Drug and Cell Type-Specific Regulation of Genes with Different Classes of Estrogen Receptor B-Selective Agonists
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
-
Supporting Materials for Reappointment of Rong Di for 2004
CURRICULUM VITAE Rong Di Associate Research Professor Department of Plant Biology School of Environmental and Biological Sciences Rutgers University 222B Foran Hall, 59 Dudley Rd., New Brunswick, NJ 08901 Ph. (848)-932-6350, Fax (732)-932-9377 [email protected] http://plantbiology.rutgers.edu/faculty/di/Rong_Di.html July 2017 Appointments 2017-Present Associate Research Professor, Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 2011-2017 Assistant Research Professor, Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 2014-Present Adjunct Professor, Hainan University, Hainan, China 2003-2011 Assistant Research Professor, Biotechnology Center for Agriculture and the Environment, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 1997- 2002 Research Associate, Biotechnology Center for Agriculture and the Environment, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 1992-1996 Postdoctoral Scholar, Dept. of Plant Pathology, and Dept. of Agronomy, University of Kentucky, Lexington, KY 1986-1992 Graduate Research Assistant, Dept. of Plant Pathology, Iowa State University, Ames, IA 1983-1985 Assistant Lecturer, Dept. of Plant Protection, South China College of Tropical Crops (SCCTC), Hainan, P. R. China Education Ph.D. 1992 Plant Virology, Iowa State University, Iowa (Advisor: W Allen Miller) M.S. 1989 Plant Virology, Iowa State University, Iowa (Advisor: John Hill) B.S. 1983 Plant Protection, South China College of Tropical Crops, Hainan, P.R. China Honors and Awards 1985 Selected as the only one among 45 graduates in the Dept. of Plant Protection from SCCTC China to study abroad. -
Selective Estrogen Receptor Modulators for BPH: New Factors on the Ground
Prostate Cancer and Prostatic Disease (2013) 16, 226–232 & 2013 Macmillan Publishers Limited All rights reserved 1365-7852/13 www.nature.com/pcan REVIEW Selective estrogen receptor modulators for BPH: new factors on the ground M Garg1, D Dalela1, D Dalela1, A Goel1, M Kumar1, G Gupta2 and SN Sankhwar1 As the current management of BPH/lower urinary tract symptoms by traditionally involved pharmacological agents such as 5alpha- reductase inhibitors and a1-adrenoceptor antagonists is suboptimal, there is definite need of new therapeutic strategies. There is ample evidence in literature that suggests the role of estrogens in BPH development and management through the different tissue and cell-specific receptors. This article reviews the beneficial actions of selective estrogen receptor modulator (SERM) and ERb- selective ligands, which have been demonstrated through in vitro studies using human prostate cell lines and in vivo animal studies. SERMs have anti-proliferative, anti-inflammatory and pro-apoptotic mechanisms in BPH, and also act by inhibiting various growth factors, and thus represent a unique and novel approach in BPH management directed at estrogen receptors or estrogen metabolism. Prostate Cancer and Prostatic Disease (2013) 16, 226–232; doi:10.1038/pcan.2013.17; published online 18 June 2013 Keywords: selective estrogen receptors modulators; BPH; estradiol; estrogen receptor b INTRODUCTION relevant articles were selected for the discussion of role of SERMs in BPH in BPH is a common urological problem of aging males. It occurs in this review. about 10% of men below the age of 40 and increases to about 80% by 80 years of age.1 Clinical BPH is a benign enlargement of the prostate, which ESTROGENS AND ITS RECEPTORS: ROLE IN BPH results in voiding urinary difficulties that may, sometimes, Though BPH typically manifests in later stage of life when 2 significantly impair the quality of life in older patients. -
Dr. Duke's Phytochemical and Ethnobotanical Databases Chemicals Found in Glycyrrhiza Uralensis
Dr. Duke's Phytochemical and Ethnobotanical Databases Chemicals found in Glycyrrhiza uralensis Activities Count Chemical Plant Part Low PPM High PPM StdDev Refernce Citation 0 1-METHOXY-FICIFOLINOL Root 3.4 -- 0 18-ALPHA- Root -- GLYCYRRHETINIC-ACID 0 18-ALPHA-GLYCYRRHIZIN Root 200.0 -- 0 18-ALPHA-HYDROXY- Rhizome -- GLYCYRRHETATE 0 18-BETA- Root -- GLYCYRRHETINIC-ACID 0 2',4',5-TRIHYDROXY-7- Root -- METHOXY-8-ALPHA- ALPHA-DIMETHYL-ALLYL-3- ARYLCOUMARIN 0 2',4',7-TRIHYDROXY-3'- Root -- GAMMA-GAMMA- DIMETHYL-ALLYL-3- ARYLCOUMARIN 0 2,3-DIHYDRO- Root -- ISOLIQUIRITIGENIN 0 2-METHYL-7- Root Chemical Constituents of HYDROXYISOFLAVONE Oriental Herbs (3 diff. books) 0 22-BETA-ACETYL- Root -- GLABRIC-ACID 0 24-HYDROXYGLABROLIDE Root -- 0 24- Root -- HYDROXYGLYCYRRHETIC- ACID-METHYL-ESTER 0 28- Root Chemical Constituents of HYDROXYGLYCYRRHETIC- Oriental Herbs (3 diff. books) ACID 0 3-ACETYL- Root -- GLYCYRRHETIC-ACID 0 3-BETA-24-DIHYDROXY- Root -- OLEAN-11,13(18)-DIEN-30- OIC-ACID-METHYL-ESTER 0 3-BETA- Root -- FORMYLGLABROLIDE 0 3-O-METHYLGLYCYROL Root -- 0 3-OXO-GLYCYRRHETIC- Root -- ACID 0 4',7-DIHYDROXYFLAVONE Root 240.0 -- 0 4'-O-(BETA-D-APIO-D- Root 120000.0 -- FURANOSYL-(1,2)-BETA-D- GLUCOPYRANOSYL)- LIQUIRITIGENIN Activities Count Chemical Plant Part Low PPM High PPM StdDev Refernce Citation 0 5-O-METHYLGLYCYROL Root -- 0 6''-O-ACETYL-LIQUIRITIN Root -- 0 8-C-PRENYL-ERIODICTYOL Root 13.0 -- 0 APIGENIN-6,8-DI-C- Root -- GLUCOSIDE 1 APIOGLYCYRRHIZIN Root 100.0 -1.0 -- 0 APIOISOLIQUIRITIN Root -- 0 APIOLIQUIRITIN Root -- 1 ARABOGLYCYRRHIZIN Root 600.0 1.0 -- 2 ARSENIC Root 0.3 -0.19476716146558964 Chen, H.C. -
Medicinal Properties of Selected Asparagus Species: a Review Polo-Ma-Abiele Hildah Mfengwana and Samson Sitheni Mashele
Chapter Medicinal Properties of Selected Asparagus Species: A Review Polo-Ma-Abiele Hildah Mfengwana and Samson Sitheni Mashele Abstract Asparagus species are naturally distributed along Asia, Africa, and Europe and are known to have numerous biological properties. This review article was aimed to provide an organized summary of current studies on the traditional uses, phy- tochemistry, and pharmacological and toxicological studies of Asparagus laricinus Burch., Asparagus africanus Lam., Asparagus officinalis L., Asparagus racemosus Willd., and Asparagus densiflorus (Kunth) Jessop to attain and establish new insights for further researches. Information used in this review was obtained from electronic database including PubMed central, Google scholars, Science direct, Scopus, and Sabinet. Based on the present findings, the existing literature still presents some breaches about the mechanism of action of various constituents of these plants, and their relation to other plant compounds in poly-herbal formulations, as well as their long-term use and safety. More in-depth studies are still needed for active compounds and biological activities of Asparagus laricinus, Asparagus africanus, and Asparagus densiflorus. Therefore, innumerable opportunities and possibilities for investigation are still available in novel areas of these plants for future research stud¬ies. It can be concluded that all selected Asparagus species have tremendous potential to improve human health and the pharmacological activities of these plants can be attributed to bioactive phytochemicals they possess. Keywords: Asparagaceae, Asparagus africanus lam., Asparagus densiflorus (kunth) Jessop, Asparagus laricinus Burch., Asparagus officinalis L., Asparagus racemosus Willd., pharmacological actions, phytochemistry 1. Introduction Historically, plants were used for numerous purposes for mankind in general, inter alia, feeding and catering, culinary spices, medicine, various forms of cosmetics, symbols in worship and for a variety of ornamental goods. -
Identification of Key Transporters Mediating Uptake of Aconitum
RSC Advances View Article Online PAPER View Journal | View Issue Identification of key transporters mediating uptake of aconitum alkaloids into the liver and kidneys and Cite this: RSC Adv.,2019,9,16136 the potential mechanism of detoxification by active ingredients of liquorice Yufei He, †a Ze Wang,†b Weidang Wu,c Ying Xie,d Zihong Wei,c Xiulin Yi,c Yong Zeng,c Yazhuo Li *c and Changxiao Liu*ac Aconite as a commonly used herb has been extensively applied in the treatment of rheumatoid arthritis, as pain relief, as well as for its cardiotonic actions. Aconitum alkaloids have been shown to be the most potent ingredients in aconite, in terms of efficacy against disease, but they are also highly toxic. Apart from neurological and cardiovascular toxicity exposed, the damage to hepatocytes and nephrocytes with long-term use of aconitum alkaloids should also be carefully considered. This study attempted to investigate the critical role of uptake transporters mediating the transport of aconitum alkaloids into the Creative Commons Attribution-NonCommercial 3.0 Unported Licence. liver and the kidneys. The resulting data revealed that hOATP1B1, 1B3, hOCT1 and hOAT3 were mainly involved in the uptake of aconitum alkaloids. Additionally, the inhibitory effects of bioactive ingredients of liquorice on uptake transporters were screened and further confirmed by determining the IC50 values. The in vitro study suggested that liquorice might lower the toxicity of aconite by reducing its exposure in the liver and/or kidneys through inhibition of uptake transporters. Eventually, the in vivo study was indicative of detoxification of liquorice by decreasing the exposure of aconitine as representative compound in liver after co-administration, even though the exposure in kidney altered was less Received 16th January 2019 significant. -
Regulation of Specific Target Genes and Biological Responses by Estrogen Receptor Subtype Agonists Leitman Et Al
COPHAR-861; NO. OF PAGES 8 Available online at www.sciencedirect.com Regulation of specific target genes and biological responses by estrogen receptor subtype agonists Dale C Leitman1, Sreenivasan Paruthiyil2, Omar I Vivar1, Elise F Saunier2, Candice B Herber1, Isaac Cohen2, Mary Tagliaferri2 and Terence P Speed3,4 Estrogenic effects are mediated through two estrogen receptor adverse effects. The most troublesome side-effect of (ER) subtypes, ERa and ERb. Estrogens are the most estrogens is the increased risk of breast and endometrial commonly prescribed drugs to treat menopausal conditions, cancer [1,2]. Estrogens also increase blood clotting that but by non-selectively triggering both ERa and ERb pathways can lead to venous thromboembolisms, and possibly in different tissues they can cause serious adverse effects. The strokes and heart disease, particularly in older women different sizes of the binding pockets and sequences of their [1]. activation function domains indicate that ERa and ERb should have different specificities for ligands and biological responses Estrogens in hormone therapy (HT) were formulated that can be exploited for designing safer and more selective long before there was a significant understanding of estrogens. ERa and ERb regulate different genes by binding to the mechanism of action of estrogens. The identification different regulatory elements and recruiting different of ERa and ERb (Figure 1) and the crystal structures of transcription and chromatin remodeling factors that are their ligand binding domain (LBD), the discovery of a expressed in a cell-specific manner. ERa-selective and ERb- variety of coregulatory proteins involved in the genomic selective agonists have been identified that demonstrate that pathway and the demonstration of the nongenomic the two ERs produce distinct biological effects. -
Anticancer Activity of <Emphasis Type="Italic">Asparagus
J. Korean Soc. Appl. Biol. Chem. 54(2), 188-193 (2011) Article Anticancer Activity of Asparagus cochinchinensis Extract and Fractions in HepG2 Cells Mikyung Park1†, Myeong Sook Cheon2†, Seong Hwan Kim1, Jin Mi Chun2, A Yeong Lee2, Byeong Cheol Moon2, Taesook Yoon2, Byung Kil Choo3, and Ho Kyoung Kim2* 1Laboratory of Chemical Genomics, Pharmacology Research Center, Korea Research Institute of Chemical Technology, P.O.Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea 2Center of Herbal Resources Research, Korea Institute of Oriental Medicine, 483 Exporo, Daejeon 305-811, Republic of Korea 3Department of Crop Agriculture & Life Science, College of Agriculture & Life Science, Chonbuk National University, Jeonju 561-756, Republic of Korea Received October 18, 2010; Accepted January 4, 2010 Asparagus cochinchinensis Merrill (Liliaceae) has been traditionally used for the treatment of cancer in Korea and China, but its anticancer activity and underlying mechanism remain to be defined. Anticancer activities were investigated on fractions obtained from A. cochinchinensis 70% ethanol extract (ACE-EtOH) in human hepatocellular carcinoma HepG2 cells. Ethylacetate fraction from A. cochinchinensis extract (ACE-EA), more effective than other fractions, induced apoptosis of HepG2 (IC50=72.33±0.34 μg/mL), as revealed by apoptotic feature observation, increased capase-3 activity and Poly ADP ribose polymerase cleavage, and decreased expression of X-linked inhibitor of apoptosis protein in a dose-dependent manner. Protein levels of autophagy- related molecules, microtubule-associated protein 1 light chain 3 α and beclin 1, appeared to be induced by ACE-EA, suggesting ACE-EA exhibits anti-cancer activity with induction via both apoptosis and autophagy signaling pathways in HepG2 cells. -
Insecticidal and Antifungal Chemicals Produced by Plants
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Insecticidal and antifungal chemicals produced by plants: a review Isabelle Boulogne, Philippe Petit, Harry Ozier-Lafontaine, Lucienne Desfontaines, Gladys Loranger-Merciris To cite this version: Isabelle Boulogne, Philippe Petit, Harry Ozier-Lafontaine, Lucienne Desfontaines, Gladys Loranger- Merciris. Insecticidal and antifungal chemicals produced by plants: a review. Environmental Chem- istry Letters, Springer Verlag, 2012, 10 (4), pp.325 - 347. 10.1007/s10311-012-0359-1. hal-01767269 HAL Id: hal-01767269 https://hal-normandie-univ.archives-ouvertes.fr/hal-01767269 Submitted on 29 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Version définitive du manuscrit publié dans / Final version of the manuscript published in : Environmental Chemistry Letters, 2012, n°10(4), 325-347 The final publication is available at www.springerlink.com : http://dx.doi.org/10.1007/s10311-012-0359-1 Insecticidal and antifungal chemicals produced by plants. A review Isabelle Boulogne 1,2* , Philippe Petit 3, Harry Ozier-Lafontaine 2, Lucienne Desfontaines 2, Gladys Loranger-Merciris 1,2 1 Université des Antilles et de la Guyane, UFR Sciences exactes et naturelles, Campus de Fouillole, F- 97157, Pointe-à-Pitre Cedex (Guadeloupe), France. -
Simultaneous Determination and Pharmacokinetic Characterization
molecules Article Simultaneous Determination and Pharmacokinetic Characterization of Glycyrrhizin, Isoliquiritigenin, Liquiritigenin, and Liquiritin in Rat Plasma Following Oral Administration of Glycyrrhizae Radix Extract You Jin Han 1, Bitna Kang 2, Eun-Ju Yang 1, Min-Koo Choi 2,* and Im-Sook Song 1,* 1 College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; [email protected] (Y.J.H.); [email protected] (E.-J.Y.) 2 College of Pharmacy, Dankook University, Cheon-an 31116, Korea; [email protected] * Correspondence: [email protected] (I.-S.S.); [email protected] (M.-K.C.); Tel.: +82-53-950-8575 (I.-S.S.); +82-41-550-1432 (M.-K.C.) Academic Editors: In-Soo Yoon and Hyun-Jong Cho Received: 12 April 2019; Accepted: 9 May 2019; Published: 10 May 2019 Abstract: Glycyrrhizae Radix is widely used as herbal medicine and is effective against inflammation, various cancers, and digestive disorders. We aimed to develop a sensitive and simultaneous analytical method for detecting glycyrrhizin, isoliquiritigenin, liquiritigenin, and liquiritin, the four marker components of Glycyrrhizae Radix extract (GRE), in rat plasma using liquid chromatography-tandem mass spectrometry and to apply this analytical method to pharmacokinetic studies. Retention times for glycyrrhizin, isoliquiritigenin, liquiritigenin, and liquiritin were 7.8 min, 4.1 min, 3.1 min, and 2.0 min, respectively, suggesting that the four analytes were well separated without any interfering peaks around the peak elution time. The lower limit of quantitation was 2 ng/mL for glycyrrhizin and 0.2 ng/mL for isoliquiritigenin, liquiritigenin, and liquiritin; the inter- and intra-day accuracy, precision, and stability were less than 15%. -
Assembly of a Novel Biosynthetic Pathway for Production of the Plant Flavonoid Fisetin in Escherichia Coli
Downloaded from orbit.dtu.dk on: Oct 06, 2021 Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli Stahlhut, Steen Gustav; Siedler, Solvej; Malla, Sailesh; Harrison, Scott James; Maury, Jerome; Neves, Ana Rute; Förster, Jochen Published in: Metabolic Engineering Link to article, DOI: 10.1016/j.ymben.2015.07.002 Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Stahlhut, S. G., Siedler, S., Malla, S., Harrison, S. J., Maury, J., Neves, A. R., & Förster, J. (2015). Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli. Metabolic Engineering, 31, 84-93. https://doi.org/10.1016/j.ymben.2015.07.002 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Metabolic Engineering 31 (2015) 84–93 Contents lists available at ScienceDirect Metabolic Engineering journal homepage: www.elsevier.com/locate/ymben Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli Steen G. -
Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Dry Mouth / Xerostomia
Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Dry Mouth / Xerostomia Chemical Activity Count (+)-CATECHIN 2 (+)-EPIPINORESINOL 1 (-)-ANABASINE 1 (-)-EPICATECHIN 2 (-)-EPIGALLOCATECHIN 2 (-)-EPIGALLOCATECHIN-GALLATE 2 (Z)-1,3-BIS(4-HYDROXYPHENYL)-1,4-PENTADIENE 1 1,8-CINEOLE 2 10-METHOXYCAMPTOTHECIN 1 16-HYDROXY-4,4,10,13-TETRAMETHYL-17-(4-METHYL-PENTYL)-HEXADECAHYDRO- 1 CYCLOPENTA[A]PHENANTHREN-3-ONE 2,3-DIHYDROXYBENZOIC-ACID 1 3'-O-METHYL-CATECHIN 1 3-ACETYLACONITINE 1 3-O-METHYL-(+)-CATECHIN 1 4-O-METHYL-GLUCURONOXYLAN 1 5,7-DIHYDROXY-2-METHYLCHROMONE-8-C-BETA-GLUCOPYRANOSIDE 1 5-HYDROXYTRYPTAMINE 1 5-HYDROXYTRYPTOPHAN 1 6-METHOXY-BENZOLINONE 1 ACEMANNAN 1 ACETYL-CHOLINE 1 ACONITINE 2 ADENOSINE 2 AFFINISINE 1 AGRIMONIIN 1 ALANTOLACTONE 2 ALKANNIN 1 Chemical Activity Count ALLANTOIN 1 ALLICIN 2 ALLIIN 2 ALLOISOPTEROPODINE 1 ALLOPTEROPODINE 1 ALLOPURINOL 1 ALPHA-LINOLENIC-ACID 1 ALPHA-TERPINEOL 1 ALPHA-TOCOPHEROL 2 AMAROGENTIN 1 AMELLIN 1 ANABASINE 1 ANDROMEDOTOXIN 1 ANETHOLE 1 ANTHOCYANIDINS 1 ANTHOCYANINS 1 ANTHOCYANOSIDE 1 APIGENIN 1 APOMORPHINE 1 ARABINO-3,6-GALACTAN-PROTEIN 1 ARABINOGALACTAN 1 ARACHIDONIC-ACID 1 ARCTIGENIN 2 ARECOLINE 1 ARGLABRIN 1 ARISTOLOCHIC-ACID 1 ARISTOLOCHIC-ACID-I 1 2 Chemical Activity Count ARMILLARIEN-A 1 ARTEMISININ 1 ASCORBIC-ACID 4 ASTRAGALAN-I 1 ASTRAGALAN-II 1 ASTRAGALAN-III 1 ASTRAGALIN 1 AURICULOSIDE 1 BAICALEIN 1 BAICALIN 1 BAKUCHIOL 1 BENZALDEHYDE 1 BERBAMINE 1 BERBERASTINE 3 BERBERINE 3 BERBERINE-CHLORIDE 1 BERBERINE-IODIDE 1 BERBERINE-SULFATE 1 BETA-AMYRIN-PALMITATE