGXUH 7HDFKLQJ ZLOO EH GRQH GLUHFWO\ IURP WKH QRWHV ,W LV DGYLVDEOH WR EULQJ DSSURSULDWH PDWHULDOV WR FODVV

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO  0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW

$67( 3RSXODU&RXUVH± (QUROOPHQW'\QDPLFV Spacecraft Design

(DFK\HDUVWXGHQWV KDLOIURP± 6WDWHVRIWKH8QLRQ

(QUROOPHQWGHSHQGVRQRIIHULQJIUHTXHQF\VDEEDWLFDO OHDYHVDQGUHVWULFWLRQVE\RWKHUGHSDUWPHQWV

$ERXW RQH KDOI RI HQUROOHG VWXGHQWV SXUVXH GHJUHHV LQ Astronautical Engineering 2WKHU VWXGHQWV SXUVXH YDULRXV HQJLQHHULQJ GHJUHHV HOHFWULFDO PHFKDQLFDO V\VWHP DHURVSDFH FLYLO FRPSXWHU HWF  0RVW VWXGHQWV SXUVXH 06 ± SXUVXH 3K'

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO 

0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW

‡ )LUVW +: DVVLJQPHQWV  GXH RQ 6HSWHPEHU   +RPHZRUN ‡ 7KHUH DUH  KRPHZRUN DVVLJQPHQWV 6XEPLVVLRQ VFKHGXOH LV LQ 6HFWLRQ  3DUW  ‡ /DWH KRPHZRUN PD\ EH VXEPLWWHG ZLWKLQ WZR ZHHNV DIWHU WKH GXH GDWH EXW QRW ODWHU { PXVW EH UHFHLYHG E\ 7$V WKDQ 1RYHPEHU   LQFOXVLYH  /DWH KRPHZRUN ZLOO EH JUDGHG WKH JUDGH ZLOO EH UHGXFHG E\  1R ODWH KRPHZRUN VXEPLVVLRQV DIWHU 1RYHPEHU   ³1R´ PHDQV ³1R´ ‡ 1R ³PDNH XS´ KRPH ZRUN LV SRVVLEOH 1R VSHFLDO ³GHDOV´ RQ KRPHZRUN VXEPLVVLRQ UHJDUGOHVV RI WKH FDXVH DUH SRVVLEOH ³1R´ PHDQV ³1R´ ³5HJDUGOHVV´ PHDQV ³5HJDUGOHVV´ ‡ +RPHZRUN DVVLJQPHQWV DQG VROXWLRQV DUH SRVWHG DW WKH FODVV ZHE VLWH DW '(1 KWWSFRXUVHVXVFGHQQHW  VROXWLRQV XVXDOO\ SRVWHG D IHZ GD\V DIWHU WKH GXH GDWH ‡ 2QFDPSXV VWXGHQWV VXEPLW KRPHZRUN LQ FODVV 2QOLQH '(1 VWXGHQWV VXEPLW KRPHZRUN WKURXJK KWWSFRXUVHVXVFGHQQHW 

6WXGHQWVPXVWNHHSUHFRUGVRIWKHLU+:DVVLJQPHQWVFRUHVDQGFKHFNZLWK7$V WLPHVGXULQJWKHVHPHVWHUWKHDFFXUDF\RIWKHVFRUHVLQRXUUHFRUGV6LPSO\ HPDLO7$VWKHVFRUHVDQGWKH\ZLOOFKHFNWKHDFFXUDF\

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO  0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW ([DPVDQG*UDGLQJ ‡ 0LGWHUP ([DP  2FWREHU 7KXUVGD\    ±  SP  PLQ *UDGLQJ ,QVWUXFWRU DQG 7$ ZLOO EH SUHVHQW DW  SP '(1 ZLOO DUUDQJH SURFWRULQJ IRU UHPRWH VWXGHQWV $67( ‡ )LQDO([DP +RPHZRUN  'HFHPEHU 7KXUVGD\  ± SP PLQ 0LGWHUP([DP  ,QVWUXFWRU DQG 7$ ZLOO EH SUHVHQW DW  SP '(1 ZLOO DUUDQJH SURFWRULQJ IRU UHPRWH VWXGHQWV )LQDO([DP  ‡'(1UXOH UHPRWH VWXGHQWV IURP WKH *UHDWHU /RV $QJHOHV DUHD PXVW WDNH H[DP RQ FDPSXV &RQWDFW '(1 GLUHFWO\ LI \RX KDYH TXHVWLRQV

([DPVDUHXVXDOO\RSHQERRNQRWHV«1RODSWRSV

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO 

0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW 7\SLFDO*UDGH'LVWULEXWLRQ

,PSRUWDQWTXHVWLRQ E\HQUROOHGVWXGHQWV :KDWLVDW\SLFDO JUDGHGLVWULEXWLRQLQ WKHFODVV" ([DPSOH

$67( Spacecraft Design Fall 2007 *UDGH'LVWULEXWLRQ VWXGHQWV

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO  0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW 2UJDQL]DWLRQRIWKH&ODVV

‡ 6\OODEXV DQG VFKHGXOH ± IOH[LEOH JXLGHOLQHV ‡ &ODVVEHJLQVDWSP:HKDYHRQH±PLQXWHEUHDNGXULQJFODVV ‡ *UDGLQJ 7HDFKLQJ $VVLVWDQW DQG *UDGHUV 7%$ ‡ 4XHVWLRQVDQG&RPSODLQWVDERXWJUDGLQJ  WREHGLUHFWHGWR7$  RQO\ LI DUELWUDWLRQ LV QHFHVVDU\ FRQWDFW WKH LQVWUXFWRU ‡ &RPPXQLFDWLRQV ZLWK WKH LQVWUXFWRU DQG 7$ ¾ RIILFH KRXUV ¾ WHOHSKRQH DQG HPDLO ‡ HPDLOWR7$RU LQVWUXFWRUFRS\WRWKHRWKHURQO\ LIQHFHVVDU\ ¾ 'R QRW KHVLWDWH WR FDOO RU VHH 7$ ZLWK TXHVWLRQV DERXW WKH FODVV PDWHULDO KRPHZRUN HWF

&RQWDFW7HDFKLQJ$VVLVWDQW 7$ 7$LVKHUHWREHERWKHUHG

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO 

0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW

2IILFH+RXUV± $67(

‡ 7HDFKLQJ $VVLVWDQW¶V RIILFH KRXUV WR EH DQQRXQFHG 7%$

‡ ,QVWUXFWRU¶V RIILFH KRXUV 7XHVGD\  SP ±  SP  SP ±  SP 7KXUVGD\  SP ±  SP

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO  0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW

2UJDQL]DWLRQRIWKH&ODVV

‡ &ODVV $WWHQGDQFH )UHH ZDON LQ  ZDON RXW ± ,I VOHHS GR QRW VQRUH RQFDPSXV UXOH RQO\ ± 1R IRRG RQ FDPSXV ± '(1¶V UXOH ± &HOO SKRQHV DQG SDJHUV RII EH QLFH ‡ 5HOLJLRXV +RO\ 'D\V ± 'LVFXVV ZLWK LQVWUXFWRU LQ DGYDQFH FRQIOLFWLQJ VFKHGXOHV ‡ 4XHVWLRQV ± $Q\ DVSHFW RI DVWURQDXWLFV DQG VSDFH H[SORUDWLRQ PD\ EH GLVFXVVHG ± )HDU QRW 4XHVWLRQV DUH ZHOFRPH ‡ $FDGHPLF ,QWHJULW\ 6HHWKHVWDWHPHQWLQWKH1RWHV 6HFWLRQ3DUW DQGIDPLOLDUL]H\RXUVHOI ZLWKWKH$FDGHPLF,QWHJULW\JXLGHOLQHVLQWKH86&VWXGHQWKDQGERRN ¾ ERWWRPOLQHKRPHZRUNH[DPVHWFDUHLQGLYLGXDOHIIRUW

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO 

0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW &ODVV1RWHVDQG7H[WERRN

&RXUVH1RWHV !SDJHV 0LNH*UXQWPDQSpacecraft Design, ASTE-520 Notes)DOO )RU \RXU SHUVRQDO XVH RQO\ &RS\ULJKW SURWHFWHG

5HFRPPHQGHG WH[W Space Mission Engineering: The New SMAD, HGV-5:HUW] ')(YHUHWWDQG--3XVFKHOO0LFURFRVP RU Space Mission Analysis and Design, HG:-/DUVRQDQG-5:HUW].OXZHU$FDGHPLF 3XEODQG0LFURFRVPUGHGLWLRQ 3OHDVHQRWHWKDWVRIWFRYHU HGLWLRQVRIWKHVHERRNVDUHPXFKFKHDSHU

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO  0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW 6SDFHFUDIW'HVLJQ± &ODVV1RWHV

‡ &ODVVQRWHVDUHPDQGDWRU\DQGHVVHQWLDO IRUWKHFODVV ‡ 'RZQORDGFODVVQRWHVIURPWKHFODVVZHEVLWHDW'(1DW KWWSFRXUVHVXVFGHQQHW 3DVVZRUGUHTXLUHG VHHVOLGHV± ‡ 7HDFKLQJZLOOEHGRQHGLUHFWO\IURPWKHQRWHV± EULQJWKHUHTXLUHG PDWHULDOVWRWKHFODVV ‡ +RPHZRUNDVVLJQPHQWVDUHLQWKH&ODVV1RWHV ‡ &ODVVDQG+RPHZRUNVXEPLVVLRQVFKHGXOHVDUHLQ6HFWLRQ3DUW ‡ 3ULQWWKHHQWLUHVHWRIQRWHV ¾ 7RWDOQXPEHURISDJHV! ¾ 0DQ\VWXGHQWVFKRRVHWRSULQWWZRVOLGHVSDJHVSHUVKHHWRISDSHU ¾

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO 

0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW 2WKHU6RXUFHVRI,QIRUPDWLRQ

‡ 6HYHUDO FRXUVHUHODWHG YLGHRFOLSV± OLQNV

&ODVVZHEVLWHV &ODVVZHEVLWHDW'(1 KWWSFRXUVHVXVFGHQQHW 3XEOLF SHUPDQHQW FODVVZHEVLWH KWWSDVWURQDXWLFVQRZFRPDVWH 3URJUDPIUHTXHQWO\DVNHGTXHVWLRQV KWWSDVWURQDXWLFVQRZFRPPVDVWHIDTKWPO

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO  0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW

6HOHFWHG5HFRPPHQGHG%RRNV

‡ AIAA Aerospace Design Engineers Guide $,$$  ‡ % 1 $JUDZDO Design of Geosynchronous Spacecraft 3UHQWLFH +DOO  ‡ 5 5 %DWH ' ' 0XHOOHU DQG - ( :KLWH Fundamentals of Astrodynamics 'RYHU  ‡ &'%URZQ Spacecraft Mission Design $,$$  ‡ &' %URZQ Spacecraft Propulsion $,$$  ‡ 9 $ &KRERWRY Orbital Mechanics $,$$  ‡ 3 )RUWHVTXH * 6ZLQHUG DQG - 6WDUN Spacecraft Systems Engineering -RKQ :LOH\ DQG 6RQV  WK HGLWLRQ  ‡ 0 ' *ULIILQ DQG - 5 )UHQFK Space Vehicle Design $,$$  DQG RWKHU HGLWLRQV  ‡ 0 *UXQWPDQ Blazing the Trail: The Early History of Spacecraft and Rocketry $,$$  ‡ 5: +XPEOH *1 +HQU\ DQG :/ /DUVRQ HGV Space Propulsion Analysis and Design 0F*UDZ+LOO  DQG ODWHU HGLWLRQV  ‡ 6 - ,VDNRZLW] - +RSNLQV -3 +RSNLQV -U International Reference Guide to Space Launch Systems $,$$  WK HGLWLRQ  ‡$6-XUVDHGHandbook of Geophysics and the Space Environment$LU)RUFH *HRSK\VLFV /DERUDWRU\ +DQVFRP $)%  ‡ 0 + .DSODQ Modern Spacecraft Dynamics and Control -RKQ :LOH\ 

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO 

0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW

6HOHFWHG5HFRPPHQGHG%RRNV FRQW

‡ 9 / 3LVDFDQH DQG 5 & 0RRUH Fundamentals of Space Systems 2[IRUG 8QLYHUVLW\ 3UHVV  ‡ 9/ 3LVDFDQH The Space Environment and its Effects on Space Systems $,$$  ‡ ' 5RGG\ Satellite Communications 0F*UDZ+LOO  ‡ &7 5XVVHO -* /XKPDQQ DQG 5- 6WUDQJHZD\ Space Physics. An Introduction &DPEULGJH 8QLY 3UHVV  ‡ * 3 6XWWRQ DQG 2 %LEODU] Rocket Propulsion Elements -RKQ :LOH\ DQG 6RQV  DQG HDUOLHU HGLWLRQV  ‡ *3 6XWWRQ History of Liquid Propellant Rocket Engines $,$$  ‡ 7 7DVFLRQH Introduction to the Space Environment 2UELW %RRN &R  ‡ $ 7ULEEOH The Space Environment 3ULQFHWRQ 8QLYHUVLW\ 3UHVV  ‡ TRW Space Data 75: 6SDFH DQG 7HFKQRORJ\ *URXS  ‡ '$ 9DOODGR Fundamental of Astrodynamics and Applications 0LFURFRVP 3UHVV DQG .OXZHU DFDGHPLF 3XEOLVKHUV  DQG ODWHU HGLWLRQV  ‡ - 5 :HUW] HG Spacecraft Attitude and Determination Control .OXZHU  ‡ :( :LHVHO 6SDFHIOLJKW '\QDPLFV 0F*UDZ+LOO  DQG RWKHU HGLWLRQV 

0DQ\PDQ\PDQ\RWKHUERRNV± VHHLQVWUXFWRU¶VZHEVLWH KWWSDVWURQDXWLFVQRZFRP$VWUR%RRNV

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO  0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW

3URIHVVLRQDO6RFLHWLHVDQG*URXSV

‡ ,WLVKLJKO\DGYLVDEOHWREHFRPHDPHPEHURISURIHVVLRQDO VRFLHWLHVDQGJURXSV ‡ 0HPEHUVKLSKHOSVSURIHVVLRQDOJURZWKQHWZRUNLQJHWF ‡ Primary society IRUVSDFHHQJLQHHUVLV $PHULFDQ,QVWLWXWHRI$HURQDXWLFVDQG$VWURQDXWLFV $,$$ KWWSZZZDLDDRUJ ‡ 0DQ\RWKHUSURIHVVLRQDOVRFLHWLHVIRUVFLHQWLVWVDQGHQJLQHHUVZRUNLQJ LQYDULRXVILHOGVUHODWHGWRVSDFHH[SORUDWLRQDQGVSDFHWHFKQRORJ\ $$6$*8$36,(((26$63,(««

3URIHVVLRQDOQHWZRUNLQJJURXSRQ/LQNHG,Q KWWSDVWURQDXWLFVQRZFRPDVWURXVFBOLQNHGLQ 86&$VWURQDXWLFV$OXPQL6WXGHQWV)DFXOW\DQG)ULHQGV

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO 

0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW

86&$VWURQDXWLFV QHWZRUNLQJJURXS ODXQFKHGLQ$SULO 

!PHPEHUV DVRI-DQ

KWWSDVWURQDXWLFVQRZFRPDVWURXVFBOLQNHGLQ

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO  0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW

$67(RQ'(1

‡ /HFWXUHZHEFDVWV $OOOHFWXUHVDUHDYDLODEOHWKURXJK'LVWDQFH(GXFDWLRQ1HWZRUN '(1IRUDOOVWXGHQWVHQUROOHGLQFODVVGXULQJWKHHQWLUHVHPHVWHU

‡ 3&RU0DF '(1VWUHDPVFRXUVHYLGHRVXVLQJ0LFURVRIW:LQGRZVPHGLD HQFRGHUVDQGVHUYHUV:KLOHVWUHDPLQJZLQGRZVPHGLDILOHVDUH VXSSRUWHGE\ERWKWKHODWHVW0DFDQG3&RSHUDWLQJV\VWHPV XVLQJD:LQGRZVEDVHGV\VWHPZLOOXVXDOO\SURYLGHDEHWWHU H[SHULHQFH$GGLWLRQDOO\'(1KDVUHFHQWO\DGGHGYLGHRGRZQORDG FDSDELOLWLHVXVLQJ0LFURVRIW¶V'LJLWDO5LJKWV0DQDJHPHQW VXSSRUWLQJ:LQGRZVRSHUDWLQJV\VWHPV

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO 

0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW 2Q&DPSXVDQG'(1,QVWUXFWLRQV

‡ 2QDOOKRPHZRUNSDJHVSXW\RXUQDPH QR,' DQGFRXUVHQXPEHU$67( ‡ 2QFDPSXV QRQ'(1 VWXGHQWV PXVW VXEPLWWKHLUKRPHZRUNLQFODVV WKH\ZLOO UHFHLYHJUDGHGKRPHZRUNDOVRLQFODVV ¾ QRQQHJRWLDEOHUXOH ‡ 2QFDPSXVVWXGHQWVPXVWVHWXSDFFHVVWR'(1ZHEFDVWV,I\RXDUHJRLQJWR EHDEVHQWIURPD86&FODVV\RXFDQZDWFKWKHFODVVDWWKHFRQYHQLHQWWLPH WKURXJKZHEFDVW

([DPV ([DPV ‡ )LQDODQG0LGWHUPH[DPVDUHKHOGRQFDPSXV IRUVWXGHQWVLQWKH/RV$QJHOHVDUHD QR ‡ ,IVSHFLDO H[FHSWLRQV 2XWVLGHWKLVDUHDWKHH[DPVDUH DUUDQJHPHQWVIRU DUUDQJHGDWUHPRWHVLWHV FRQWDFW'(1  H[DPVDUHUHTXLUHG ‡ ,I\RXDEVROXWHO\KDYHWREHRQDEXVLQHVV SOHDVHFRQWDFWWKH WULSGXULQJWKHH[DP± FRQWDFWWKH LQVWUXFWRUZHHNV LQVWUXFWRULQDGYDQFH EHIRUHWKHH[DP

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO  0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW

$OO6WXGHQWV± +RPHZRUN

‡ 1RKRPHZRUNFDQEHVXEPLWWHGWR WKHLQVWUXFWRU¶VHPDLODGGUHVVRU ID[ XQOHVVVSHFLILFDOO\GLUHFWHGE\ WKHLQVWUXFWRU  ‡ 'RQRWFRS\ WRWKHLQVWUXFWRU  \RXUVXEPLVVLRQVWR'(1

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO 

0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW

*$33'(1± 6WXGHQW5HVRXUFHV

‡ 96R( &XUUHQW*UDGXDWH6WXGHQWV± KWWSVYLWHUELJUDGXVFHGX ‡ 96R( 'LVWDQFH(GXFDWLRQ1HWZRUN '(1 ± '(16WXGHQW6XSSRUW KWWSVYLWHUELJUDGDGPLVVLRQXVFHGXGHQYLWHUELH[SHULHQFH ‡ /RJLQWRWKHFODVVZHEVLWHDW'(1KRPHZRUNVXEPLVVLRQVHWFDW KWWSFRXUVHVXVFGHQQHW ‡ *$33'(1VWXGHQWUHVRXUFHV± KWWSVYLWHUELJUDGXVFHGXDFDGHPLFVHUYLFHVDFDGHPLFDGYLVHPHQW ± 3ULQWQDPHVDQGWHOHSKRQHQXPEHUVRI*$33'(1FRQWDFWSHUVRQV ± 8VHLW'RQRWEHVK\ ± &DOOWKHP ± (PDLOWKHP ± 7KH\DUHKHUHWRKHOS - ± 7KH\ZLOOEHGHOLJKWHGWRKHDUIURP\RX± WUXVWPH

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO  0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW

6XUYH\DQG3DVVZRUG ‡ (PDLOWKHVXUYH\ QH[WVOLGH WRWKHLQVWUXFWRU PLNHJ#XVFHGX IURP$XJXVW DVDSODLQWH[WLQ \RXUPHVVDJH GRQRWDWWDFKDVDQ06:RUGRU3')ILOH  ZLWKWKHVXEMHFWOLQH $67(6XUYH\. 1RWHWKDW\RXU LQVWUXFWRUKDVXVXDOO\DKHDY\EXVLQHVVWUDYHOVFKHGXOHLQ$XJXVW± H[SHFW GHOD\V± ZLWKKLVUHVSRQVH ¾ 6XUYH\LVLPSRUWDQWIRUFRPPXQLFDWLRQVZLWKVWXGHQWV ¾ ,QUHVSRQVH WR\RXUVXUYH\WKHLQVWUXFWRUZLOOHPDLO\RX WKHSDVVZRUGWRWKHFODVVQRWHVDQGKRPHZRUNVROXWLRQV SRVWHGRQWKHFODVVZHEVLWHDW'(1 ¾ 'RQRWHPDLOWKHVXUYH\HDUOLHUWKDQLQVWUXFWHGDERYH,I HPDLOHGHDUOLHULWZLOOEHGHOHWHGDQGGLVUHJDUGHG

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO 

0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW 6XUYH\± HPDLOWR,QVWUXFWRU DVSODLQWH[WLQ\RXUHPDLOPHVVDJH

 1DPH QR 661RUVWXGHQW,'SOHDVH  /RFDWLRQRI\RXUSODFHRIZRUN FLW\VWDWH  'HJUHH V DWWDLQHGXQLYHUVLW\DQGILHOG HJ$VWURQDXWLFDO(0HFKDQLFDO(  7HOHSKRQH (OHFWULFDO($HURVSDFH(6\VWHP( 3K\VLFV$VWURQRP\«  (PDLO 1RWHWKDW86&962(DQGGHSDUWPHQWVHPDLO  'HJUHH VRXJKW 063K'&HUWLILFDWH \RXRQO\WR\RXU#XVFHGX HPDLODGGUHVVHV %63URJUHVVLYH« DQGILHOG $VWUR(((0(&RPS($(&LYLO(  6WXGHQWVWDWXV UHJXODUDGPLWWHG &K(3K\V&KHP« OLPLWHGVWDWXV«XQGHUJUDG

 $UH\RXDIXOOWLPHVWXGHQW"2UGR\RX 7KH LQIRUPDWLRQ LQ WKLV VXUYH\ LV ZRUNIXOOWLPHDQGVWXG\SDUWWLPH" IRU \RXU LQVWUXFWRU RQO\ ,W LV LQ ,I\RXZRUN± WHOOPHZKHUH HJ \RXU LQWHUHVW WR SURYLGH PH ZLWK 1$6$±-3/$HURVSDFH&RUS1$6$± WKH ZD\V WR UHDFK \RX LI DQG ZKHQ -6&60&±/$$)%%RHLQJ±(O QHHGHG , ZLOO DOVR FRPSLOH FODVV 6HJXQGR2UELWDO1RUWKURS*UXPPDQ VWDWLVWLFV

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO  0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW 8QLWVDQG&RQVWDQWV

LQFK FP PLO ± LQFK PP IRRW FP VWDWXWHPLOH P NP QDXWLFDOPLOH P NP RXQFH J OE SRXQG NJ OEI 1 VOXJ u  J NJ DWP u 1P EDU SVL u 1P u± DWP

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO 

0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW 8QLWVDQG&RQVWDQWV

(OHFWURQFKDUJH H u ± & (OHFWURQYROW H9 u ± - $WRPLFPDVVXQLW DPX u ± NJ

± ± %ROW]PDQQFRQVWDQW N% u  -. ± ± ± 6WHIDQ%ROW]PDQQFRQVWDQW V6% u  :P . $VWURQRPLFDO8QLW $8 u  P

(DUWKHTXDWRULDOUDGLXV 5H NP *UDYLWDWLRQDOFRQVWDQW * u ± P NJ± V± )UHHIDOODFFHOHUDWLRQ J PVHF

   P($57+ u  P VHF    P681 u  P VHF

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO  0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW 8QLWVDQG&RQVWDQWV5HIHUHQFHV

‡

‡ ,PSRUWDQW UHIHUHQFH GRFXPHQWV RQ WKH ZHE VLWH RI WKH National Institute of Standards and Technology 1,67 $ JXLGH WR WKH XVH RI WKH >PHWULF@ ,QWHUQDWLRQDO 6\VWHP RI 8QLWV 6, KWWSSK\VLFVQLVWJRY3XEV63VSKWPO 3K\VLFDO FRQVWDQWV ± KWWSSK\VLFVQLVWJRYFXX&RQVWDQWVLQGH[KWPO

‡ &RPSLOH OLVWV RU PDNH D FRS\ RI WKH SDJHV ZLWK WKH FRQYHUVLRQ FRHIILFLHQWV DQG SK\VLFDO FRQVWDQWV DV WKH FODVV SURJUHVVHV DQG DWWDFK WKHP WR \RXU QRWHV 7KH OLVWV ZLOO EH H[FHSWLRQDOO\ XVHIXO DQG WLPHVDYLQJ IRU ZRUNLQJ RQ WKH KRPHZRUN DVVLJQPHQWV DQG H[DPV

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO 

0LNH*UXQWPDQ 6SDFHFUDIW'HVLJQ 6HFWLRQ3DUW

” ±E\0LNH*UXQWPDQ B0*B6&'B)DOO