Research Articles: Cellular/Molecular Disrupted blood-retina lysophosphatidylcholine transport impairs photoreceptor health but not visual signal transduction https://doi.org/10.1523/JNEUROSCI.1142-19.2019 Cite as: J. Neurosci 2019; 10.1523/JNEUROSCI.1142-19.2019 Received: 16 May 2019 Revised: 4 October 2019 Accepted: 23 October 2019 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2019 the authors 1 Disrupted blood-retina lysophosphatidylcholine transport impairs 2 photoreceptor health but not visual signal transduction 3 4 Abbreviated title (50 characters): Photoreceptor function under DHA deprivation 5 6 Ekaterina S. Lobanova1,2*, Kai Schuhmann3, Stella Finkelstein4, Tylor R. Lewis4, Martha 7 A. Cady4, Ying Hao4, Casey Keuthan1,5, John D. Ash1,5, Marie E. Burns6, Andrej 8 Shevchenko3, and Vadim Y. Arshavsky4,7* 9 1Department of Ophthalmology, University of Florida, Gainesville, FL, 32610 10 2Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610 11 3Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany, 01307 12 4Department of Ophthalmology, Duke University, Durham, NC, 27710 13 5Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 14 32610 15 6Department of Cell Biology and Human Anatomy, University of California-Davis, Davis, CA, 16 95618 17 7Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710 18 19 Send correspondence to Ekaterina Lobanova at
[email protected] or Vadim Arshavsky at 20
[email protected].