Boson and Baryon Resonances

Total Page:16

File Type:pdf, Size:1020Kb

Boson and Baryon Resonances Boson and Baryon Resonances The number of reported particle resonances keeps increasing year by year, but more important the properties of previously discovered resonances become more firmly established. The detailed presentation of these findings was presented in six parallel sessions and reviewed in three raporteur reports by Professor R. Plano, Professor A. Astier, and the author at the XVth International Conference on High-Energy Physics at Kiev, USSR. In the ensuing comments I will attempt to touch on what I consider the more interesting as well as controversial aspects of the above noted sessions. The main interest concerning bosons, that is, states with nucleon number N = 0, was centered on the A 2 meson. Such a resonance with mass of 1320 MeV and with I'~ 80 MeV has been a bona fide member of accepted resonances for many years. The first indication of possible peculiarities in this mass region was reported by the CERN group examining boson resonances with a reasonably high resolution I'~ 15 MeV. They observed a split peak for the A2 in the reaction n-p--> A2 p whose significance keeps increasing year by year. This experiment has been repeated by the same group under slightly different geometrical conditions where the total effect (all their data) corresponds to a dip fluctuation of ~ 8 standard deviations. Investigation of the A2 --> K- K~ decay mode, by the same group with more limited data, also shows a dip but agrees (or disagrees depending on your point of view) with a single Breit-Wigner with a 1 % probability. On the other hand, a bubble­ chamber study of the Ai produced in the reaction n+ p-> Ai p by Group A at Berkeley does not confirm this previous result. In particular, the p0 n+, n°n+, and K+ K~ decay distributions are well described by a single Breit­ Wigner shape, probability of fit ~ (10-20) % and strongly disagree with a particular form of splitting, namely that of a dipole with a probability of fit ~ 0.3 %. However, if one kinematically restricts these latter data to the same kinematical region as that examined by the CERN missing-mass experiment, their statistical validity is sufficiently reduced so that there is no disagreement. Two new results concerning the A 2 were presented at the Conference, both favoring the splitting hypothesis but neither conclusive. The Bologna-CERN­ Strasbourg collaboration studying the A~ produced in the neutral-missing­ mass experiment n-p--> nA~ obtain a 1 % fit to a single Breit-Wigner while 177 the Goldhaber-Trilling group at Berkeley exammmg Ai production via n+ p ~ pAi get 9 % for a single peak. Most experiments agree on the spin­ parity assignment of 2 + for either the whole peak or both halves. There seems to be consensus that the dipole fit foas been overemphasized, two Breit­ Wigners being more than adequate to explain the data. Needless to say, the phenomenon is not completely understood, the data, taken as they stand, indicate a double structure for the Ai with the Ai ruling out a dipole shape but otherwise in agreement with a single or double Breit-Wigner shape. Further experiments with good resolution, high statistics, and wide kine­ matics acceptance are certainly needed. These are difficult requirements to satisfy since the counter experiments to date have had limited momentum transfer acceptances, while the bubble-chamber experiments have been more limited in their data accumulation. As has previously been noted, the naive quark model (in which bosons are conjectured to be composed of quark-antiquark pairs) adequately describes the observed spectra of mesons. Such a scheme restricts the possible rep­ resentation to {I} singlet and {8} octet. Over the years several states lying outside these classifications have been reported (i.e. I= f, S = ± 1 K states); however, repeat experiments with more data have invariably negated the original evidence. The search for such "exotic" resonances has continued but has yet to produce a believable candidate. The split A 2 , discussed above, produces the main difficulty with this simple quark model in that all evidence suggests JP= 2+ for both halves. Such a closeness in mass at ~ 1300 MeV is difficult to understand since the two lowest 2 + levels occur with orbitals of I = 1 and 3, and the intermediate I = 2 level has candidates with mass of ~ 1500-1600 MeV. The existence of several states in this higher mass region is now well established. In particular, there is the n(l640) which decays mainly into j 0 n, the cp(l660) observed to decay into pn, two I= 1 resonances at a mass ~ 1660 (g meson) and the L(l 750) with several decay modes. In the lower mass region there was new evidence presented for the existence of the [J meson decaying into 17n final state, confusion concerning the uniqueness of any resonant nn or Kn system as derived from dynamical analyses, and no new information concerning the A 1 ( 1080) and numerous possible K*(l 300)'s. In addition, several more very high mass peaks> 3 GeV were also reported from the missing-mass experiment. In all, lots of new information, but no break­ throughs. The new information concerning baryons, with nucleon number N = I and strangeness S = 0, ± I, - 2, and - 3, was as extensive but only slightly less controversial than in the boson case. One of the most interesting develop­ ments was that involving the existence of Z*, N = 1, S = + 1 baryons. Again such resonances cannot be accommodated by the simple quark model in 178 which baryons are composed of three quarks. This is due to the fact that the only strange quark has S = - 1 so that an antiquark is needed in order to achieve a state with S = + 1, thereby requiring a minimum of four quarks and one antiquark. The two structures deduced from a study of K+ p and K+ d total cross sections, an I= 1 at a mass of 1900 MeV and I= 0 at 1870 MeV have been verified with a new bump uncovered in I= 0 state with mass 1780 MeV. The former two enhancements are clearly associated with the onset of single pion production in contrast to the latest bump which is mainly elastic. In the past year very extensive experimental work has been conducted with respect to the I= I state. This has involved differential cross section, polarization, and partial cross section measurements conducted over a wide momentum range. A partial-wave analysis of all the available data by several of the groups contains among the numerous solutions one which has the P 312 amplitude behaving in a resonant manner. The non­ uniqueness of the solution as well as disagreement on the detailed behavior of this particular amplitude, i.e. as to whether there is a rate change as it approaches the resonant energy, leaves the question of its being resonant unresolved. The situation appears to be less complex in the case of the newest candidate, the elastic I= 0 bump at 1780 MeV, and increased experimental activity over the next year or so may lead to a definitive conclusion. Needless to say, if these three states were regular N = I, S = 0, - 1 candidates, they would already have been accepted and catalogued. The situation with respect to the nucleon states N, with I= 1, and LI, with I= 1-, has remained essentially unchanged since the 1968 Vienna conference. Numerous such states with well-known quantum numbers have been tabu­ lated, one of the most interesting features being the existence of higher­ massed low-spin states such as the N(l470) with JP = 1+ and N(l 700) with JP = -! - . Although first detected by partial-wave analysis of total, partial cross section and polarization measurements, such enhancements are also observed in effective mass distributions derived from production experiments. In fact, a large number of reports were presented concerning bumps in the 1700 mass region, measuring their mass, width, and decay modes with spin­ parities not presently deciphered. These seem to be replicas of the nucleon N(939) and N(l535), respectively, in all their quantum numbers and must be accommodated within any conjectured cataloguing scheme. In addition, two new high-mass resonances were also reported, N(2220) with JP = t + and width of 240 MeV and Ll(2320) with JP= !,} + and width 300 MeV. Progress continues in uncovering new A(J = 0, S = -1) and E(J =I, S = - I) resonances as well as verifying the existence of and determining the properties of previously reported states. Such is the case for the E(l 915) f +, E(2030) f +, A(2100) r, and E(2280) r where spin-parity assignments and detailed partial decay rates are now well established. The evidence for two 179 1:(1660) resonances, one decaying mainly into l:n and the other into l:nn final state, first presented at Vienna, has since been confirmed. Although not conclusive, the most probable spin-parity for both states is-! - . This situation of resonances with the same mass and spin-parity does show some resemblance to the previously discussed A 2 question among the bosons. The possible existence of numerous other resonances in both the intermediate mass range 1600-1800 MeV and in the 2000-2100 MeV region of assorted spin-parities has been proposed. If verified, then the experimental particle spectrum is much more complex than previously suggested. The exploration of S states (N = I, S = - 2) continues to be hampered by their small production cross sections and their inaccessibility via formation experiments. In spite of this, the existence of a 5(1820) and 5(1930) is well established with a 5(2030) and 5(2430), already observed by two groups, being quite reputable.
Recommended publications
  • The Five Common Particles
    The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2.
    [Show full text]
  • A Generalization of the One-Dimensional Boson-Fermion Duality Through the Path-Integral Formalsim
    A Generalization of the One-Dimensional Boson-Fermion Duality Through the Path-Integral Formalism Satoshi Ohya Institute of Quantum Science, Nihon University, Kanda-Surugadai 1-8-14, Chiyoda, Tokyo 101-8308, Japan [email protected] (Dated: May 11, 2021) Abstract We study boson-fermion dualities in one-dimensional many-body problems of identical parti- cles interacting only through two-body contacts. By using the path-integral formalism as well as the configuration-space approach to indistinguishable particles, we find a generalization of the boson-fermion duality between the Lieb-Liniger model and the Cheon-Shigehara model. We present an explicit construction of n-boson and n-fermion models which are dual to each other and characterized by n−1 distinct (coordinate-dependent) coupling constants. These models enjoy the spectral equivalence, the boson-fermion mapping, and the strong-weak duality. We also discuss a scale-invariant generalization of the boson-fermion duality. arXiv:2105.04288v1 [quant-ph] 10 May 2021 1 1 Introduction Inhisseminalpaper[1] in 1960, Girardeau proved the one-to-one correspondence—the duality—between one-dimensional spinless bosons and fermions with hard-core interparticle interactions. By using this duality, he presented a celebrated example of the spectral equivalence between impenetrable bosons and free fermions. Since then, the one-dimensional boson-fermion duality has been a testing ground for studying strongly-interacting many-body problems, especially in the field of integrable models. So far there have been proposed several generalizations of the Girardeau’s finding, the most promi- nent of which was given by Cheon and Shigehara in 1998 [2]: they discovered the fermionic dual of the Lieb-Liniger model [3] by using the generalized pointlike interactions.
    [Show full text]
  • 1 Standard Model: Successes and Problems
    Searching for new particles at the Large Hadron Collider James Hirschauer (Fermi National Accelerator Laboratory) Sambamurti Memorial Lecture : August 7, 2017 Our current theory of the most fundamental laws of physics, known as the standard model (SM), works very well to explain many aspects of nature. Most recently, the Higgs boson, predicted to exist in the late 1960s, was discovered by the CMS and ATLAS collaborations at the Large Hadron Collider at CERN in 2012 [1] marking the first observation of the full spectrum of predicted SM particles. Despite the great success of this theory, there are several aspects of nature for which the SM description is completely lacking or unsatisfactory, including the identity of the astronomically observed dark matter and the mass of newly discovered Higgs boson. These and other apparent limitations of the SM motivate the search for new phenomena beyond the SM either directly at the LHC or indirectly with lower energy, high precision experiments. In these proceedings, the successes and some of the shortcomings of the SM are described, followed by a description of the methods and status of the search for new phenomena at the LHC, with some focus on supersymmetry (SUSY) [2], a specific theory of physics beyond the standard model (BSM). 1 Standard model: successes and problems The standard model of particle physics describes the interactions of fundamental matter particles (quarks and leptons) via the fundamental forces (mediated by the force carrying particles: the photon, gluon, and weak bosons). The Higgs boson, also a fundamental SM particle, plays a central role in the mechanism that determines the masses of the photon and weak bosons, as well as the rest of the standard model particles.
    [Show full text]
  • A Young Physicist's Guide to the Higgs Boson
    A Young Physicist’s Guide to the Higgs Boson Tel Aviv University Future Scientists – CERN Tour Presented by Stephen Sekula Associate Professor of Experimental Particle Physics SMU, Dallas, TX Programme ● You have a problem in your theory: (why do you need the Higgs Particle?) ● How to Make a Higgs Particle (One-at-a-Time) ● How to See a Higgs Particle (Without fooling yourself too much) ● A View from the Shadows: What are the New Questions? (An Epilogue) Stephen J. Sekula - SMU 2/44 You Have a Problem in Your Theory Credit for the ideas/example in this section goes to Prof. Daniel Stolarski (Carleton University) The Usual Explanation Usual Statement: “You need the Higgs Particle to explain mass.” 2 F=ma F=G m1 m2 /r Most of the mass of matter lies in the nucleus of the atom, and most of the mass of the nucleus arises from “binding energy” - the strength of the force that holds particles together to form nuclei imparts mass-energy to the nucleus (ala E = mc2). Corrected Statement: “You need the Higgs Particle to explain fundamental mass.” (e.g. the electron’s mass) E2=m2 c4+ p2 c2→( p=0)→ E=mc2 Stephen J. Sekula - SMU 4/44 Yes, the Higgs is important for mass, but let’s try this... ● No doubt, the Higgs particle plays a role in fundamental mass (I will come back to this point) ● But, as students who’ve been exposed to introductory physics (mechanics, electricity and magnetism) and some modern physics topics (quantum mechanics and special relativity) you are more familiar with..
    [Show full text]
  • Glueball Searches Using Electron-Positron Annihilations with BESIII
    FAIRNESS2019 IOP Publishing Journal of Physics: Conference Series 1667 (2020) 012019 doi:10.1088/1742-6596/1667/1/012019 Glueball searches using electron-positron annihilations with BESIII R Kappert and J G Messchendorp, for the BESIII collaboration KVI-CART, University of Groningen, Groningen, The Netherlands E-mail: [email protected] Abstract. Using a BESIII-data sample of 1:31 × 109 J= events collected in 2009 and 2012, the glueball-sensitive decay J= ! γpp¯ is analyzed. In the past, an exciting near-threshold enhancement X(pp¯) showed up. Furthermore, the poorly-understood properties of the ηc resonance, its radiative production, and many other interesting dynamics can be studied via this decay. The high statistics provided by BESIII enables to perform a partial-wave analysis (PWA) of the reaction channel. With a PWA, the spin-parity of the possible intermediate glueball state can be determined unambiguously and more information can be gained about the dynamics of other resonances, such as the ηc. The main background contributions are from final-state radiation and from the J= ! π0(γγ)pp¯ channel. In a follow-up study, we will investigate the possibilities to further suppress the background and to use data-driven methods to control them. 1. Introduction The discovery of the Higgs boson has been a breakthrough in the understanding of the origin of mass. However, this boson only explains 1% of the total mass of baryons. The remaining 99% originates, according to quantum chromodynamics (QCD), from the self-interaction of the gluons. The nature of gluons gives rise to the formation of exotic hadronic matter.
    [Show full text]
  • Beyond the Standard Model Physics at CLIC
    RM3-TH/19-2 Beyond the Standard Model physics at CLIC Roberto Franceschini Università degli Studi Roma Tre and INFN Roma Tre, Via della Vasca Navale 84, I-00146 Roma, ITALY Abstract A summary of the recent results from CERN Yellow Report on the CLIC potential for new physics is presented, with emphasis on the di- rect search for new physics scenarios motivated by the open issues of the Standard Model. arXiv:1902.10125v1 [hep-ph] 25 Feb 2019 Talk presented at the International Workshop on Future Linear Colliders (LCWS2018), Arlington, Texas, 22-26 October 2018. C18-10-22. 1 Introduction The Compact Linear Collider (CLIC) [1,2,3,4] is a proposed future linear e+e− collider based on a novel two-beam accelerator scheme [5], which in recent years has reached several milestones and established the feasibility of accelerating structures necessary for a new large scale accelerator facility (see e.g. [6]). The project is foreseen to be carried out in stages which aim at precision studies of Standard Model particles such as the Higgs boson and the top quark and allow the exploration of new physics at the high energy frontier. The detailed staging of the project is presented in Ref. [7,8], where plans for the target luminosities at each energy are outlined. These targets can be adjusted easily in case of discoveries at the Large Hadron Collider or at earlier CLIC stages. In fact the collision energy, up to 3 TeV, can be set by a suitable choice of the length of the accelerator and the duration of the data taking can also be adjusted to follow hints that the LHC may provide in the years to come.
    [Show full text]
  • Baryon and Lepton Number Anomalies in the Standard Model
    Appendix A Baryon and Lepton Number Anomalies in the Standard Model A.1 Baryon Number Anomalies The introduction of a gauged baryon number leads to the inclusion of quantum anomalies in the theory, refer to Fig. 1.2. The anomalies, for the baryonic current, are given by the following, 2 For SU(3) U(1)B , ⎛ ⎞ 3 A (SU(3)2U(1) ) = Tr[λaλb B]=3 × ⎝ B − B ⎠ = 0. (A.1) 1 B 2 i i lef t right 2 For SU(2) U(1)B , 3 × 3 3 A (SU(2)2U(1) ) = Tr[τ aτ b B]= B = . (A.2) 2 B 2 Q 2 ( )2 ( ) For U 1 Y U 1 B , 3 A (U(1)2 U(1) ) = Tr[YYB]=3 × 3(2Y 2 B − Y 2 B − Y 2 B ) =− . (A.3) 3 Y B Q Q u u d d 2 ( )2 ( ) For U 1 BU 1 Y , A ( ( )2 ( ) ) = [ ]= × ( 2 − 2 − 2 ) = . 4 U 1 BU 1 Y Tr BBY 3 3 2BQYQ Bu Yu Bd Yd 0 (A.4) ( )3 For U 1 B , A ( ( )3 ) = [ ]= × ( 3 − 3 − 3) = . 5 U 1 B Tr BBB 3 3 2BQ Bu Bd 0 (A.5) © Springer International Publishing AG, part of Springer Nature 2018 133 N. D. Barrie, Cosmological Implications of Quantum Anomalies, Springer Theses, https://doi.org/10.1007/978-3-319-94715-0 134 Appendix A: Baryon and Lepton Number Anomalies in the Standard Model 2 Fig. A.1 1-Loop corrections to a SU(2) U(1)B , where the loop contains only left-handed quarks, ( )2 ( ) and b U 1 Y U 1 B where the loop contains only quarks For U(1)B , A6(U(1)B ) = Tr[B]=3 × 3(2BQ − Bu − Bd ) = 0, (A.6) where the factor of 3 × 3 is a result of there being three generations of quarks and three colours for each quark.
    [Show full text]
  • Properties of Baryons in the Chiral Quark Model
    Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Teknologie licentiatavhandling Kungliga Tekniska Hogskolan¨ Stockholm 1997 Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Licentiate Dissertation Theoretical Physics Department of Physics Royal Institute of Technology Stockholm, Sweden 1997 Typeset in LATEX Akademisk avhandling f¨or teknologie licentiatexamen (TeknL) inom ¨amnesomr˚adet teoretisk fysik. Scientific thesis for the degree of Licentiate of Engineering (Lic Eng) in the subject area of Theoretical Physics. TRITA-FYS-8026 ISSN 0280-316X ISRN KTH/FYS/TEO/R--97/9--SE ISBN 91-7170-211-3 c Tommy Ohlsson 1997 Printed in Sweden by KTH H¨ogskoletryckeriet, Stockholm 1997 Properties of Baryons in the Chiral Quark Model Tommy Ohlsson Teoretisk fysik, Institutionen f¨or fysik, Kungliga Tekniska H¨ogskolan SE-100 44 Stockholm SWEDEN E-mail: [email protected] Abstract In this thesis, several properties of baryons are studied using the chiral quark model. The chiral quark model is a theory which can be used to describe low energy phenomena of baryons. In Paper 1, the chiral quark model is studied using wave functions with configuration mixing. This study is motivated by the fact that the chiral quark model cannot otherwise break the Coleman–Glashow sum-rule for the magnetic moments of the octet baryons, which is experimentally broken by about ten standard deviations. Configuration mixing with quark-diquark components is also able to reproduce the octet baryon magnetic moments very accurately. In Paper 2, the chiral quark model is used to calculate the decuplet baryon ++ magnetic moments. The values for the magnetic moments of the ∆ and Ω− are in good agreement with the experimental results.
    [Show full text]
  • Lectures on BSM and Dark Matter Theory (2Nd Class)
    Lectures on BSM and Dark Matter theory (2nd class) Stefania Gori UC Santa Cruz 15th annual Fermilab - CERN Hadron Collider Physics Summer School August 10-21, 2020 Twin Higgs models & the hierarchy problem SMA x SMB x Z2 Global symmetry of the scalar potential (e.g. SU(4)) The SM Higgs is a (massless) Nambu-Goldstone boson ~SM Higgs doublet Twin Higgs doublet S.Gori 23 Twin Higgs models & the hierarchy problem SMA x SMB x Z2 Global symmetry of the scalar potential (e.g. SU(4)) The SM Higgs is a (massless) Nambu-Goldstone boson ~SM Higgs doublet Twin Higgs doublet Loop corrections to the Higgs mass: HA HA HB HB yA yA yB yB top twin-top Loop corrections to mass are SU(4) symmetric no quadratically divergent corrections! S.Gori 23 Twin Higgs models & the hierarchy problem SMA x SMB x Z2 Global symmetry of the scalar potential (e.g. SU(4)) The SM Higgs is a (massless) Nambu-Goldstone boson ~SM Higgs doublet Twin Higgs doublet Loop corrections to the Higgs mass: HA HA HB HB SU(4) and Z2 are (softly) broken: yA yA yB yB top twin-top Loop corrections to mass are SU(4) symmetric no quadratically divergent corrections! S.Gori 23 Phenomenology of the twin Higgs A typical spectrum: Htwin Twin tops Twin W, Z SM Higgs Twin bottoms Twin taus Glueballs S.Gori 24 Phenomenology of the twin Higgs 1. Production of the twin Higgs The twin Higgs will mix with the 125 GeV Higgs with a mixing angle ~ v2 / f2 Because of this mixing, it can be produced as a SM Higgs boson (reduced rates!) A typical spectrum: Htwin Twin tops Twin W, Z SM Higgs Twin bottoms Twin taus Glueballs S.Gori 24 Phenomenology of the twin Higgs 1.
    [Show full text]
  • Search for a Higgs Boson Decaying Into a Z and a Photon in Pp
    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) CERN-PH-EP/2013-037 2015/09/07 CMS-HIG-13-006 Search for a Higgs boson decayingp into a Z and a photon in pp collisions at s = 7 and 8 TeV The CMS Collaboration∗ Abstract A search for a Higgs boson decaying into a Z boson and a photon is described. The analysis is performed using proton-proton collision datasets recorded by the CMS de- tector at the LHC. Events were collected at center-of-mass energies of 7 TeV and 8 TeV, corresponding to integrated luminosities of 5.0 fb−1 and 19.6 fb−1, respectively. The selected events are required to have opposite-sign electron or muon pairs. No excess above standard model predictions has been found in the 120–160 GeV mass range and the first limits on the Higgs boson production cross section times the H ! Zg branch- ing fraction at the LHC have been derived. The observed limits are between about 4 and 25 times the standard model cross section times the branching fraction. The ob- served and expected limits for m``g at 125 GeV are within one order of magnitude of the standard model prediction. Models predicting the Higgs boson production cross section times the H ! Zg branching fraction to be larger than one order of magni- tude of the standard model prediction are excluded for most of the 125–157 GeV mass range. arXiv:1307.5515v3 [hep-ex] 4 Sep 2015 Published in Physics Letters B as doi:10.1016/j.physletb.2013.09.057.
    [Show full text]
  • Standard Model & Baryogenesis at 50 Years
    Standard Model & Baryogenesis at 50 Years Rocky Kolb The University of Chicago The Standard Model and Baryogenesis at 50 Years 1967 For the universe to evolve from B = 0 to B ¹ 0, requires: 1. Baryon number violation 2. C and CP violation 3. Departure from thermal equilibrium The Standard Model and Baryogenesis at 50 Years 95% of the Mass/Energy of the Universe is Mysterious The Standard Model and Baryogenesis at 50 Years 95% of the Mass/Energy of the Universe is Mysterious Baryon Asymmetry Baryon Asymmetry Baryon Asymmetry The Standard Model and Baryogenesis at 50 Years 99.825% of the Mass/Energy of the Universe is Mysterious The Standard Model and Baryogenesis at 50 Years Ω 2 = 0.02230 ± 0.00014 CMB (Planck 2015): B h Increasing baryon component in baryon-photon fluid: • Reduces sound speed. −1 c 3 ρ c =+1 B S ρ 3 4 γ • Decreases size of sound horizon. η rdc()η = ηη′′ ( ) SS0 • Peaks moves to smaller angular scales (larger k, larger l). = π knrPEAKS S • Baryon loading increases compression peaks, lowers rarefaction peaks. Wayne Hu The Standard Model and Baryogenesis at 50 Years 0.021 ≤ Ω 2 ≤0.024 BBN (PDG 2016): B h Increasing baryon component in baryon-photon fluid: • Increases baryon-to-photon ratio η. • In NSE abundance of species proportional to η A−1. • D, 3He, 3H build up slightly earlier leading to more 4He. • Amount of D, 3He, 3H left unburnt decreases. Discrepancy is fake news The Standard Model and Baryogenesis at 50 Years = (0.861 ± 0.005) × 10 −10 Baryon Asymmetry: nB/s • Why is there an asymmetry between matter and antimatter? o Initial (anthropic?) conditions: .
    [Show full text]
  • P-Shell Hyperon Binding Energies
    fruin&£t& P-Shell Hyperon Binding Energies D. Koetsier and K. Amos School of Physics University of Melbourne Parkville, Victoria 3052 Australia A shell model for lambda hypernuclei has been used to determine the binding energy of the hyperon in nuclei throughout the p shell. Conventional (Cohen and Kurath) potential energies for nucleon-nucleon interactions were used with hyperon-nucieon interactions taken from Nijmegen one boson exchange poten­ tials. The hyperon binding energies calculated from these potentials compare well with measured values. Although many studies have been made of hypernuclear structure1, most have been concerned with only a small number of hypernuclei. We consider the mass variation of hyperon binding energies in single hyperon hypernuclei throughout the entire p shell. We do so with the assumption that the ground states of p shell hypernuclei art- described by Os shell hypeions coupled to complex nuclear cores; cores which have closed Os shells and partially filled Op shells. Hypernuclear wavefunctions can then be determined by the diagonalisation of an appropriate Hamiltonian using the basis formed by such coupled states. The Hamiltonian to be considered is described in terms of one and two body matrix elements. The one body matrix elements were those of Cohen and Kurath2 for nucle- ons but were taken from data for the hyperon. The Cohen and Kurath (8-16)2BME potential energies were used for the two nucleon matrix elements, while the two body hyperon-nucleon matrix elements were calculated from the Nijmegen one boson ex­ change potentials3. These hyperon-nucleon potentials include amplitudes associated with several different meson exchanges, but do not allow for medium effects due to the presence of the other particles, for the transfer of more than one boson, or for basis space truncation.
    [Show full text]