Published for SISSA by Springer Received: January 18, 2019 Accepted: February 10, 2019 Published: February 25, 2019 Holographic complexity equals which action? JHEP02(2019)160 Kanato Goto,a Hugo Marrochio,b;c Robert C. Myers,b Leonel Queimadab;c and Beni Yoshidab aThe University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan bPerimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada cDepartment of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada E-mail:
[email protected],
[email protected],
[email protected],
[email protected],
[email protected] Abstract: We revisit the complexity = action proposal for charged black holes. We in- vestigate the complexity for a dyonic black hole, and we find the surprising feature that the late-time growth is sensitive to the ratio between electric and magnetic charges. In particular, the late-time growth rate vanishes when the black hole carries only a magnetic charge. If the dyonic black hole is perturbed by a light shock wave, a similar feature ap- pears for the switchback effect, e.g. it is absent for purely magnetic black holes. We then show how the inclusion of a surface term to the action can put the electric and magnetic charges on an equal footing, or more generally change the value of the late-time growth rate. Next, we investigate how the causal structure influences the late-time growth with and without the surface term for charged black holes in a family of Einstein-Maxwell-Dilaton theories. Finally, we connect the previous discussion to the complexity=action proposal for the two-dimensional Jackiw-Teitelboim theory.