Elements of Quasigroup Theory and Some Its Applications in Code Theory and Cryptology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Automorphisms and Endomorphisms of Projective Varieties
On automorphisms and endomorphisms of projective varieties Michel Brion Abstract We first show that any connected algebraic group over a perfect field is the neutral component of the automorphism group scheme of some normal pro- jective variety. Then we show that very few connected algebraic semigroups can be realized as endomorphisms of some projective variety X, by describing the structure of all connected subsemigroup schemes of End(X). Key words: automorphism group scheme, endomorphism semigroup scheme MSC classes: 14J50, 14L30, 20M20 1 Introduction and statement of the results By a result of Winkelmann (see [22]), every connected real Lie group G can be realized as the automorphism group of some complex Stein manifold X, which may be chosen complete, and hyperbolic in the sense of Kobayashi. Subsequently, Kan showed in [12] that we may further assume dimC(X) = dimR(G). We shall obtain a somewhat similar result for connected algebraic groups. We first introduce some notation and conventions, and recall general results on automorphism group schemes. Throughout this article, we consider schemes and their morphisms over a fixed field k. Schemes are assumed to be separated; subschemes are locally closed unless mentioned otherwise. By a point of a scheme S, we mean a Michel Brion Institut Fourier, Universit´ede Grenoble B.P. 74, 38402 Saint-Martin d'H`eresCedex, France e-mail: [email protected] 1 2 Michel Brion T -valued point f : T ! S for some scheme T .A variety is a geometrically integral scheme of finite type. We shall use [17] as a general reference for group schemes. -
Complex Algebras of Semigroups Pamela Jo Reich Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1996 Complex algebras of semigroups Pamela Jo Reich Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Mathematics Commons Recommended Citation Reich, Pamela Jo, "Complex algebras of semigroups " (1996). Retrospective Theses and Dissertations. 11765. https://lib.dr.iastate.edu/rtd/11765 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfihn master. UMI fibns the text du-ectly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproductioii is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and unproper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., m^s, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps. -
On Free Quasigroups and Quasigroup Representations Stefanie Grace Wang Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2017 On free quasigroups and quasigroup representations Stefanie Grace Wang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mathematics Commons Recommended Citation Wang, Stefanie Grace, "On free quasigroups and quasigroup representations" (2017). Graduate Theses and Dissertations. 16298. https://lib.dr.iastate.edu/etd/16298 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. On free quasigroups and quasigroup representations by Stefanie Grace Wang A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics Program of Study Committee: Jonathan D.H. Smith, Major Professor Jonas Hartwig Justin Peters Yiu Tung Poon Paul Sacks The student author and the program of study committee are solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2017 Copyright c Stefanie Grace Wang, 2017. All rights reserved. ii DEDICATION I would like to dedicate this dissertation to the Integral Liberal Arts Program. The Program changed my life, and I am forever grateful. It is as Aristotle said, \All men by nature desire to know." And Montaigne was certainly correct as well when he said, \There is a plague on Man: his opinion that he knows something." iii TABLE OF CONTENTS LIST OF TABLES . -
Quasigroup Identities and Mendelsohn Designs
Can. J. Math., Vol. XLI, No. 2, 1989, pp. 341-368 QUASIGROUP IDENTITIES AND MENDELSOHN DESIGNS F. E. BENNETT 1. Introduction. A quasigroup is an ordered pair (g, •), where Q is a set and (•) is a binary operation on Q such that the equations ax — b and ya — b are uniquely solvable for every pair of elements a,b in Q. It is well-known (see, for example, [11]) that the multiplication table of a quasigroup defines a Latin square, that is, a Latin square can be viewed as the multiplication table of a quasigroup with the headline and sideline removed. We are concerned mainly with finite quasigroups in this paper. A quasigroup (<2, •) is called idempotent if the identity x2 = x holds for all x in Q. The spectrum of the two-variable quasigroup identity u(x,y) = v(x,y) is the set of all integers n such that there exists a quasigroup of order n satisfying the identity u(x,y) = v(x,y). It is particularly useful to study the spectrum of certain two-variable quasigroup identities, since such identities are quite often instrumental in the construction or algebraic description of combinatorial designs (see, for example, [1, 22] for a brief survey). If 02? ®) is a quasigroup, we may define on the set Q six binary operations ®(1,2,3),<8)(1,3,2),®(2,1,3),®(2,3,1),(8)(3,1,2), and 0(3,2,1) as follows: a (g) b = c if and only if a <g> (1,2, 3)b = c,a® (1, 3,2)c = 6, b ® (2,1,3)a = c, ft <g> (2,3, l)c = a, c ® (3,1,2)a = ft, c ® (3,2, \)b = a. -
Group Isomorphisms MME 529 Worksheet for May 23, 2017 William J
Group Isomorphisms MME 529 Worksheet for May 23, 2017 William J. Martin, WPI Goal: Illustrate the power of abstraction by seeing how groups arising in different contexts are really the same. There are many different kinds of groups, arising in a dizzying variety of contexts. Even on this worksheet, there are too many groups for any one of us to absorb. But, with different teams exploring different examples, we should { as a class { discover some justification for the study of groups in the abstract. The Integers Modulo n: With John Goulet, you explored the additive structure of Zn. Write down the addition table for Z5 and Z6. These groups are called cyclic groups: they are generated by a single element, the element 1, in this case. That means that every element can be found by adding 1 to itself an appropriate number of times. The Group of Units Modulo n: Now when we look at Zn using multiplication as our operation, we no longer have a group. (Why not?) The group U(n) = fa 2 Zn j gcd(a; n) = 1g ∗ is sometimes written Zn and is called the group of units modulo n. An element in a number system (or ring) is a \unit" if it has a multiplicative inverse. Write down the multiplication tables for U(6), U(7), U(8) and U(12). The Group of Rotations of a Regular n-Gon: Imagine a regular polygon with n sides centered at the origin O. Let e denote the identity transformation, which leaves the poly- gon entirely fixed and let a denote a rotation about O in the counterclockwise direction by exactly 360=n degrees (2π=n radians). -
Right Product Quasigroups and Loops
RIGHT PRODUCT QUASIGROUPS AND LOOPS MICHAEL K. KINYON, ALEKSANDAR KRAPEZˇ∗, AND J. D. PHILLIPS Abstract. Right groups are direct products of right zero semigroups and groups and they play a significant role in the semilattice decomposition theory of semigroups. Right groups can be characterized as associative right quasigroups (magmas in which left translations are bijective). If we do not assume associativity we get right quasigroups which are not necessarily representable as direct products of right zero semigroups and quasigroups. To obtain such a representation, we need stronger assumptions which lead us to the notion of right product quasigroup. If the quasigroup component is a (one-sided) loop, then we have a right product (left, right) loop. We find a system of identities which axiomatizes right product quasigroups, and use this to find axiom systems for right product (left, right) loops; in fact, we can obtain each of the latter by adjoining just one appropriate axiom to the right product quasigroup axiom system. We derive other properties of right product quasigroups and loops, and conclude by show- ing that the axioms for right product quasigroups are independent. 1. Introduction In the semigroup literature (e.g., [1]), the most commonly used definition of right group is a semigroup (S; ·) which is right simple (i.e., has no proper right ideals) and left cancellative (i.e., xy = xz =) y = z). The structure of right groups is clarified by the following well-known representation theorem (see [1]): Theorem 1.1. A semigroup (S; ·) is a right group if and only if it is isomorphic to a direct product of a group and a right zero semigroup. -
Automorphism Groups of Free Groups, Surface Groups and Free Abelian Groups
Automorphism groups of free groups, surface groups and free abelian groups Martin R. Bridson and Karen Vogtmann The group of 2 × 2 matrices with integer entries and determinant ±1 can be identified either with the group of outer automorphisms of a rank two free group or with the group of isotopy classes of homeomorphisms of a 2-dimensional torus. Thus this group is the beginning of three natural sequences of groups, namely the general linear groups GL(n, Z), the groups Out(Fn) of outer automorphisms of free groups of rank n ≥ 2, and the map- ± ping class groups Mod (Sg) of orientable surfaces of genus g ≥ 1. Much of the work on mapping class groups and automorphisms of free groups is motivated by the idea that these sequences of groups are strongly analogous, and should have many properties in common. This program is occasionally derailed by uncooperative facts but has in general proved to be a success- ful strategy, leading to fundamental discoveries about the structure of these groups. In this article we will highlight a few of the most striking similar- ities and differences between these series of groups and present some open problems motivated by this philosophy. ± Similarities among the groups Out(Fn), GL(n, Z) and Mod (Sg) begin with the fact that these are the outer automorphism groups of the most prim- itive types of torsion-free discrete groups, namely free groups, free abelian groups and the fundamental groups of closed orientable surfaces π1Sg. In the ± case of Out(Fn) and GL(n, Z) this is obvious, in the case of Mod (Sg) it is a classical theorem of Nielsen. -
Arxiv:2001.06557V1 [Math.GR] 17 Jan 2020 Magic Cayley-Sudoku Tables
Magic Cayley-Sudoku Tables∗ Rosanna Mersereau Michael B. Ward Columbus, OH Western Oregon University 1 Introduction Inspired by the popularity of sudoku puzzles along with the well-known fact that the body of the Cayley table1 of any finite group already has 2/3 of the properties of a sudoku table in that each element appears exactly once in each row and in each column, Carmichael, Schloeman, and Ward [1] in- troduced Cayley-sudoku tables. A Cayley-sudoku table of a finite group G is a Cayley table for G the body of which is partitioned into uniformly sized rectangular blocks, in such a way that each group element appears exactly once in each block. For example, Table 1 is a Cayley-sudoku ta- ble for Z9 := {0, 1, 2, 3, 4, 5, 6, 7, 8} under addition mod 9 and Table 3 is a Cayley-sudoku table for Z3 × Z3 where the operation is componentwise ad- dition mod 3 (and ordered pairs (a, b) are abbreviated ab). In each case, we see that we have a Cayley table of the group partitioned into 3 × 3 blocks that contain each group element exactly once. Lorch and Weld [3] defined a modular magic sudoku table as an ordinary sudoku table (with 0 in place of the usual 9) in which the row, column, arXiv:2001.06557v1 [math.GR] 17 Jan 2020 diagonal, and antidiagonal sums in each 3 × 3 block in the table are zero mod 9. “Magic” refers, of course, to magic Latin squares which have a rich history dating to ancient times. -
The Characteristics of Some Kinds of Special Quasirings *
ISSN 1746-7659, England, UK Journal of Information and Computing Science Vol. 1, No. 5, 2006, pp. 295-302 The Characteristics of Some Kinds of Special Quasirings * Ping Zhu1, Jinhui Pang 2, Xu-qing Tang3 1 School of Science, Southern Yangtze University, Wuxi, Jiangsu 214122, P. R. China + 2 School of Management & Economics, Beijing Institute Of Technology, Beijing, 100081, P. R. China 3 Key Laboratory of Intelligent Computing &Signal Processing of Ministry of Education, Anhui University, Hefei, 230039, P. R. China ( Received July 02, 2006, Accepted September 11, 2006 ) Abstract. By using quasi-group, we introduce some kinds of special quasi-rings and discuss their characteristics. According to the concept of monogenic semigroup we introduce definition of monogenic semiring and discuss the numbers and structures of monogenic semiring .Then we display their relations as following: Ø {integral domain }(∉ { strong biquasiring }) {}division ring Ø {}({int})strong biquasiring∉ egral domain Ø {}ring ØØØ{}biquasiring {}{} quasiring semiring Ø {}monogenic semiring Keywords: Semiring, Quasiring, Biquasiring, Strong Biquasiring, Monogenic Semiring AMS: Subject Classification (2000): 20M07, 20M10 1. Introduction A semiring[1] S = (S,+,•) is an algebra where both the additive reduct (S,+) and the multiplicative reduct (S,•) are semigroups and such that the following distributive laws hold: x( y + z) = xy + xz, (x + y)z = xz + yz . A semiring (,,)S + • is called a nilsemiring if there are additive idempotent 0 and for any a∈S ,there are n∈N , such that na = 0 . An ideal (prime ideal) of a semiring (S,+,•) is the ideal (prime ideal) of the (S,•). An ideal I of a semiring S is called a K-ideal[1], if ∀a,b ∈ S, a ∈ I and (a + b ∈ I or b + a ∈ I ) ⇒ b ∈ I . -
A Guide to Self-Distributive Quasigroups, Or Latin Quandles
A GUIDE TO SELF-DISTRIBUTIVE QUASIGROUPS, OR LATIN QUANDLES DAVID STANOVSKY´ Abstract. We present an overview of the theory of self-distributive quasigroups, both in the two- sided and one-sided cases, and relate the older results to the modern theory of quandles, to which self-distributive quasigroups are a special case. Most attention is paid to the representation results (loop isotopy, linear representation, homogeneous representation), as the main tool to investigate self-distributive quasigroups. 1. Introduction 1.1. The origins of self-distributivity. Self-distributivity is such a natural concept: given a binary operation on a set A, fix one parameter, say the left one, and consider the mappings ∗ La(x) = a x, called left translations. If all such mappings are endomorphisms of the algebraic structure (A,∗ ), the operation is called left self-distributive (the prefix self- is usually omitted). Equationally,∗ the property says a (x y) = (a x) (a y) ∗ ∗ ∗ ∗ ∗ for every a, x, y A, and we see that distributes over itself. Self-distributivity∈ was pinpointed already∗ in the late 19th century works of logicians Peirce and Schr¨oder [69, 76], and ever since, it keeps appearing in a natural way throughout mathematics, perhaps most notably in low dimensional topology (knot and braid invariants) [12, 15, 63], in the theory of symmetric spaces [57] and in set theory (Laver’s groupoids of elementary embeddings) [15]. Recently, Moskovich expressed an interesting statement on his blog [60] that while associativity caters to the classical world of space and time, distributivity is, perhaps, the setting for the emerging world of information. -
Isomorphisms and Automorphisms
Isomorphisms and Automorphisms Definition As usual an isomorphism is defined as a map between objects that preserves structure, for general designs this means: Suppose (X,A) and (Y,B) are two designs. They are said to be isomorphic if there exists a bijection α: X → Y such that if we apply α to the elements of any block of A we obtain a block of B and all blocks of B are obtained this way. Symbolically we can write this as: B = [ {α(x) | x ϵ A} : A ϵ A ]. The bijection α is called an isomorphism. Example We've seen two versions of a (7,4,2) symmetric design: k = 4: {3,5,6,7} {4,6,7,1} {5,7,1,2} {6,1,2,3} {7,2,3,4} {1,3,4,5} {2,4,5,6} Blocks: y = [1,2,3,4] {1,2} = [1,2,5,6] {1,3} = [1,3,6,7] {1,4} = [1,4,5,7] {2,3} = [2,3,5,7] {2,4} = [2,4,6,7] {3,4} = [3,4,5,6] α:= (2576) [1,2,3,4] → {1,5,3,4} [1,2,5,6] → {1,5,7,2} [1,3,6,7] → {1,3,2,6} [1,4,5,7] → {1,4,7,2} [2,3,5,7] → {5,3,7,6} [2,4,6,7] → {5,4,2,6} [3,4,5,6] → {3,4,7,2} Incidence Matrices Since the incidence matrix is equivalent to the design there should be a relationship between matrices of isomorphic designs. -
Semilattice Sums of Algebras and Mal'tsev Products of Varieties
Mathematics Publications Mathematics 5-20-2020 Semilattice sums of algebras and Mal’tsev products of varieties Clifford Bergman Iowa State University, [email protected] T. Penza Warsaw University of Technology A. B. Romanowska Warsaw University of Technology Follow this and additional works at: https://lib.dr.iastate.edu/math_pubs Part of the Algebra Commons The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ math_pubs/215. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Mathematics at Iowa State University Digital Repository. It has been accepted for inclusion in Mathematics Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Semilattice sums of algebras and Mal’tsev products of varieties Abstract The Mal’tsev product of two varieties of similar algebras is always a quasivariety. We consider when this quasivariety is a variety. The main result shows that if V is a strongly irregular variety with no nullary operations, and S is a variety, of the same type as V, equivalent to the variety of semilattices, then the Mal’tsev product V ◦ S is a variety. It consists precisely of semilattice sums of algebras in V. We derive an equational basis for the product from an equational basis for V. However, if V is a regular variety, then the Mal’tsev product may not be a variety. We discuss examples of various applications of the main result, and examine some detailed representations of algebras in V ◦ S.