UNIFORM CONVERGENCE 1. Pointwise Convergence

Total Page:16

File Type:pdf, Size:1020Kb

UNIFORM CONVERGENCE 1. Pointwise Convergence UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE 1. Pointwise Convergence of a Sequence Let E be a set and Y be a metric space. Consider functions fn : E Y ! for n = 1; 2; : : : : We say that the sequence (fn) converges pointwise on E if there is a function f : E Y such that fn(p) f(p) for every p E. Clearly, such a function f is unique! and it is called !the pointwise limit2 of (fn) on E. We then write fn f on E. For simplicity, we shall assume Y = R with the usual metric. ! Let fn f on E. We ask the following questions: ! (i) If each fn is bounded on E, must f be bounded on E? If so, must sup 2 fn(p) sup 2 f(p) ? p E j j ! p E j j (ii) If E is a metric space and each fn is continuous on E, must f be continuous on E? (iii) If E is an interval in R and each fn is differentiable on E, must f be differentiable on E? If so, must f 0 f 0 on E? n ! (iv) If E = [a; b] and each fn is Riemann integrable on E, must f be b b Riemann integrable on E? If so, must fn(x)dx f(x)dx? a ! a These questions involve interchange of two Rprocesses (oneR of which is `taking the limit as n ') as shown below. ! 1 (i) lim sup fn(p) = sup lim fn(p) : n!1 p2E j j p2E n!1 (ii) For p E and pk p in E, lim lim fn(pk) = lim lim fn(pk): 2 ! k!1 n!1 n!1 k!1 d d (iii) lim (fn) = lim fn : n!1 dx dx n!1 b b (iv) lim f (x)dx = lim f (x) dx: !1 n !1 n n Za Za n Answers to these questions are all negative. Examples 1.1. (i) Let E := (0; 1] and define fn : E R by ! 0 if 0 < x 1=n; fn(x) := ≤ 1=x if 1=n x 1: ≤ ≤ Then fn(x) n for all x E; fn f on E; where f(x) := 1=x. j j ≤ 2 ! Thus each fn is bounded on E, but f is not bounded on E. (ii) Let E := [0; 1] and define fn : E R by fn(x) := 1=(nx + 1). Then ! each fn is continuous on E, fn f on E, where f(0) := 1 and f(x) := 0 if 0 < x 1. Clearly, f!is not continuous on E. ≤ 2 (iii) (a) Let E := ( 1; 1) and define fn : E R by fn(x) := 1=(nx + 1). − ! Then each fn is differentiable on E and fn f on ( 1; 1), 1 ! − 2 MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE where f(0) := 1 and f(x) := 0 if 0 < x < 1. Clearly, f is not differentiable on E. j j (b) Let E := R and define fn : R R by fn(x) := (sin nx)=n. ! Then each fn is differentiable, fn f on R, where f 0. But 0 R 0 ! ≡ fn(x) = cos nx for x , and (fn) does not converge pointwise R 2 0 on . For example, (fn(π)) is not a convergent sequence. (c) Let E := ( 1; 1) and define − [2 (1 + x)n]=n if 1 < x < 0; fn(x) := − − (1 x)n=n if 0 x < 1: − ≤ Then each fn is differentiable on E. (In particular, we have 0 fn(0) = 1 by L'H^opital's Rule.) Also, fn f on ( 1; 1), where f −0. Also, ! − ≡ n−1 0 (1 + x) if 1 < x < 0; f (x) = − − − n (1 x)n 1 if 0 x < 1: − − ≤ 0 Further, fn g on ( 1; 1); where g(0) := 1 and g(x) := 0 for 0 < x <!1. Clearly−, f 0 = g: − j j 6 (iv) (a) Let E := [0; 1] and define fn : [0; 1] R by ! 1 if x = 0; 1=n!; 2=n!; : : : ; n!=n! = 1; fn(x) := 0 otherwise. Then each fn is Riemann integrable on [0; 1] since it is discon- tinuous only at a finite number of points. 1 if x is rational; Also, fn f on [0; 1], where f(x) := ! 0 if x is irrational. For if x = p=q with p 0; 1; 2; : : : ; q N, then for all n q, 2 f g ⊂ ≥ we have n!x 0; 1; 2; : : : and so fn(x) = 1; while if x is an 2 f g irrational number, then fn(x) = 0 for all n N. We have seen that the Dirichlet function f is not Riemann2 integrable. 3 −nx (b) Let E := [0; 1]; and define fn : [0; 1] R by fn(x) := n xe . ! Then each fn is Riemann integrable and fn f on [0; 1]; where f 0. (Use L'H^opital's Rule repeatedly!to show that 3≡ st limt!1 t =e = 0 for any s R with s > 0.) However, using Integration by Parts, we hav2e 1 −nx 1 1 1 N xe dx = 2 2 n n for each n ; Z0 n − n e − ne 2 1 n 2 n so that 0 fn(x)dx = n (n=e ) (n =e ) . − − ! 1 2 −nx (c) Let E :=R [0; 1] and define fn : [0; 1] R by fn(x) := n xe . ! As above, each fn is Riemann integrable, and fn f on [0; 1]; 1 n n! where f 0, and fn(x)dx = 1 (1=e ) (n=e ) 1, which ≡ 0 − − ! 1R is not equal to 0 f(x)dx = 0: R 2. Uniform Convergence of a Sequence In an attempt to obtain affirmative answers to the questions posed at the beginning of the previous section, we introduce a stronger concept of convergence. UNIFORM CONVERGENCE 3 Let E be a set and consider functions fn : E R for n = 1; 2; : : : : We ! say that the sequence (fn) of functions converges uniformly on E if there is a function f : E R such that for every > 0, there is n N satisfying ! 0 2 n n ; p E = fn(p) f(p) < . ≥ 0 2 ) j − j Note that the natural number n0 mentioned in the above definition may depend upon the given sequence (fn) of functions and on the given positive number , but it is independent of p E. Clearly, such a function f is 2 unique and it is called the uniform limit of (fn) on E. We then write fn ⇒ f on E. Obviously, fn ⇒ f on E = fn f on E, but the converse ) ! is not true : Let E := (0; 1] and define fn(x) := 1=(nx + 1) for 0 < x 1. If ≤ f(x) := 0 for x (0; 1], then fn f on (0; 1], but fn ⇒ f on (0; 1]. To see this, let := 1=2,2 note that there!is no n N satisfying6 0 2 1 1 fn(x) f(x) = < for all n n and for all x (0; 1]; j − j nx + 1 2 ≥ 0 2 since 1=(nx + 1) = 1=2 when x = 1=n; n N. 2 A sequence (fn) of real-valued functions defined on a set E is said to be uniformly Cauchy on E if for every > 0, there is n N satisfying 0 2 m; n n ; p E = fm(p) fn(p) < . ≥ 0 2 ) j − j Proposition 2.1. (Cauchy Criterion for Uniform Convergence of a Sequence) Let (fn) be a sequence of real-valued functions defined on a set E. Then (fn) is uniformly convergent on E if and only if (fn) is uniformly Cauchy on E. Proof. = ) Let fn ⇒ f. For all m; n N and p E, we have ) 2 2 fm(p) fn(p) fm(p) f(p) + f(p) fn(p) : j − j ≤ j − j j − j =) For each p E, (fn(p)) is a Cauchy sequence in R, and so it converges ( 2 to a real number which we denote by f(p). Let > 0. There is n0 N satisfying 2 m; n n ; p E = fm(p) fn(p) < . ≥ 0 2 ) j − j For any m n and p E, letting n , we have fm(p) f(p) . ≥ 0 2 ! 1 j − j ≤ We have the following useful test for checking the uniform convergence of (fn) when its pointwise limit is known. Proposition 2.2. (Test for Uniform Convergence of a Sequence) Let fn and f be real-valued functions defined on a set E. If fn f on ! E, and if there is a sequence (an) of real numbers such that an 0 and ! fn(p) f(p) an for all p E, then fn ⇒ f on E. j − j ≤ 2 Proof. Let > 0. Since an 0, there is n N such that n n = an < , ! 0 2 ≥ 0 ) and so fn(p) f(p) < for all p E. j − j 2 n Example 2.3. Let 0 < r < 1 and fn(x) := x for x [ r; r]. Thenfn(x) n 2 −n ! 0 for each x [ r; r]. Since r 0 and fn(x) 0 r for all x [ r; r], 2 − ! j − j ≤ 2 − (fn) is uniformly convergent on [ r; r]. − Let us now pose the four questions stated in the last section with `con- vergence' replaced by `uniform convergence'. We shall answer them one by one, but not necessarily in the same order. 4 MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE Uniform Convergence and Boundedness.
Recommended publications
  • Exercise Set 13 Top04-E013 ; November 26, 2004 ; 9:45 A.M
    Prof. D. P.Patil, Department of Mathematics, Indian Institute of Science, Bangalore August-December 2004 MA-231 Topology 13. Function spaces1) —————————— — Uniform Convergence, Stone-Weierstrass theorem, Arzela-Ascoli theorem ———————————————————————————————– November 22, 2004 Karl Theodor Wilhelm Weierstrass† Marshall Harvey Stone†† (1815-1897) (1903-1989) First recall the following definitions and results : Our overall aim in this section is the study of the compactness and completeness properties of a subset F of the set Y X of all maps from a space X into a space Y . To do this a usable topology must be introduced on F (presumably related to the structures of X and Y ) and when this is has been done F is called a f unction space. N13.1 . (The Topology of Pointwise Convergence 2) Let X be any set, Y be any topological space and let fn : X → Y , n ∈ N, be a sequence of maps. We say that the sequence (fn)n∈N is pointwise convergent,ifforeverypoint x ∈X, the sequence fn(x) , n∈N,inY is convergent. a). The (Tychonoff) product topology on Y X is determined solely by the topology of Y (even if X is a topological X X space) the structure on X plays no part. A sequence fn : X →Y , n∈N,inY converges to a function f in Y if and only if for every point x ∈X, the sequence fn(x) , n∈N,inY is convergent. This provides the reason for the name the topology of pointwise convergence;this topology is also simply called the pointwise topology andisdenoted by Tptc .
    [Show full text]
  • Ch. 15 Power Series, Taylor Series
    Ch. 15 Power Series, Taylor Series 서울대학교 조선해양공학과 서유택 2017.12 ※ 본 강의 자료는 이규열, 장범선, 노명일 교수님께서 만드신 자료를 바탕으로 일부 편집한 것입니다. Seoul National 1 Univ. 15.1 Sequences (수열), Series (급수), Convergence Tests (수렴판정) Sequences: Obtained by assigning to each positive integer n a number zn z . Term: zn z1, z 2, or z 1, z 2 , or briefly zn N . Real sequence (실수열): Sequence whose terms are real Convergence . Convergent sequence (수렴수열): Sequence that has a limit c limznn c or simply z c n . For every ε > 0, we can find N such that Convergent complex sequence |zn c | for all n N → all terms zn with n > N lie in the open disk of radius ε and center c. Divergent sequence (발산수열): Sequence that does not converge. Seoul National 2 Univ. 15.1 Sequences, Series, Convergence Tests Convergence . Convergent sequence: Sequence that has a limit c Ex. 1 Convergent and Divergent Sequences iin 11 Sequence i , , , , is convergent with limit 0. n 2 3 4 limznn c or simply z c n Sequence i n i , 1, i, 1, is divergent. n Sequence {zn} with zn = (1 + i ) is divergent. Seoul National 3 Univ. 15.1 Sequences, Series, Convergence Tests Theorem 1 Sequences of the Real and the Imaginary Parts . A sequence z1, z2, z3, … of complex numbers zn = xn + iyn converges to c = a + ib . if and only if the sequence of the real parts x1, x2, … converges to a . and the sequence of the imaginary parts y1, y2, … converges to b. Ex.
    [Show full text]
  • Formal Power Series - Wikipedia, the Free Encyclopedia
    Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series
    [Show full text]
  • 7. Properties of Uniformly Convergent Sequences
    46 1. THE THEORY OF CONVERGENCE 7. Properties of uniformly convergent sequences Here a relation between continuity, differentiability, and Riemann integrability of the sum of a functional series or the limit of a functional sequence and uniform convergence is studied. 7.1. Uniform convergence and continuity. Theorem 7.1. (Continuity of the sum of a series) N The sum of the series un(x) of terms continuous on D R is continuous if the series converges uniformly on D. ⊂ P Let Sn(x)= u1(x)+u2(x)+ +un(x) be a sequence of partial sum. It converges to some function S···(x) because every uniformly convergent series converges pointwise. Continuity of S at a point x means (by definition) lim S(y)= S(x) y→x Fix a number ε> 0. Then one can find a number δ such that S(x) S(y) <ε whenever 0 < x y <δ | − | | − | In other words, the values S(y) can get arbitrary close to S(x) and stay arbitrary close to it for all points y = x that are sufficiently close to x. Let us show that this condition follows6 from the hypotheses. Owing to the uniform convergence of the series, given ε > 0, one can find an integer m such that ε S(x) Sn(x) sup S Sn , x D, n m | − |≤ D | − |≤ 3 ∀ ∈ ∀ ≥ Note that m is independent of x. By continuity of Sn (as a finite sum of continuous functions), for n m, one can also find a number δ > 0 such that ≥ ε Sn(x) Sn(y) < whenever 0 < x y <δ | − | 3 | − | So, given ε> 0, the integer m is found.
    [Show full text]
  • 1.1 Constructing the Real Numbers
    18.095 Lecture Series in Mathematics IAP 2015 Lecture #1 01/05/2015 What is number theory? The study of numbers of course! But what is a number? • N = f0; 1; 2; 3;:::g can be defined in several ways: { Finite ordinals (0 := fg, n + 1 := n [ fng). { Finite cardinals (isomorphism classes of finite sets). { Strings over a unary alphabet (\", \1", \11", \111", . ). N is a commutative semiring: addition and multiplication satisfy the usual commu- tative/associative/distributive properties with identities 0 and 1 (and 0 annihilates). Totally ordered (as ordinals/cardinals), making it a (positive) ordered semiring. • Z = {±n : n 2 Ng.A commutative ring (commutative semiring, additive inverses). Contains Z>0 = N − f0g closed under +; × with Z = −Z>0 t f0g t Z>0. This makes Z an ordered ring (in fact, an ordered domain). • Q = fa=b : a; 2 Z; b 6= 0g= ∼, where a=b ∼ c=d if ad = bc. A field (commutative ring, multiplicative inverses, 0 6= 1) containing Z = fn=1g. Contains Q>0 = fa=b : a; b 2 Z>0g closed under +; × with Q = −Q>0 t f0g t Q>0. This makes Q an ordered field. • R is the completion of Q, making it a complete ordered field. Each of the algebraic structures N; Z; Q; R is canonical in the following sense: every non-trivial algebraic structure of the same type (ordered semiring, ordered ring, ordered field, complete ordered field) contains a copy of N; Z; Q; R inside it. 1.1 Constructing the real numbers What do we mean by the completion of Q? There are two possibilities: 1.
    [Show full text]
  • Uniform Convergence and Differentiation Theorem 6.3.1
    Math 341 Lecture #29 x6.3: Uniform Convergence and Differentiation We have seen that a pointwise converging sequence of continuous functions need not have a continuous limit function; we needed uniform convergence to get continuity of the limit function. What can we say about the differentiability of the limit function of a pointwise converging sequence of differentiable functions? 1+1=(2n−1) The sequence of differentiable hn(x) = x , x 2 [−1; 1], converges pointwise to the nondifferentiable h(x) = x; we will need to assume more about the pointwise converging sequence of differentiable functions to ensure that the limit function is differentiable. Theorem 6.3.1 (Differentiable Limit Theorem). Let fn ! f pointwise on the 0 closed interval [a; b], and assume that each fn is differentiable. If (fn) converges uniformly on [a; b] to a function g, then f is differentiable and f 0 = g. Proof. Let > 0 and fix c 2 [a; b]. Our goal is to show that f 0(c) exists and equals g(c). To this end, we will show the existence of δ > 0 such that for all 0 < jx − cj < δ, with x 2 [a; b], we have f(x) − f(c) − g(c) < x − c which implies that f(x) − f(c) f 0(c) = lim x!c x − c exists and is equal to g(c). The way forward is to replace (f(x) − f(c))=(x − c) − g(c) with expressions we can hopefully control: f(x) − f(c) f(x) − f(c) fn(x) − fn(c) fn(x) − fn(c) − g(c) = − + x − c x − c x − c x − c 0 0 − f (c) + f (c) − g(c) n n f(x) − f(c) fn(x) − fn(c) ≤ − x − c x − c fn(x) − fn(c) 0 0 + − f (c) + jf (c) − g(c)j: x − c n n The second and third expressions we can control respectively by the differentiability of 0 fn and the uniformly convergence of fn to g.
    [Show full text]
  • Be a Metric Space
    2 The University of Sydney show that Z is closed in R. The complement of Z in R is the union of all the Pure Mathematics 3901 open intervals (n, n + 1), where n runs through all of Z, and this is open since every union of open sets is open. So Z is closed. Metric Spaces 2000 Alternatively, let (an) be a Cauchy sequence in Z. Choose an integer N such that d(xn, xm) < 1 for all n ≥ N. Put x = xN . Then for all n ≥ N we have Tutorial 5 |xn − x| = d(xn, xN ) < 1. But xn, x ∈ Z, and since two distinct integers always differ by at least 1 it follows that xn = x. This holds for all n > N. 1. Let X = (X, d) be a metric space. Let (xn) and (yn) be two sequences in X So xn → x as n → ∞ (since for all ε > 0 we have 0 = d(xn, x) < ε for all such that (yn) is a Cauchy sequence and d(xn, yn) → 0 as n → ∞. Prove that n > N). (i)(xn) is a Cauchy sequence in X, and 4. (i) Show that if D is a metric on the set X and f: Y → X is an injective (ii)(xn) converges to a limit x if and only if (yn) also converges to x. function then the formula d(a, b) = D(f(a), f(b)) defines a metric d on Y , and use this to show that d(m, n) = |m−1 − n−1| defines a metric Solution.
    [Show full text]
  • G: Uniform Convergence of Fourier Series
    G: Uniform Convergence of Fourier Series From previous work on the prototypical problem (and other problems) 8 < ut = Duxx 0 < x < l ; t > 0 u(0; t) = 0 = u(l; t) t > 0 (1) : u(x; 0) = f(x) 0 < x < l we developed a (formal) series solution 1 1 X X 2 2 2 nπx u(x; t) = u (x; t) = b e−n π Dt=l sin( ) ; (2) n n l n=1 n=1 2 R l nπy with bn = l 0 f(y) sin( l )dy. These are the Fourier sine coefficients for the initial data function f(x) on [0; l]. We have no real way to check that the series representation (2) is a solution to (1) because we do not know we can interchange differentiation and infinite summation. We have only assumed that up to now. In actuality, (2) makes sense as a solution to (1) if the series is uniformly convergent on [0; l] (and its derivatives also converges uniformly1). So we first discuss conditions for an infinite series to be differentiated (and integrated) term-by-term. This can be done if the infinite series and its derivatives converge uniformly. We list some results here that will establish this, but you should consult Appendix B on calculus facts, and review definitions of convergence of a series of numbers, absolute convergence of such a series, and uniform convergence of sequences and series of functions. Proofs of the following results can be found in any reasonable real analysis or advanced calculus textbook. 0.1 Differentiation and integration of infinite series Let I = [a; b] be any real interval.
    [Show full text]
  • Pointwise Convergence Ofofof Complex Fourier Series
    Pointwise convergence ofofof complex Fourier series Let f(x) be a periodic function with period 2 l defined on the interval [- l,l]. The complex Fourier coefficients of f( x) are l -i n π s/l cn = 1 ∫ f(s) e d s 2 l -l This leads to a Fourier series representation for f(x) ∞ i n π x/l f(x) = ∑ cn e n = -∞ We have two important questions to pose here. 1. For a given x, does the infinite series converge? 2. If it converges, does it necessarily converge to f(x)? We can begin to address both of these issues by introducing the partial Fourier series N i n π x/l fN(x) = ∑ cn e n = -N In terms of this function, our two questions become 1. For a given x, does lim fN(x) exist? N→∞ 2. If it does, is lim fN(x) = f(x)? N→∞ The Dirichlet kernel To begin to address the questions we posed about fN(x) we will start by rewriting fN(x). Initially, fN(x) is defined by N i n π x/l fN(x) = ∑ cn e n = -N If we substitute the expression for the Fourier coefficients l -i n π s/l cn = 1 ∫ f(s) e d s 2 l -l into the expression for fN(x) we obtain N l 1 -i n π s/l i n π x/l fN(x) = ∑ ∫ f(s) e d s e n = -N(2 l -l ) l N = ∫ 1 ∑ (e-i n π s/l ei n π x/l) f(s) d s -l (2 l n = -N ) 1 l N = ∫ 1 ∑ ei n π (x-s)/l f(s) d s -l (2 l n = -N ) The expression in parentheses leads us to make the following definition.
    [Show full text]
  • Uniform Convexity and Variational Convergence
    Trudy Moskov. Matem. Obw. Trans. Moscow Math. Soc. Tom 75 (2014), vyp. 2 2014, Pages 205–231 S 0077-1554(2014)00232-6 Article electronically published on November 5, 2014 UNIFORM CONVEXITY AND VARIATIONAL CONVERGENCE V. V. ZHIKOV AND S. E. PASTUKHOVA Dedicated to the Centennial Anniversary of B. M. Levitan Abstract. Let Ω be a domain in Rd. We establish the uniform convexity of the Γ-limit of a sequence of Carath´eodory integrands f(x, ξ): Ω×Rd → R subjected to a two-sided power-law estimate of coercivity and growth with respect to ξ with expo- nents α and β,1<α≤ β<∞, and having a common modulus of convexity with respect to ξ. In particular, the Γ-limit of a sequence of power-law integrands of the form |ξ|p(x), where the variable exponent p:Ω→ [α, β] is a measurable function, is uniformly convex. We prove that one can assign a uniformly convex Orlicz space to the Γ-limit of a sequence of power-law integrands. A natural Γ-closed extension of the class of power-law integrands is found. Applications to the homogenization theory for functionals of the calculus of vari- ations and for monotone operators are given. 1. Introduction 1.1. The notion of uniformly convex Banach space was introduced by Clarkson in his famous paper [1]. Recall that a norm ·and the Banach space V equipped with this norm are said to be uniformly convex if for each ε ∈ (0, 2) there exists a δ = δ(ε)such that ξ + η ξ − η≤ε or ≤ 1 − δ 2 for all ξ,η ∈ V with ξ≤1andη≤1.
    [Show full text]
  • Series of Functions Theorem 6.4.2
    Math 341 Lecture #30 x6.4: Series of Functions Recall that we constructed the continuous nowhere differentiable function from Section 5.4 by using a series. We will develop the tools necessary to showing that this pointwise convergent series is indeed a continuous function. Definition 6.4.1. Let fn, n 2 N, and f be functions on A ⊆ R. The infinite series 1 X fn(x) = f1(x) + f2(x) + f3(x) + ··· n=1 converges pointwise on A to f(x) if the sequence of partial sums, sk(x) = f1(x) + f2(x) + ··· + fk(x) converges pointwise to f(x). The series converges uniformly on A to f if the sequence sk(x) converges uniformly on A to f(x). Uniform convergence of a series on A implies pointwise convergence of the series on A. For a pointwise or uniformly convergent series we write 1 1 X X f = fn or f(x) = fn(x): n=1 n=1 When the functions fn are continuous on A, each partial sum sk(x) is continuous on A by the Algebraic Continuity Theorem (Theorem 4.3.4). We can therefore apply the theory for uniformly convergent sequences to series. Theorem 6.4.2 (Term-by-term Continuity Theorem). Let fn be continuous functions on A ⊆ . If R 1 X fn n=1 converges uniformly to f on A, then f is continuous on A. Proof. We apply Theorem 6.2.6 to the partial sums sk = f1 + f2 + ··· + fk. When the functions fn are differentiable on a closed interval [a; b], we have that each partial sum sk is differentiable on [a; b] as well.
    [Show full text]
  • Formal Power Series Rings, Inverse Limits, and I-Adic Completions of Rings
    Formal power series rings, inverse limits, and I-adic completions of rings Formal semigroup rings and formal power series rings We next want to explore the notion of a (formal) power series ring in finitely many variables over a ring R, and show that it is Noetherian when R is. But we begin with a definition in much greater generality. Let S be a commutative semigroup (which will have identity 1S = 1) written multi- plicatively. The semigroup ring of S with coefficients in R may be thought of as the free R-module with basis S, with multiplication defined by the rule h k X X 0 0 X X 0 ( risi)( rjsj) = ( rirj)s: i=1 j=1 s2S 0 sisj =s We next want to construct a much larger ring in which infinite sums of multiples of elements of S are allowed. In order to insure that multiplication is well-defined, from now on we assume that S has the following additional property: (#) For all s 2 S, f(s1; s2) 2 S × S : s1s2 = sg is finite. Thus, each element of S has only finitely many factorizations as a product of two k1 kn elements. For example, we may take S to be the set of all monomials fx1 ··· xn : n (k1; : : : ; kn) 2 N g in n variables. For this chocie of S, the usual semigroup ring R[S] may be identified with the polynomial ring R[x1; : : : ; xn] in n indeterminates over R. We next construct a formal semigroup ring denoted R[[S]]: we may think of this ring formally as consisting of all functions from S to R, but we shall indicate elements of the P ring notationally as (possibly infinite) formal sums s2S rss, where the function corre- sponding to this formal sum maps s to rs for all s 2 S.
    [Show full text]