The Automorphism Group of an Abelian P-Group and Its Noncentral Normal Subgroups, J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Automorphisms and Endomorphisms of Projective Varieties
On automorphisms and endomorphisms of projective varieties Michel Brion Abstract We first show that any connected algebraic group over a perfect field is the neutral component of the automorphism group scheme of some normal pro- jective variety. Then we show that very few connected algebraic semigroups can be realized as endomorphisms of some projective variety X, by describing the structure of all connected subsemigroup schemes of End(X). Key words: automorphism group scheme, endomorphism semigroup scheme MSC classes: 14J50, 14L30, 20M20 1 Introduction and statement of the results By a result of Winkelmann (see [22]), every connected real Lie group G can be realized as the automorphism group of some complex Stein manifold X, which may be chosen complete, and hyperbolic in the sense of Kobayashi. Subsequently, Kan showed in [12] that we may further assume dimC(X) = dimR(G). We shall obtain a somewhat similar result for connected algebraic groups. We first introduce some notation and conventions, and recall general results on automorphism group schemes. Throughout this article, we consider schemes and their morphisms over a fixed field k. Schemes are assumed to be separated; subschemes are locally closed unless mentioned otherwise. By a point of a scheme S, we mean a Michel Brion Institut Fourier, Universit´ede Grenoble B.P. 74, 38402 Saint-Martin d'H`eresCedex, France e-mail: [email protected] 1 2 Michel Brion T -valued point f : T ! S for some scheme T .A variety is a geometrically integral scheme of finite type. We shall use [17] as a general reference for group schemes. -
REPRESENTATIONS of ELEMENTARY ABELIAN P-GROUPS and BUNDLES on GRASSMANNIANS
REPRESENTATIONS OF ELEMENTARY ABELIAN p-GROUPS AND BUNDLES ON GRASSMANNIANS JON F. CARLSON∗, ERIC M. FRIEDLANDER∗∗ AND JULIA PEVTSOVA∗∗∗ Abstract. We initiate the study of representations of elementary abelian p- groups via restrictions to truncated polynomial subalgebras of the group alge- p p bra generated by r nilpotent elements, k[t1; : : : ; tr]=(t1; : : : ; tr ). We introduce new geometric invariants based on the behavior of modules upon restrictions to such subalgebras. We also introduce modules of constant radical and socle type generalizing modules of constant Jordan type and provide several gen- eral constructions of modules with these properties. We show that modules of constant radical and socle type lead to families of algebraic vector bundles on Grassmannians and illustrate our theory with numerous examples. Contents 1. The r-rank variety Grass(r; V)M 4 2. Radicals and Socles 10 3. Modules of constant radical and socle rank 15 4. Modules from quantum complete intersections 20 5. Radicals of Lζ -modules 27 6. Construction of Bundles on Grass(r; V) 35 6.1. A local construction of bundles 36 6.2. A construction by equivariant descent 38 7. Bundles for GLn-equivariant modules. 43 8. A construction using the Pl¨ucker embedding 51 9. APPENDIX (by J. Carlson). Computing nonminimal 2-socle support varieties using MAGMA 57 References 59 Quillen's fundamental ideas on applying geometry to the study of group coho- mology in positive characteristic [Quillen71] opened the door to many exciting de- velopments in both cohomology and modular representation theory. Cyclic shifted subgroups, the prototypes of the rank r shifted subgroups studied in this paper, were introduced by Dade in [Dade78] and quickly became the subject of an intense study. -
Automorphism Groups of Free Groups, Surface Groups and Free Abelian Groups
Automorphism groups of free groups, surface groups and free abelian groups Martin R. Bridson and Karen Vogtmann The group of 2 × 2 matrices with integer entries and determinant ±1 can be identified either with the group of outer automorphisms of a rank two free group or with the group of isotopy classes of homeomorphisms of a 2-dimensional torus. Thus this group is the beginning of three natural sequences of groups, namely the general linear groups GL(n, Z), the groups Out(Fn) of outer automorphisms of free groups of rank n ≥ 2, and the map- ± ping class groups Mod (Sg) of orientable surfaces of genus g ≥ 1. Much of the work on mapping class groups and automorphisms of free groups is motivated by the idea that these sequences of groups are strongly analogous, and should have many properties in common. This program is occasionally derailed by uncooperative facts but has in general proved to be a success- ful strategy, leading to fundamental discoveries about the structure of these groups. In this article we will highlight a few of the most striking similar- ities and differences between these series of groups and present some open problems motivated by this philosophy. ± Similarities among the groups Out(Fn), GL(n, Z) and Mod (Sg) begin with the fact that these are the outer automorphism groups of the most prim- itive types of torsion-free discrete groups, namely free groups, free abelian groups and the fundamental groups of closed orientable surfaces π1Sg. In the ± case of Out(Fn) and GL(n, Z) this is obvious, in the case of Mod (Sg) it is a classical theorem of Nielsen. -
The M\" Obius Number of the Socle of Any Group
Contents 1 Definitions and Statement of Main Result 2 2 Proof of Main Result 3 2.1 Complements ........................... 3 2.2 DirectProducts.......................... 5 2.3 The Homomorphic Images of a Product of Simple Groups . 6 2.4 The M¨obius Number of a Direct Power of an Abelian Simple Group ............................... 7 2.5 The M¨obius Number of a Direct Power of a Nonabelian Simple Group ............................... 8 2.6 ProofofTheorem1........................ 9 arXiv:1002.3503v1 [math.GR] 18 Feb 2010 1 The M¨obius Number of the Socle of any Group Kenneth M Monks Colorado State University February 18, 2010 1 Definitions and Statement of Main Result The incidence algebra of a poset P, written I (P ) , is the set of all real- valued functions on P × P that vanish for ordered pairs (x, y) with x 6≤ y. If P is finite, by appropriately labeling the rows and columns of a matrix with the elements of P , we can see the elements of I (P ) as upper-triangular matrices with zeroes in certain locations. One can prove I (P ) is a subalgebra of the matrix algebra (see for example [6]). Notice a function f ∈ I(P ) is invertible if and only if f (x, x) is nonzero for all x ∈ P , since then we have a corresponding matrix of full rank. A natural function to consider that satisfies this property is the incidence function ζP , the characteristic function of the relation ≤P . Clearly ζP is invertible by the above criterion, since x ≤ x for all x ∈ P . We define the M¨obius function µP to be the multiplicative inverse of ζP in I (P ) . -
Isomorphisms and Automorphisms
Isomorphisms and Automorphisms Definition As usual an isomorphism is defined as a map between objects that preserves structure, for general designs this means: Suppose (X,A) and (Y,B) are two designs. They are said to be isomorphic if there exists a bijection α: X → Y such that if we apply α to the elements of any block of A we obtain a block of B and all blocks of B are obtained this way. Symbolically we can write this as: B = [ {α(x) | x ϵ A} : A ϵ A ]. The bijection α is called an isomorphism. Example We've seen two versions of a (7,4,2) symmetric design: k = 4: {3,5,6,7} {4,6,7,1} {5,7,1,2} {6,1,2,3} {7,2,3,4} {1,3,4,5} {2,4,5,6} Blocks: y = [1,2,3,4] {1,2} = [1,2,5,6] {1,3} = [1,3,6,7] {1,4} = [1,4,5,7] {2,3} = [2,3,5,7] {2,4} = [2,4,6,7] {3,4} = [3,4,5,6] α:= (2576) [1,2,3,4] → {1,5,3,4} [1,2,5,6] → {1,5,7,2} [1,3,6,7] → {1,3,2,6} [1,4,5,7] → {1,4,7,2} [2,3,5,7] → {5,3,7,6} [2,4,6,7] → {5,4,2,6} [3,4,5,6] → {3,4,7,2} Incidence Matrices Since the incidence matrix is equivalent to the design there should be a relationship between matrices of isomorphic designs. -
Automorphisms of Group Extensions
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 155, Number t, March 1971 AUTOMORPHISMS OF GROUP EXTENSIONS BY CHARLES WELLS Abstract. If 1 ->■ G -í> E^-Tt -> 1 is a group extension, with i an inclusion, any automorphism <j>of E which takes G onto itself induces automorphisms t on G and a on n. However, for a pair (a, t) of automorphism of n and G, there may not be an automorphism of E inducing the pair. Let à: n —*■Out G be the homomorphism induced by the given extension. A pair (a, t) e Aut n x Aut G is called compatible if a fixes ker á, and the automorphism induced by a on Hü is the same as that induced by the inner automorphism of Out G determined by t. Let C< Aut IT x Aut G be the group of compatible pairs. Let Aut (E; G) denote the group of automorphisms of E fixing G. The main result of this paper is the construction of an exact sequence 1 -» Z&T1,ZG) -* Aut (E; G)-+C^ H*(l~l,ZG). The last map is not surjective in general. It is not even a group homomorphism, but the sequence is nevertheless "exact" at C in the obvious sense. 1. Notation. If G is a group with subgroup H, we write H<G; if H is normal in G, H<¡G. CGH and NGH are the centralizer and normalizer of H in G. Aut G, Inn G, Out G, and ZG are the automorphism group, the inner automorphism group, the outer automorphism group, and the center of G, respectively. -
Free and Linear Representations of Outer Automorphism Groups of Free Groups
Free and linear representations of outer automorphism groups of free groups Dawid Kielak Magdalen College University of Oxford A thesis submitted for the degree of Doctor of Philosophy Trinity 2012 This thesis is dedicated to Magda Acknowledgements First and foremost the author wishes to thank his supervisor, Martin R. Bridson. The author also wishes to thank the following people: his family, for their constant support; David Craven, Cornelia Drutu, Marc Lackenby, for many a helpful conversation; his office mates. Abstract For various values of n and m we investigate homomorphisms Out(Fn) ! Out(Fm) and Out(Fn) ! GLm(K); i.e. the free and linear representations of Out(Fn) respectively. By means of a series of arguments revolving around the representation theory of finite symmetric subgroups of Out(Fn) we prove that each ho- momorphism Out(Fn) ! GLm(K) factors through the natural map ∼ πn : Out(Fn) ! GL(H1(Fn; Z)) = GLn(Z) whenever n = 3; m < 7 and char(K) 62 f2; 3g, and whenever n + 1 n > 5; m < 2 and char(K) 62 f2; 3; : : : ; n + 1g: We also construct a new infinite family of linear representations of Out(Fn) (where n > 2), which do not factor through πn. When n is odd these have the smallest dimension among all known representations of Out(Fn) with this property. Using the above results we establish that the image of every homomor- phism Out(Fn) ! Out(Fm) is finite whenever n = 3 and n < m < 6, and n of cardinality at most 2 whenever n > 5 and n < m < 2 . -
A Survey on Automorphism Groups of Finite P-Groups
A Survey on Automorphism Groups of Finite p-Groups Geir T. Helleloid Department of Mathematics, Bldg. 380 Stanford University Stanford, CA 94305-2125 [email protected] February 2, 2008 Abstract This survey on the automorphism groups of finite p-groups focuses on three major topics: explicit computations for familiar finite p-groups, such as the extraspecial p-groups and Sylow p-subgroups of Chevalley groups; constructing p-groups with specified automorphism groups; and the discovery of finite p-groups whose automorphism groups are or are not p-groups themselves. The material is presented with varying levels of detail, with some of the examples given in complete detail. 1 Introduction The goal of this survey is to communicate some of what is known about the automorphism groups of finite p-groups. The focus is on three topics: explicit computations for familiar finite p-groups; constructing p-groups with specified automorphism groups; and the discovery of finite p-groups whose automorphism groups are or are not p-groups themselves. Section 2 begins with some general theorems on automorphisms of finite p-groups. Section 3 continues with explicit examples of automorphism groups of finite p-groups found in the literature. This arXiv:math/0610294v2 [math.GR] 25 Oct 2006 includes the computations on the automorphism groups of the extraspecial p- groups (by Winter [65]), the Sylow p-subgroups of the Chevalley groups (by Gibbs [22] and others), the Sylow p-subgroups of the symmetric group (by Bon- darchuk [8] and Lentoudis [40]), and some p-groups of maximal class and related p-groups. -
On 2-Closures of Rank 3 Groups
On 2-closures of rank 3 groups S.V. Skresanov∗ Abstract A permutation group G on Ω is called a rank 3 group if it has pre- cisely three orbits in its induced action on Ω×Ω. The largest permutation group on Ω having the same orbits as G on Ω × Ω is called the 2-closure of G. A description of 2-closures of rank 3 groups is given. As a spe- cial case, it is proved that 2-closure of a primitive one-dimensional affine rank 3 permutation group of sufficiently large degree is also affine and one-dimensional. 1 Introduction Let G be a permutation group on a finite set Ω. Recall that the rank of G is the number of orbits in the induced action of G on Ω Ω; these orbits are called 2-orbits. If a rank 3 group has even order, then its non-diagonal× 2-orbit induces a strongly regular graph on Ω, which is called a rank 3 graph. It is readily seen that a rank 3 group acts on the corresponding rank 3 graph as an automorphism group. Notice that an arc-transitive strongly regular graph need not be a rank 3 graph, since its automorphism group might be intransitive on non-arcs. Related to this is the notion of a 2-closure of a permutation group. The group G(2) is the 2-closure of a permutation group G, if G(2) is the largest permutation group having the same 2-orbits as G. Clearly G G(2), the 2-closure of G(2) is again G(2), and G(2) has the same rank as G. -
Representing Groups on Graphs
Representing groups on graphs Sagarmoy Dutta and Piyush P Kurur Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India 208016 {sagarmoy,ppk}@cse.iitk.ac.in Abstract In this paper we formulate and study the problem of representing groups on graphs. We show that with respect to polynomial time turing reducibility, both abelian and solvable group representability are all equivalent to graph isomorphism, even when the group is presented as a permutation group via generators. On the other hand, the representability problem for general groups on trees is equivalent to checking, given a group G and n, whether a nontrivial homomorphism from G to Sn exists. There does not seem to be a polynomial time algorithm for this problem, in spite of the fact that tree isomorphism has polynomial time algorithm. 1 Introduction Representation theory of groups is a vast and successful branch of mathematics with applica- tions ranging from fundamental physics to computer graphics and coding theory [5]. Recently representation theory has seen quite a few applications in computer science as well. In this article, we study some of the questions related to representation of finite groups on graphs. A representation of a group G usually means a linear representation, i.e. a homomorphism from the group G to the group GL (V ) of invertible linear transformations on a vector space V . Notice that GL (V ) is the set of symmetries or automorphisms of the vector space V . In general, by a representation of G on an object X, we mean a homomorphism from G to the automorphism group of X. -
Math 311: Complex Analysis — Automorphism Groups Lecture
MATH 311: COMPLEX ANALYSIS | AUTOMORPHISM GROUPS LECTURE 1. Introduction Rather than study individual examples of conformal mappings one at a time, we now want to study families of conformal mappings. Ensembles of conformal mappings naturally carry group structures. 2. Automorphisms of the Plane The automorphism group of the complex plane is Aut(C) = fanalytic bijections f : C −! Cg: Any automorphism of the plane must be conformal, for if f 0(z) = 0 for some z then f takes the value f(z) with multiplicity n > 1, and so by the Local Mapping Theorem it is n-to-1 near z, impossible since f is an automorphism. By a problem on the midterm, we know the form of such automorphisms: they are f(z) = az + b; a; b 2 C; a 6= 0: This description of such functions one at a time loses track of the group structure. If f(z) = az + b and g(z) = a0z + b0 then (f ◦ g)(z) = aa0z + (ab0 + b); f −1(z) = a−1z − a−1b: But these formulas are not very illuminating. For a better picture of the automor- phism group, represent each automorphism by a 2-by-2 complex matrix, a b (1) f(z) = ax + b ! : 0 1 Then the matrix calculations a b a0 b0 aa0 ab0 + b = ; 0 1 0 1 0 1 −1 a b a−1 −a−1b = 0 1 0 1 naturally encode the formulas for composing and inverting automorphisms of the plane. With this in mind, define the parabolic group of 2-by-2 complex matrices, a b P = : a; b 2 ; a 6= 0 : 0 1 C Then the correspondence (1) is a natural group isomorphism, Aut(C) =∼ P: 1 2 MATH 311: COMPLEX ANALYSIS | AUTOMORPHISM GROUPS LECTURE Two subgroups of the parabolic subgroup are its Levi component a 0 M = : a 2 ; a 6= 0 ; 0 1 C describing the dilations f(z) = ax, and its unipotent radical 1 b N = : b 2 ; 0 1 C describing the translations f(z) = z + b. -
Annihilator$Small Right Ideals
ANNIHILATOR-SMALL RIGHT IDEALS W.K. Nicholson Yiqiang Zhou Department of Mathematics Department of Mathematics University of Calgary Memorial University of Newfoundland Calgary T2N 1N4, Canada St. John’sA1C 5S7, Canada [email protected] [email protected] April 22, 2008 Abstract A right ideal A of a ring R is called annihilator-small if A + T = R; T a right ideal, implies that l(T ) = 0; where l() indicates the left annihilator. The sum Ar of all such right ideals turns out to be a two-sided ideal that contains the Jacobson radical and the left singular ideal, and is contained in the ideal generated by the total of the ring. The ideal Ar is studied, conditions when it is annihilator small are given, its relationship to the total of the ring is examined, and its connection with related rings is investigated. Keywords: Small right ideals, annihilators, total of a ring Mathematics Subject Classi…cation (2000): 16A34, 16A21, 16D25 1. Introduction It is well known that if a; b are elements of a ring R; then 1 ab is a unit if and only if 1 ba is a unit. The starting point in this paper is that the analogue for left annihilators is also true: l(1 ab) = 0 if and only if l(1 ba) = 0: This leads to the concept of an “annihilator-small” right ideal. In fact, the set Kr of all elements k such that kR is annihilator small turns out to be a semi-ideal that contains both the Jacobson radical and the left singular ideal and is contained in the total of the ring.