Mathematical Background
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathematics I Basic Mathematics
Mathematics I Basic Mathematics Prepared by Prof. Jairus. Khalagai African Virtual university Université Virtuelle Africaine Universidade Virtual Africana African Virtual University NOTICE This document is published under the conditions of the Creative Commons http://en.wikipedia.org/wiki/Creative_Commons Attribution http://creativecommons.org/licenses/by/2.5/ License (abbreviated “cc-by”), Version 2.5. African Virtual University Table of ConTenTs I. Mathematics 1, Basic Mathematics _____________________________ 3 II. Prerequisite Course or Knowledge _____________________________ 3 III. Time ____________________________________________________ 3 IV. Materials _________________________________________________ 3 V. Module Rationale __________________________________________ 4 VI. Content __________________________________________________ 5 6.1 Overview ____________________________________________ 5 6.2 Outline _____________________________________________ 6 VII. General Objective(s) ________________________________________ 8 VIII. Specific Learning Objectives __________________________________ 8 IX. Teaching and Learning Activities ______________________________ 10 X. Key Concepts (Glossary) ____________________________________ 16 XI. Compulsory Readings ______________________________________ 18 XII. Compulsory Resources _____________________________________ 19 XIII. Useful Links _____________________________________________ 20 XIV. Learning Activities _________________________________________ 23 XV. Synthesis Of The Module ___________________________________ -
Basic Structures: Sets, Functions, Sequences, and Sums 2-2
CHAPTER Basic Structures: Sets, Functions, 2 Sequences, and Sums 2.1 Sets uch of discrete mathematics is devoted to the study of discrete structures, used to represent discrete objects. Many important discrete structures are built using sets, which 2.2 Set Operations M are collections of objects. Among the discrete structures built from sets are combinations, 2.3 Functions unordered collections of objects used extensively in counting; relations, sets of ordered pairs that represent relationships between objects; graphs, sets of vertices and edges that connect 2.4 Sequences and vertices; and finite state machines, used to model computing machines. These are some of the Summations topics we will study in later chapters. The concept of a function is extremely important in discrete mathematics. A function assigns to each element of a set exactly one element of a set. Functions play important roles throughout discrete mathematics. They are used to represent the computational complexity of algorithms, to study the size of sets, to count objects, and in a myriad of other ways. Useful structures such as sequences and strings are special types of functions. In this chapter, we will introduce the notion of a sequence, which represents ordered lists of elements. We will introduce some important types of sequences, and we will address the problem of identifying a pattern for the terms of a sequence from its first few terms. Using the notion of a sequence, we will define what it means for a set to be countable, namely, that we can list all the elements of the set in a sequence. -
Axioms and Algebraic Systems*
Axioms and algebraic systems* Leong Yu Kiang Department of Mathematics National University of Singapore In this talk, we introduce the important concept of a group, mention some equivalent sets of axioms for groups, and point out the relationship between the individual axioms. We also mention briefly the definitions of a ring and a field. Definition 1. A binary operation on a non-empty set S is a rule which associates to each ordered pair (a, b) of elements of S a unique element, denoted by a* b, in S. The binary relation itself is often denoted by *· It may also be considered as a mapping from S x S to S, i.e., * : S X S ~ S, where (a, b) ~a* b, a, bE S. Example 1. Ordinary addition and multiplication of real numbers are binary operations on the set IR of real numbers. We write a+ b, a· b respectively. Ordinary division -;- is a binary relation on the set IR* of non-zero real numbers. We write a -;- b. Definition 2. A binary relation * on S is associative if for every a, b, c in s, (a* b) * c =a* (b *c). Example 2. The binary operations + and · on IR (Example 1) are as sociative. The binary relation -;- on IR* (Example 1) is not associative smce 1 3 1 ~ 2) ~ 3 _J_ - 1 ~ (2 ~ 3). ( • • = -6 I 2 = • • * Talk given at the Workshop on Algebraic Structures organized by the Singapore Mathemat- ical Society for school teachers on 5 September 1988. 11 Definition 3. A semi-group is a non-€mpty set S together with an asso ciative binary operation *, and is denoted by (S, *). -
Mathematical Foundations of CS Dr. S. Rodger Section: Decidability (Handout)
CPS 140 - Mathematical Foundations of CS Dr. S. Rodger Section: Decidability (handout) Read Section 12.1. Computability A function f with domain D is computable if there exists some TM M such that M computes f for all values in its domain. Decidability A problem is decidable if there exists a TM that can answer yes or no to every statement in the domain of the problem. The Halting Problem Domain: set of all TMs and all strings w. Question: Given coding of M and w, does M halt on w? (yes or no) Theorem The halting problem is undecidable. Proof: (by contradiction) • Assume there is a TM H (or algorithm) that solves this problem. TM H has 2 final states, qy represents yes and qn represents no. TM H has input the coding of TM M (denoted wM ) and input string w and ends in state qy (yes) if M halts on w and ends in state qn (no) if M doesn’t halt on w. (yes) halts in qy if M halts on w H(wM ;w)= 0 (no) halts in qn if M doesn thaltonw TM H always halts in a final state. Construct TM H’ from H such that H’ halts if H ends in state qn and H’ doesn’t halt if H ends in state qy. 0 0 halts if M doesn thaltonw H (wM ;w)= doesn0t halt if M halts on w 1 Construct TM Hˆ from H’ such that Hˆ makes a copy of wM and then behaves like H’. (simulates TM M on the input string that is the encoding of TM M, applies Mw to Mw). -
Domain and Range of a Function
4.1 Domain and Range of a Function How can you fi nd the domain and range of STATES a function? STANDARDS MA.8.A.1.1 MA.8.A.1.5 1 ACTIVITY: The Domain and Range of a Function Work with a partner. The table shows the number of adult and child tickets sold for a school concert. Input Number of Adult Tickets, x 01234 Output Number of Child Tickets, y 86420 The variables x and y are related by the linear equation 4x + 2y = 16. a. Write the equation in function form by solving for y. b. The domain of a function is the set of all input values. Find the domain of the function. Domain = Why is x = 5 not in the domain of the function? 1 Why is x = — not in the domain of the function? 2 c. The range of a function is the set of all output values. Find the range of the function. Range = d. Functions can be described in many ways. ● by an equation ● by an input-output table y 9 ● in words 8 ● by a graph 7 6 ● as a set of ordered pairs 5 4 Use the graph to write the function 3 as a set of ordered pairs. 2 1 , , ( , ) ( , ) 0 09321 45 876 x ( , ) , ( , ) , ( , ) 148 Chapter 4 Functions 2 ACTIVITY: Finding Domains and Ranges Work with a partner. ● Copy and complete each input-output table. ● Find the domain and range of the function represented by the table. 1 a. y = −3x + 4 b. y = — x − 6 2 x −2 −10 1 2 x 01234 y y c. -
Adaptive Lower Bound for Testing Monotonicity on the Line
Adaptive Lower Bound for Testing Monotonicity on the Line Aleksandrs Belovs∗ Abstract In the property testing model, the task is to distinguish objects possessing some property from the objects that are far from it. One of such properties is monotonicity, when the objects are functions from one poset to another. This is an active area of research. In this paper we study query complexity of ε-testing monotonicity of a function f :[n] → [r]. All our lower bounds are for adaptive two-sided testers. log r • We prove a nearly tight lower bound for this problem in terms of r. TheboundisΩ log log r when ε =1/2. No previous satisfactory lower bound in terms of r was known. • We completely characterise query complexity of this problem in terms of n for smaller values of ε. The complexity is Θ ε−1 log(εn) . Apart from giving the lower bound, this improves on the best known upper bound. Finally, we give an alternative proof of the Ω(ε−1d log n−ε−1 log ε−1) lower bound for testing monotonicity on the hypergrid [n]d due to Chakrabarty and Seshadhri (RANDOM’13). 1 Introduction The framework of property testing was formulated by Rubinfeld and Sudan [19] and Goldreich et al. [16]. A property testing problem is specified by a property P, which is a class of functions mapping some finite set D into some finite set R, and proximity parameter ε, which is a real number between 0 and 1. An ε-tester is a bounded-error randomised query algorithm which, given oracle access to a function f : D → R, distinguishes between the case when f belongs to P and the case when f is ε-far from P. -
A List of Arithmetical Structures Complete with Respect to the First
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 257 (2001) 115–151 www.elsevier.com/locate/tcs A list of arithmetical structures complete with respect to the ÿrst-order deÿnability Ivan Korec∗;X Slovak Academy of Sciences, Mathematical Institute, Stefanikovaà 49, 814 73 Bratislava, Slovak Republic Abstract A structure with base set N is complete with respect to the ÿrst-order deÿnability in the class of arithmetical structures if and only if the operations +; × are deÿnable in it. A list of such structures is presented. Although structures with Pascal’s triangles modulo n are preferred a little, an e,ort was made to collect as many simply formulated results as possible. c 2001 Elsevier Science B.V. All rights reserved. MSC: primary 03B10; 03C07; secondary 11B65; 11U07 Keywords: Elementary deÿnability; Pascal’s triangle modulo n; Arithmetical structures; Undecid- able theories 1. Introduction A list of (arithmetical) structures complete with respect of the ÿrst-order deÿnability power (shortly: def-complete structures) will be presented. (The term “def-strongest” was used in the previous versions.) Most of them have the base set N but also structures with some other universes are considered. (Formal deÿnitions are given below.) The class of arithmetical structures can be quasi-ordered by ÿrst-order deÿnability power. After the usual factorization we obtain a partially ordered set, and def-complete struc- tures will form its greatest element. Of course, there are stronger structures (with respect to the ÿrst-order deÿnability) outside of the class of arithmetical structures. -
Basic Concepts of Set Theory, Functions and Relations 1. Basic
Ling 310, adapted from UMass Ling 409, Partee lecture notes March 1, 2006 p. 1 Basic Concepts of Set Theory, Functions and Relations 1. Basic Concepts of Set Theory........................................................................................................................1 1.1. Sets and elements ...................................................................................................................................1 1.2. Specification of sets ...............................................................................................................................2 1.3. Identity and cardinality ..........................................................................................................................3 1.4. Subsets ...................................................................................................................................................4 1.5. Power sets .............................................................................................................................................4 1.6. Operations on sets: union, intersection...................................................................................................4 1.7 More operations on sets: difference, complement...................................................................................5 1.8. Set-theoretic equalities ...........................................................................................................................5 Chapter 2. Relations and Functions ..................................................................................................................6 -
Enumeration of Finite Automata 1 Z(A) = 1
INFOI~MATION AND CONTROL 10, 499-508 (1967) Enumeration of Finite Automata 1 FRANK HARARY AND ED PALMER Department of Mathematics, University of Michigan, Ann Arbor, Michigan Harary ( 1960, 1964), in a survey of 27 unsolved problems in graphical enumeration, asked for the number of different finite automata. Re- cently, Harrison (1965) solved this problem, but without considering automata with initial and final states. With the aid of the Power Group Enumeration Theorem (Harary and Palmer, 1965, 1966) the entire problem can be handled routinely. The method involves a confrontation of several different operations on permutation groups. To set the stage, we enumerate ordered pairs of functions with respect to the product of two power groups. Finite automata are then concisely defined as certain ordered pah's of functions. We review the enumeration of automata in the natural setting of the power group, and then extend this result to enumerate automata with initial and terminal states. I. ENUMERATION THEOREM For completeness we require a number of definitions, which are now given. Let A be a permutation group of order m = ]A I and degree d acting on the set X = Ix1, x~, -.. , xa}. The cycle index of A, denoted Z(A), is defined as follows. Let jk(a) be the number of cycles of length k in the disjoint cycle decomposition of any permutation a in A. Let al, a2, ... , aa be variables. Then the cycle index, which is a poly- nomial in the variables a~, is given by d Z(A) = 1_ ~ H ~,~(°~ . (1) ~$ a EA k=l We sometimes write Z(A; al, as, .. -
Binary Operations
4-22-2007 Binary Operations Definition. A binary operation on a set X is a function f : X × X → X. In other words, a binary operation takes a pair of elements of X and produces an element of X. It’s customary to use infix notation for binary operations. Thus, rather than write f(a, b) for the binary operation acting on elements a, b ∈ X, you write afb. Since all those letters can get confusing, it’s also customary to use certain symbols — +, ·, ∗ — for binary operations. Thus, f(a, b) becomes (say) a + b or a · b or a ∗ b. Example. Addition is a binary operation on the set Z of integers: For every pair of integers m, n, there corresponds an integer m + n. Multiplication is also a binary operation on the set Z of integers: For every pair of integers m, n, there corresponds an integer m · n. However, division is not a binary operation on the set Z of integers. For example, if I take the pair 3 (3, 0), I can’t perform the operation . A binary operation on a set must be defined for all pairs of elements 0 from the set. Likewise, a ∗ b = (a random number bigger than a or b) does not define a binary operation on Z. In this case, I don’t have a function Z × Z → Z, since the output is ambiguously defined. (Is 3 ∗ 5 equal to 6? Or is it 117?) When a binary operation occurs in mathematics, it usually has properties that make it useful in con- structing abstract structures. -
Module 1 Lecture Notes
Module 1 Lecture Notes Contents 1.1 Identifying Functions.............................1 1.2 Algebraically Determining the Domain of a Function..........4 1.3 Evaluating Functions.............................6 1.4 Function Operations..............................7 1.5 The Difference Quotient...........................9 1.6 Applications of Function Operations.................... 10 1.7 Determining the Domain and Range of a Function Graphically.... 12 1.8 Reading the Graph of a Function...................... 14 1.1 Identifying Functions In previous classes, you should have studied a variety basic functions. For example, 1 p f(x) = 3x − 5; g(x) = 2x2 − 1; h(x) = ; j(x) = 5x + 2 x − 5 We will begin this course by studying functions and their properties. As the course progresses, we will study inverse, composite, exponential, logarithmic, polynomial and rational functions. Math 111 Module 1 Lecture Notes Definition 1: A relation is a correspondence between two variables. A relation can be ex- pressed through a set of ordered pairs, a graph, a table, or an equation. A set containing ordered pairs (x; y) defines y as a function of x if and only if no two ordered pairs in the set have the same x-coordinate. In other words, every input maps to exactly one output. We write y = f(x) and say \y is a function of x." For the function defined by y = f(x), • x is the independent variable (also known as the input) • y is the dependent variable (also known as the output) • f is the function name Example 1: Determine whether or not each of the following represents a function. Table 1.1 Chicken Name Egg Color Emma Turquoise Hazel Light Brown George(ia) Chocolate Brown Isabella White Yvonne Light Brown (a) The set of ordered pairs of the form (chicken name, egg color) shown in Table 1.1. -
Binary Operations
Binary operations 1 Binary operations The essence of algebra is to combine two things and get a third. We make this into a definition: Definition 1.1. Let X be a set. A binary operation on X is a function F : X × X ! X. However, we don't write the value of the function on a pair (a; b) as F (a; b), but rather use some intermediate symbol to denote this value, such as a + b or a · b, often simply abbreviated as ab, or a ◦ b. For the moment, we will often use a ∗ b to denote an arbitrary binary operation. Definition 1.2. A binary structure (X; ∗) is a pair consisting of a set X and a binary operation on X. Example 1.3. The examples are almost too numerous to mention. For example, using +, we have (N; +), (Z; +), (Q; +), (R; +), (C; +), as well as n vector space and matrix examples such as (R ; +) or (Mn;m(R); +). Using n subtraction, we have (Z; −), (Q; −), (R; −), (C; −), (R ; −), (Mn;m(R); −), but not (N; −). For multiplication, we have (N; ·), (Z; ·), (Q; ·), (R; ·), (C; ·). If we define ∗ ∗ ∗ Q = fa 2 Q : a 6= 0g, R = fa 2 R : a 6= 0g, C = fa 2 C : a 6= 0g, ∗ ∗ ∗ then (Q ; ·), (R ; ·), (C ; ·) are also binary structures. But, for example, ∗ (Q ; +) is not a binary structure. Likewise, (U(1); ·) and (µn; ·) are binary structures. In addition there are matrix examples: (Mn(R); ·), (GLn(R); ·), (SLn(R); ·), (On; ·), (SOn; ·). Next, there are function composition examples: for a set X,(XX ; ◦) and (SX ; ◦).