Timing the SARS-Cov-2 Index Case in Hubei Province

Total Page:16

File Type:pdf, Size:1020Kb

Timing the SARS-Cov-2 Index Case in Hubei Province RESEARCH CORONAVIRUS for 583 SARS-CoV-2 complete genomes, sam- pled in China between when the virus was first Timing the SARS-CoV-2 index case in Hubei province discovered at the end of December 2019 and the last of the non-reintroduced circulating Jonathan Pekar1,2, Michael Worobey3*, Niema Moshiri4, Konrad Scheffler5, Joel O. Wertheim6* virus in April 2020. Applying a strict molec- ular clock, we inferred an evolutionary rate −4 Understanding when severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged is critical of 7.90 × 10 substitutions per site per year to evaluating our current approach to monitoring novel zoonotic pathogens and understanding the [95% highest posterior density (HPD): 6.64 × −4 −4 failure of early containment and mitigation efforts for COVID-19. We used a coalescent framework to 10 to 9.27 × 10 ]. The tMRCA of these cir- combine retrospective molecular clock inference with forward epidemiological simulations to determine culating strains was inferred to fall within a how long SARS-CoV-2 could have circulated before the time of the most recent common ancestor of 34-day window with a mean of 9 December 2019 all sequenced SARS-CoV-2 genomes. Our results define the period between mid-October and mid- (95% HPD: 17 November to 20 December) November 2019 as the plausible interval when the first case of SARS-CoV-2 emerged in Hubei province, (Fig. 1). This estimate accounts for the many China. By characterizing the likely dynamics of the virus before it was discovered, we show that disparate inferred rooting orientations [see more than two-thirds of SARS-CoV-2–like zoonotic events would be self-limited, dying out without supplementary text and (21)]. Notably, 78.7% igniting a pandemic. Our findings highlight the shortcomings of zoonosis surveillance approaches for of the posterior density postdates the earliest detecting highly contagious pathogens with moderate mortality rates. published case on 1 December, and 95.1% post- dates the earliest reported case on 17 November. Relaxing the molecular clock provides a similar nlateDecemberof2019,thefirstcasesof These reports detail daily retrospective COVID- tMRCA estimate, as does applying a Skygrid COVID-19, the disease caused by severe 19 diagnoses through the end of November, coalescent approach (fig. S1). The recency of acute respiratory syndrome coronavirus 2 suggesting that SARS-CoV-2 was actively cir- this tMRCA estimate in relation to the ear- I (SARS-CoV-2), were described in the city culating for at least a month before it was liest documented COVID-19 cases obliges us to ofWuhaninHubeiprovince,China(1, 2). discovered. consider the possibility that this tMRCA does The virus quickly spread within China (3). Molecular clock phylogenetic analyses have not capture the index case and that SARS- The cordon sanitaire that was put in place in inferred the time of the most recent common CoV-2 was circulating in Hubei province before Wuhan on 23 January 2020 and mitigation ancestor (tMRCA) of all sequenced SARS-CoV-2 the inferred tMRCA. efforts across China eventually brought about genomestobeinlateNovemberorearly If the tMRCA postdates the earliest docu- an end to sustained local transmission. In December 2019, with uncertainty estimates mented cases, then the earliest diverged SARS- March and April 2020, restrictions across typically dating to October 2019 (7, 11, 12). CoV-2 lineages must have gone extinct (Fig. 2). China were relaxed (4). By then, however, Crucially, though, this tMRCA is not necessar- As these early basal lineages disappeared, the COVID-19 was a pandemic (5). ily equivalent to the date of zoonosis or index tMRCA of the remaining lineages would move A concerted effort has been made to retro- case infection (13, 14) because coalescent pro- forward in time (fig. S2). Thus, we interrogated spectively diagnose the earliest cases of COVID- cesses can prune basal viral lineages before the posterior trees sampled from the phylody- 19 and thus determine when the virus first they have the opportunity to be sampled, po- namic analysis to determine whether this time began transmitting among humans. Both epi- tentially pushing SARS-CoV-2 tMRCA estimates of coalescence had stabilized before the se- demiological and phylogenetic approaches sug- forward in time from the index case by days, quencing of the first SARS-CoV-2 genomes on gest an emergence of the pandemic in Hubei weeks, or months. For a point of comparison, 24 December 2019 or whether this process of province at some point in late 2019 (2, 6, 7). consider the zoonotic origins of the HIV-1 basal lineage loss was ongoing in late December The first described cluster of COVID-19 was pandemic, whose tMRCA in the early 20th and/or early January. Notably, these basal associated with the Huanan Seafood Whole- century coincided with the urbanization of lineages need not be associated with specific sale Market in late December 2019, and the Kinshasa, in what is now the Democratic mutations, as the phylodynamic inference re- earliest sequenced SARS-CoV-2 genomes came Republic of the Congo (15, 16), but whose constructs the coalescent history, not the mu- from this cluster (8, 9). However, this market cross-species transmission from a chimpanzee tational history (20). cluster is unlikely to have denoted the begin- reservoir occurred in southeast Cameroon, We find only weak evidence for basal line- ning of the pandemic, as COVID-19 cases from likely predating the tMRCA of sampled HIV-1 age loss between 24 December 2019 and early December lacked connections to the genomesbymanyyears(17). Despite this 13 January 2020 (fig. S3A). The root tMRCA market (7). The earliest such case in the scientific important distinction, the tMRCA has been is within 1 day of the tMRCA of virus sampled literature is from an individual retrospec- frequently conflated with the date of the on or after 1 January 2020 in 78.5% of pos- tively diagnosed on 1 December 2019 (6). Not- index case infection in the SARS-CoV-2 lit- terior samples (fig. S3B). The tMRCA of ge- ably, however, newspaper reports document erature (7, 18, 19). nomes sampled on or after 1 January 2020 is retrospective COVID-19 diagnoses recorded Here, we combine retrospective molecular 3 days later than the tMRCA of all sampled by the Chinese government going back to clock analysis in a coalescent framework with genomes. By contrast, the mean tMRCA does 17 November 2019 in Hubei province (10). a forward compartmental epidemiological mod- not change when considering genomes sam- el to estimate the timing of the SARS-CoV-2 pled on or after 1 January 2020 versus on or 1 Bioinformatics and Systems Biology Graduate Program, index case in Hubei province. The inferred dy- after 13 January 2020. This consistency indi- University of California San Diego, La Jolla, CA 92093, USA. 2Department of Biomedical Informatics, University of namics during these unobserved early days of cates a stabilization of coalescent processes California San Diego, La Jolla, CA 92093, USA. 3Department SARS-CoV-2 highlight challenges in detecting at the start of 2020, when an estimated total of of Ecology and Evolutionary Biology, University of Arizona, and preventing nascent pandemics. 1000 people had been infected with SARS-CoV-2 Tucson, AZ 85721, USA. 4Department of Computer Science and Engineering, University of California San Diego, La Jolla, We first explored the evolutionary dynam- in Wuhan (22). Nonetheless, to account for the CA 92093, USA. 5Illumina, Inc., San Diego, CA 92122, USA. icsofthefirstwaveofSARS-CoV-2infections weak signal of a delay in reaching a stable co- 6 Department of Medicine, University of California San Diego, in China. We used Bayesian phylodynamics alescence (i.e., the point in time at which basal La Jolla, CA 92093, USA. 20 *Corresponding author. Email: [email protected] (M.W.); ( ) to reconstruct the underlying coalescent lineages cease to be lost), we identified the [email protected] (J.O.W.) processes using a Bayesian Skyline approach tMRCA for all viruses sampled on or after Pekar et al., Science 372, 412–417 (2021) 23 April 2021 1of6 RESEARCH | REPORT 1January2020(i.e.,atthetimeofstableco- alescence from the compartmental epidemic 17 November 2019, the median date of the alescence) for each tree in the posterior sample. simulations. However, a random sample of Hubei index case is pushed back about a week Phylogenetic analysis alone cannot tell us tMRCAs and days from index case infection to to 28 October (95% upper HPD: 11 October; how long SARS-CoV-2 could have circulated coalescence will not produce epidemiologically 99% upper HPD: 5 October) (fig. S7). However, in Hubei province before the tMRCA. To an- meaningful results because many of these com- the distinction between ascertained and un- swer this question, we performed forward epi- binations do not precede the earliest dates of ascertained in the original SAPHIRE model demic simulations (23). These simulations were reported COVID-19 cases. Therefore, we im- was meant to reflect the probability of missed initiated by a single index case using a com- plemented a rejection sampling–based approach diagnoses in January 2020 of the Wuhan epi- partmental epidemiological model across scale- to generate a posterior distribution of dates of demic and does not account for the investiga- free contact networks (mean number of infection for the Hubei index case, condition- tions that resulted in retrospective diagnoses contacts: 16). This compartmental model was ing on at least one individual who had pro- in November and December 2019. previously developed to describe SARS-CoV-2 gressed past the presymptomatic stage in the If we discount the reported evidence of ret- transmission dynamics in Wuhan (22). This simulated epidemic before the date of the first rospective COVID-19 diagnoses throughout the model, termed SAPHIRE, includes compart- reported COVID-19 case (see materials and end of November and instead take 1 December ments for susceptible (S), exposed (E), pre- methods and fig.
Recommended publications
  • Use of Antibiotics for Cholera Chemoprevention
    Use of antibiotics for cholera chemoprevention Iza Ciglenecki, Médecins Sans Frontières GTFCC Case management meeting, 2018 Outline of presentation • Key questions: ₋ Rationale for household prophylaxis – household contacts at higher risk? ₋ Rationale for antibiotic use? ₋ What is the effectiveness? ₋ What is the impact on the epidemic? ₋ Risk of antimicrobial resistance ₋ Feasibility during outbreak control interventions • Example: Single-dose oral ciprofloxacin prophylaxis in response to a meningococcal meningitis epidemic in the African meningitis belt: a three-arm cluster-randomized trial • Prevention of cholera infection among contacts of case: a cluster-randomized trial of Azithromycine Rationale: risk for household contacts Forest plot of studies included in meta-analysis: association of presence of household contact with cholera with symptomatic cholera Richterman et al. Individual and Household Risk Factors for Symptomatic Cholera Infection: A Systematic Review and Meta-analysis. JID 2018 Rationale: clustering of cholera cases in time and space Relative risk for cholera among case cohorts compared with control cohorts at different spatio-temporal scales Living within 50 m of the index case: RR 36 (95% CI: 23–56) within 3 days of the index case presenting to the hospital Debes et al. Cholera cases cluster in time and space in Matlab, Bangladesh: implications for targeted preventive interventions. Int J Epid 2016 Rationale: clustering of cholera cases in time and space Relative risk of next cholera case occuring at different distances from primary case Relative risk of next cholera case being within specific distance to another case within days 0-4 Within 40 m: Ndjamena: RR 32.4 (95% 25-41) Kalemie: RR 121 (95% CI 90-165) Azman et al.
    [Show full text]
  • Evidence That Coronavirus Superspreading Is Fat-Tailed BRIEF REPORT Felix Wonga,B,C and James J
    Evidence that coronavirus superspreading is fat-tailed BRIEF REPORT Felix Wonga,b,c and James J. Collinsa,b,c,d,1 aInstitute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139; bDepartment of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; cInfectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142; and dWyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 Edited by Simon A. Levin, Princeton University, Princeton, NJ, and approved September 28, 2020 (received for review September 1, 2020) Superspreaders, infected individuals who result in an outsized CoV and SARS-CoV-2 exhibited an exponential tail. We number of secondary cases, are believed to underlie a significant searched the scientific literature for global accounts of SSEs, in fraction of total SARS-CoV-2 transmission. Here, we combine em- which single cases resulted in numbers of secondary cases pirical observations of SARS-CoV and SARS-CoV-2 transmission and greater than R0, estimated to be ∼3 to 6 for both coronaviruses extreme value statistics to show that the distribution of secondary (1, 7). To broadly sample the right tail, we focused on SSEs cases is consistent with being fat-tailed, implying that large super- resulting in >6 secondary cases, and as data on SSEs are sparse, spreading events are extremal, yet probable, occurrences. We inte- perhaps due in part to a lack of data sharing, we pooled data for grate these results with interaction-based network models of disease SARS-CoV and SARS-CoV-2. Moreover, to avoid higher- transmission and show that superspreading, when it is fat-tailed, order transmission obfuscating the cases generated directly by leads to pronounced transmission by increasing dispersion.
    [Show full text]
  • Shigellosis Outbreak Investigation & Control
    SHIGELLOSIS OUTBREAK INVESTIGATION & CONTROL IN CHILD CARE CENTERS / PRE-SCHOOLS Colorado Department of Public Health & Environment Communicable Disease Epidemiology Program For information on Shigella disease control and epidemiology, including reporting requirements and routine case investigation, please refer to the CPDHE Communicable Disease Manual, available at: http://www.cdphe.state.co.us/dc/Epidemiology/dc_manual.html When a case of shigellosis occurs in a child care center attendee or worker, immediate involvement of public health authorities is critical. Shigella spreads very quickly through child care centers, but can be controlled if appropriate action is taken. When an outbreak occurs, the first case to be diagnosed may be a child, or an adult contact of a child. For a single case of shigellosis associated with a child care center: • Children with shigellosis should not be permitted to re-enter the child care center until diarrhea has resolved and either the child has been treated with an effective antibiotic for 3 days or there are 2 consecutive negative stool cultures. • It is important to obtain the antibiotic susceptibility pattern for the isolate from the physician or the clinical laboratory that performed the test in order to determine if a child has been treated with an effective antibiotic. • Parents of cases should be counseled not to take their children to another child care center during this period of exclusion. • Public health or environmental health staff should visit the facility, review hygienic procedures, and reinforce the importance of meticulous handwashing with childcare center staff. • Look for symptoms consistent with Shigella infection (diarrhea and fever) in other children or staff during the 3 weeks previous to the report of the index case.
    [Show full text]
  • Patterns of Virus Exposure and Presumed Household Transmission Among Persons with Coronavirus Disease, United States, January–April 2020 Rachel M
    Patterns of Virus Exposure and Presumed Household Transmission among Persons with Coronavirus Disease, United States, January–April 2020 Rachel M. Burke, Laura Calderwood, Marie E. Killerby, Candace E. Ashworth, Abby L. Berns, Skyler Brennan, Jonathan M. Bressler, Laurel Harduar Morano, Nathaniel M. Lewis, Tiff anie M. Markus, Suzanne M. Newton, Jennifer S. Read, Tamara Rissman, Joanne Taylor, Jacqueline E. Tate, Claire M. Midgley, for the COVID-19 Case Investigation Form Working Group We characterized common exposures reported by a oronavirus disease (COVID-19) was fi rst identi- convenience sample of 202 US patients with corona- Cfi ed in Wuhan, China, in December 2019 (1). The virus disease during January–April 2020 and identifi ed fi rst reported case in the United States was identifi ed factors associated with presumed household transmis- in January 2020 (2); by mid-March, cases had been re- sion. The most commonly reported settings of known ported in all 50 states (3). On March 16, 2020, the White exposure were households and healthcare facilities; House Coronavirus Task Force published guidance for among case-patients who had known contact with curbing community spread of COVID-19 (4); soon af- a confi rmed case-patient compared with those who ter, states began to enact stay-at-home orders (5). By did not, healthcare occupations were more common. late May 2020, all 50 states had begun easing restric- Among case-patients without known contact, use of tions; reported cases reached new peaks in the summer public transportation was more common. Within the household, presumed transmission was highest from and then winter months of 2020 (6,7).
    [Show full text]
  • Sexually Transmitted Infections: Epidemiology and Control
    40 Rev Esp Sanid Penit 2011; 13: 58-66 M Díez, A Díaz. Sexually transmitted infections: Epidemiology and control Sexually transmitted infections: Epidemiology and control M Díez, A Díaz Epidemiology Department on HIV and Risk Behaviors. Secretary of the National Plan on AIDS. Ministry of Health, Social Policy and Equality. National Centre for Epidemiology. Health Institute Carlos III ABSTRACT Sexually transmitted infections (STI) include a group of diseases of diverse infectious etiology in which sexual transmission is relevant. The burden of disease that STI globally represent is unknown for several reasons. Firstly, asymptomatic infections are common in many STI; secondly, diagnostic techniques are not available in some of the most affected countries; and finally, surveillance systems are inexistent or very deficient in many areas of the world. The World Health Organization has estimated that in 1999 there were 340 million new cases of syphilis, gonorrhea, Chlamydia infection and trichomoniasis. An increasing trend in the incidence of gonorrhea and syphilis has been noticed in the last years in the European Union, including Spain. Co-infection with other STI, especially HIV, should be ruled out in all STI patients. Chlamydia screening is also of partic- ular importance since this is the most common STI in Europe and frequently goes unnoticed. STI prevention and control should be based on health education, early diagnosis and treatment, screening for asympto- matic infections, contact investigation and vaccination for those diseases for
    [Show full text]
  • Family-Based Index Case Testing To
    Family-based index case testing to identify children with HIV Shaffiq Essajee1, Nande Putta1, Serena Brusamento2, Martina Penazzato2, Stuart Kean3 and Daniella Mark4 1United Nations Children’s Fund; 2World Health Organization; 3World Council of Churches – Ecumenical Advocacy Alliance; 4Paediatric-Adolescent Treatment Africa Rationale Pediatric HIV treatment coverage is stagnating. The most recent estimates suggest 01 that only 46% of children living with HIV are on treatment, well below the AIDS Free target of 1.6 million by the end of 2018.1 A key challenge is to identify children who are living with HIV who have been missed through routine testing services. For children in the 0-14 year age group, over 95% of HIV infections are acquired as a result of vertical transmission. As a result, historical approaches to pediatric diagnosis have tended to focus on early infant diagnosis (EID) within the context of prevention of mother-to-child-transmission (PMTCT) programs. Testing the family of adult or child ‘index’ cases can serve as an entry point for identification of children living with HIV not identified through PMTCT program testing. This type of family-based approach to HIV testing and service delivery enables parents and their children to access care as a unit. Such approaches may improve retention and offer a convenient service for families affected by HIV. Unlike other types of routine approaches to pediatric HIV testing – such as testing in inpatient wards, sick child clinics, malnutrition centres or immunization clinics – index case testing is a potentially high-yield identification strategy irrespective of national seroprevalence. In fact, yield may be higher in low-prevalence countries where programs may be less mature and access to HIV testing and prevention services is lower, resulting in large gaps in PMTCT and EID coverage.
    [Show full text]
  • Sexually Transmitted Infections Introduction and General Considerations Date Reviewed: July, 2010 Section: 5-10 Page 1 of 13
    Sexually Transmitted Infections Introduction and General Considerations Date Reviewed: July, 2010 Section: 5-10 Page 1 of 13 Background Information The incidence of Sexually Transmitted Infections (STIs) in Saskatchewan has been increasing over the past number of years. This may be due in part to the introduction of testing procedures that are easier to complete and less invasive. In Saskatchewan, the rates for chlamydia have been among the highest in Canada. Refer to http://dsol- smed.phac-aspc.gc.ca/dsol-smed/ndis/c_indp_e.html#c_prov for historical surveillance data collected by Public Health Agency of Canada (PHAC). STIs are transmitted in the context of other social and health challenges; the risk of recurrent exposure and infection are likely unless these underlying issues are dealt with. A holistic assessment of clients assists in identifying these underlying issues and a multidisciplinary team approach is often necessary and should involve other partners such as physicians, addiction services and mental health as required. The regulations of The Health Information Protection Act must be adhered to when involving other partners in the management of individuals or when referring individuals to other agencies. This section highlights some of the general and special considerations that should be kept in mind when conducting STI investigations. It also highlights key points and summarizes the Canadian Guidelines on Sexually Transmitted Infections which can be located at http://www.phac-aspc.gc.ca/std-mts/sti-its/guide-lignesdir-eng.php. Reporting Requirements Index cases must be reported to the Ministry of Health. See Reporting Requirements in the General Information section of this manual for additional information and guidelines.
    [Show full text]
  • The Index Case of SARS-Cov-2 in Scotland: a Case Report
    Edinburgh Research Explorer The index case of SARS-CoV-2 in Scotland: a case report Citation for published version: Hill, DKJ, Russell, DCD, Clifford, DS, Templeton, DK, Mackintosh, DCL, Koch, DO & Sutherland, DRK 2020, 'The index case of SARS-CoV-2 in Scotland: a case report', Journal of Infection. https://doi.org/10.1016/j.jinf.2020.03.022 Digital Object Identifier (DOI): 10.1016/j.jinf.2020.03.022 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Journal of Infection Publisher Rights Statement: Author's peer reviewed manuscript as accepted for publication. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 25. Sep. 2021 The index case of SARS-CoV-2 in Scotland: a case report Dr Katherine J. Hill1 Dr Clark D. Russell1,2 Dr Sarah Clifford1 Dr Kate Templeton 3 Dr Claire L. Mackintosh1 Dr Oliver Koch1 Dr Rebecca K. Sutherland1 1NHS Lothian, Regional Infectious Diseases Unit, Edinburgh, EH4 2XU. 2University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh EH16 4TJ 3NHS Lothian, Diagnostic Virology Reference Laboratory, Royal Infirmary of Edinburgh, Edinburgh, EH16 4TJ Corresponding author: Dr Katherine J Hill, [email protected] 0131 537 2871 Abstract Since its identification in December 2019, SARS-CoV-2 has infected 125,048 persons globally with cases identified in 118 countries across all continents (1).
    [Show full text]
  • Ring Vaccination and Smallpox Control Mirjam Kretzschmar,* Susan Van Den Hof,* Jacco Wallinga,* and Jan Van Wijngaarden†
    RESEARCH Ring Vaccination and Smallpox Control Mirjam Kretzschmar,* Susan van den Hof,* Jacco Wallinga,* and Jan van Wijngaarden† We present a stochastic model for the spread of small- We investigated which conditions are the best for effec- pox after a small number of index cases are introduced into tive use of ring vaccination, a strategy in which direct con- a susceptible population. The model describes a branching tacts of diagnosed cases are identified and vaccinated. We process for the spread of the infection and the effects of also investigated whether monitoring contacts contributes intervention measures. We discuss scenarios in which ring to the success of ring vaccination. We used a stochastic vaccination of direct contacts of infected persons is suffi- cient to contain an epidemic. Ring vaccination can be suc- model that distinguished between close and casual con- cessful if infectious cases are rapidly diagnosed. However, tacts to explore the variability in the number of infected because of the inherent stochastic nature of epidemic out- persons during an outbreak, and the time until the outbreak breaks, both the size and duration of contained outbreaks is over. We derived expressions for the basic reproduction are highly variable. Intervention requirements depend on number (R0) and the effective reproduction number (Rυ). the basic reproduction number (R0), for which different esti- We investigated how effectiveness of ring vaccination mates exist. When faced with the decision of whether to rely depends on the time until diagnosis of a symptomatic case, on ring vaccination, the public health community should be the time to identify and vaccinate contacts in the close con- aware that an epidemic might take time to subside even for tact and casual contact ring, and the vaccination coverage an eventually successful intervention strategy.
    [Show full text]
  • Measurability of the Epidemic Reproduction Number in Data-Driven Contact Networks
    Measurability of the epidemic reproduction number in data-driven contact networks Quan-Hui Liua,b,c, Marco Ajellic,d, Alberto Aletae,f, Stefano Merlerd, Yamir Morenoe,f,g, and Alessandro Vespignanic,g,1 aWeb Sciences Center, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, People’s Republic of China; bBig Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, People’s Republic of China; cLaboratory for the Modeling of Biological and Socio-Technical Systems, Northeastern University, Boston, MA 02115; dBruno Kessler Foundation, 38123 Trento, Italy; eInstitute for Biocomputation and Physics of Complex Systems, University of Zaragoza, 50018 Zaragoza, Spain; fDepartment of Theoretical Physics, University of Zaragoza, 50009 Zaragoza, Spain; and gISI Foundation, 10126 Turin, Italy Edited by Simon A. Levin, Princeton University, Princeton, NJ, and approved October 16, 2018 (received for review June 27, 2018) The basic reproduction number is one of the conceptual corner- an infectious individual at time t), thus relaxing the hypothesis of stones of mathematical epidemiology. Its classical definition as a fully susceptible population (10). the number of secondary cases generated by a typical infected R0 and Tg are mathematically well defined in the early stages individual in a fully susceptible population finds a clear analytical of the epidemic in homogeneous models and are widely used in expression in homogeneous and stratified mixing models. Along predictive approaches (10, 11). However, several studies have with the generation time (the interval between primary and cautioned on the importance of the local contact structures secondary cases), the reproduction number allows for the charac- (e.g., households, extended families, communities) in estimat- terization of the dynamics of an epidemic.
    [Show full text]
  • Sexually Transmitted Diseases Treatment Guidelines, 2010
    Morbidity and Mortality Weekly Report www.cdc.gov/mmwr Recommendations and Reports December 17, 2010 / Vol. 59 / No. RR-12 Sexually Transmitted Diseases Treatment Guidelines, 2010 department of health and human services Centers for Disease Control and Prevention MMWR CONTENTS The MMWR series of publications is published by the Office of Surveillance, Epidemiology, and Laboratory Services, Centers for Introduction .............................................................................. 1 Disease Control and Prevention (CDC), U.S. Department of Health Methods ................................................................................... 1 and Human Services, Atlanta, GA 30333. Clinical Prevention Guidance ..................................................... 2 STD/HIV Prevention Counseling ............................................... 2 Suggested Citation: Centers for Disease Control and Prevention. [Title]. MMWR 2010;59(No. RR-#):[inclusive page numbers]. Prevention Methods ................................................................ 4 Partner Management .............................................................. 7 Centers for Disease Control and Prevention Reporting and Confidentiality .................................................. 8 Thomas R. Frieden, MD, MPH Special Populations ................................................................... 8 Director Pregnant Women ................................................................... 8 Harold W. Jaffe, MD, MA Adolescents .........................................................................
    [Show full text]
  • Mass Antibiotic Treatment for Group a Streptococcus Outbreaks in Two Long-Term Care Facilities1 Andrea Smith,*† Aimin Li,‡ Ornella Tolomeo,* Gregory J
    RESEARCH Mass Antibiotic Treatment for Group A Streptococcus Outbreaks in Two Long-Term Care Facilities1 Andrea Smith,*† Aimin Li,‡ Ornella Tolomeo,* Gregory J. Tyrrell,§† Frances Jamieson,‡ and David Fisman*¶ Outbreaks of invasive infections caused by group A β- tion and elimination of colonization through providing hemolytic streptococcus (GAS) may occur in long-term antibiotics to those known to be carriers of the bacterium. care settings and are associated with a high case-fatality Although such an approach should minimize antibiotic rate in debilitated adults. Targeting antibiotic treatment only exposure, carrying it out in practice could be difficult, as to residents and staff known to be at specific risk of GAS cultures may be falsely negative (14), and persons could may be an ineffective outbreak control measure. We describe two institutional outbreaks in which mass antibiot- become colonized or transmit colonization to others in the ic treatment was used as a control measure. In the first interval between culturing and treatment. Antibiotic treat- instance, mass treatment was used after targeted antibiot- ment of all residents and staff would not be subject to such ic treatment was not successful. In the second instance, limitations. We present two outbreaks of invasive GAS mass treatment was used to control a rapidly evolving out- infection in long-term care facilities in Hamilton, Ontario, break with a high case-fatality rate. Although no further clin- Canada. Each was caused by transmission of a single well- ical cases were seen after the introduction of mass antibi- characterized outbreak strain, and in both cases, mass otic treatment, persistence of the outbreak strain was doc- antibiotic treatment was used to control the outbreak.
    [Show full text]