Colotis Evagore Klug, 1829 ( = Daira Klug) (Véase Lámina 111, Figs

Total Page:16

File Type:pdf, Size:1020Kb

Colotis Evagore Klug, 1829 ( = Daira Klug) (Véase Lámina 111, Figs Colotis evagore Klug, 1829 ( = daira Klug) (Véase Lámina 111, figs. 17 y 18). Superfamilia: Papilionoidea Familia: Pieridae Subfamilia: Teracolinae Género: Colotis Hubner, 1819 Status: Vulnerable (anteriormente considerada especie migradora). Planta nutricia: Capparis spinosa (alcaparrera) de las caparidáceas, muy abundante en el Sureste español, estando citada también en Africa de especies de la propia familia pertenecientes a los géneros Cadaba y Maerua. Distribución: Desde hace treinta años venía detectándose en forma muy irregular su presencia en Almería, desapareciendo durante tres o cuatro años y volviendo a aparecer, pero puede considerarse ya establecida de acuerdo con numerosos observadores, que, desde la aparición del Libro Rojo de los Lepidópteros Ibéricos, han seguido su ciclo biológico sobre las alcaparreras de Málaga, Granada y Almería y más recientemente de Jaén (Alcaudete, Martos y Ubeda), incluido un ejemplar en San Lúcar de Barrameda (Cádiz). Las citas de Almería se encuentran en Adra, estribaciones de la Sierra de Gádor, Tabernas y Berja, habiendo penetrado en la provincia de Granada, La Malá, Arenas del Rey y Moraleda de Zafayona, Granada capital y Sierra de Alfacar y citada repetidamente de Torrox (costa malagueña); la última cita de cría es de Villajoyosa (Alicante), volando desde el nivel del mar a las mayores altitudes en que se ha descubierto en Granada de hasta 750 metros, Hábitat: Siempre unida a las alcaparreras que crecen en el llano o en las laderas más o menos abruptas circundantes. Ciclo biológico: Tiene varias generaciones y su oruga efectúa cuatro mudas, estando en vuelo en la amplia zona andaluza antes mencionada desde junio hasta noviembre, en varias generaciones sin solución de continuidad, pudiendo adscribirse las colonias españolas a la subespecie nouna ( = granadensis). Recomendaciones: Vigilancia continuada de las distintas colonias descubiertas por los entomólogos locales y establecimiento de reservas naturales con objeto de comprobar si continúa completando su ciclo biológico, cosa que se afirma por los investigadores que estudian su presencia en España y que mantienen a través de SHILAP Revta. lepid. una actualización perfecta de datos. El Ministerio de Medio Ambiente agradece sus comentarios.Copyright © 2006 Ministerio de Medio Ambiente .
Recommended publications
  • Butterfly Photography in Morocco
    Vol. 1 No. 1 1990 Morocco butterflies: KRIZEK 13 TROPICAL LEPIDOPTERA, 1(1): 13-20 BUTTERFLY PHOTOGRAPHY IN MOROCCO GEORGE O. KRIZEK 2111 Bancroft Place, N.W., Washington, DC 20008, USA ABSTRACT— Morocco, on the boundary between the Palearctic and the tropical African zones, supports the richest butterfly fauna in all of North Africa, with 140 species and subspecies. Discussed and illustrated here are 21 species, including two endemics. KEY WORDS: Anthocharis, Aritia, Aulographa, Azanus, Carcharodes, Coenonympha, Colotis, Cupido, Euchloe, Eu.phyd.ryas, Glaucopsyche, Gonepteryx, Hesperiidae, High Atlas, hostplants, Hyponephele, Lcpidoptcra, Lycaenidae, Lysandra, Melanargla, Melitaea, Middle Atlas, Nordtnannia, Nymphalidae, Pandoriana, Papilionidae, Philotes, Pieridae, Plebicula, Pseudochazara, Pyrgus, Tarucus, Thersamonia, Zegris, Zerynthia, Zizeeria. Fig. A. High Adas, view of Masif Asni, Morocco. Morocco lies on the border of and constitutes a contact zone typical flora; therefore, the entomological fauna inhabiting the between the Palearctic (Southern Mediterranean) and Ethiopian areas of these two formations is also very rich. The rocks of the zoogeographic regions. I visited Morocco twice, in June 1982 "Massif Moulay-Brahim" are characterized as Lower Carbonifer- and in May 1987, to collect and photograph butterflies in the ous sediments and the composition of the area at Asni as Permian areas of Ifrane in the Middle Atlas (Moyen Atlas), in Marrakech, and Triassic. Of course, the composition of the High Atlas, to and also in the High Atlas itself at several locations, including the south from the just described areas, is very complicated, and Asni and the gorges of Moulay Brahim in the High Atlas encompasses the oldest rocks of Precambrian basements followed, piedmont.
    [Show full text]
  • Redalyc.Colotis Evagore (Klug, 1829) Advancing Northwards in Spain
    SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Fric, Z. Colotis evagore (Klug, 1829) advancing northwards in Spain (Lepidoptera: Pieridae) SHILAP Revista de Lepidopterología, vol. 33, núm. 130, junio, 2005, pp. 169-171 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=45513007 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 169-171 Colotis evagore 13/6/77 18:26 Página 169 SHILAP Revta. lepid., 33 (130), 2005: 169-171 SRLPEF ISSN:0300-5267 Colotis evagore (Klug, 1829) advancing northwards in Spain (Lepidoptera: Pieridae) Z. Fric Abstract The “Desert Orange Tip”, Colotis evagore (Klug, 1829) is recorded for the first time from Northeast of Spain, which is about 300 km to the North if its range. Its expansion is probably caused by global climate change. KEY WORDS: Lepidoptera, Pieridae, Colotis evagore, distribution, Spain. Colotis evagore (Klug, 1829) avanzando hacia el norte en España (Lepidoptera: Pieridae) Resumen La “puntas naranja emigrante”, Colotis evagore (Klug, 1829) se cita por primera vez del nordeste de España, encontrándose cerca de 300 km. al norte de su zona. Esta expansión es probable que esté causada por el cambio cli- mático global. PALABRAS CLAVE: Lepidoptera, Pieridae, Colotis evagore, distribución, España. Introducción Recent distribution of majority of butterflies in Europe is considered as relatively well known. In most countries, good distribution atlases exist, and several publications summarise the distribution over whole continent - HIGGINS & RILEY (1970), TOLMAN & LEWINGTON (1997), and, finally, the impressive work by KUDRNA (2002).
    [Show full text]
  • The Status and Distribution of Mediterranean Butterflies
    About IUCN IUCN is a membership Union composed of both government and civil society organisations. It harnesses the experience, resources and reach of its 1,300 Member organisations and the input of some 15,000 experts. IUCN is the global authority on the status of the natural world and the measures needed to safeguard it. www.iucn.org https://twitter.com/IUCN/ IUCN – The Species Survival Commission The Species Survival Commission (SSC) is the largest of IUCN’s six volunteer commissions with a global membership of more than 10,000 experts. SSC advises IUCN and its members on the wide range of technical and scientific aspects of species conservation and is dedicated to securing a future for biodiversity. SSC has significant input into the international agreements dealing with biodiversity conservation. http://www.iucn.org/theme/species/about/species-survival-commission-ssc IUCN – Global Species Programme The IUCN Species Programme supports the activities of the IUCN Species Survival Commission and individual Specialist Groups, as well as implementing global species conservation initiatives. It is an integral part of the IUCN Secretariat and is managed from IUCN’s international headquarters in Gland, Switzerland. The Species Programme includes a number of technical units covering Species Trade and Use, the IUCN Red List Unit, Freshwater Biodiversity Unit (all located in Cambridge, UK), the Global Biodiversity Assessment Initiative (located in Washington DC, USA), and the Marine Biodiversity Unit (located in Norfolk, Virginia, USA). www.iucn.org/species IUCN – Centre for Mediterranean Cooperation The Centre was opened in October 2001 with the core support of the Spanish Ministry of Agriculture, Fisheries and Environment, the regional Government of Junta de Andalucía and the Spanish Agency for International Development Cooperation (AECID).
    [Show full text]
  • Species Composition and Dynamics in Abundance of Migrant and Sedentary Butterflies (Lepidoptera) at Gibraltar During the Spring Period
    Eur. J. Entomol. 111(4): 555–559, 2014 doi: 10.14411/eje.2014.057 ISSN 1210-5759 (print), 1802-8829 (online) Species composition and dynamics in abundance of migrant and sedentary butterflies (Lepidoptera) at Gibraltar during the spring period KEITH J. BENSUSAN 1, REBECCA NESBIT 2, CHARLES E. PEREZ 1, PIOTR TRYJANOWSKI 3 and PIOTR ZDUNIAK 4 , * 1 Gibraltar Ornithological and Natural History Society (GONHS), Jews’ Gate, Upper Rock Nature Reserve, P.O. 843, Gibraltar; e-mail: [email protected]; [email protected] 2 Society of Biology, Charles Darwin House, 12 Roger Street, London WC1N 2JU, UK; e-mail: [email protected] 3 Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71 C, 60-625 Poznań, Poland; e-mail: [email protected] 4 Department of Avian Biology and Ecology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland; e-mail: [email protected] Key words. Lepidoptera, butterflies, Gibraltar, migration, phenology, species composition Abstract. In order to understand patterns of abundances of migratory Lepidoptera in southernmost Europe and contrast this with those of sedentary species, we studied butterflies surveyed along transects during three spring migration seasons at the Rock of Gibraltar. Overall, 2508 butterflies belonging to 19 species were recorded. Of these, the four most numerous species accounted for almost 88% of all individuals recorded. These were the migratory Clouded Yellow Colias croceus, Red Admiral Vanessa atalanta and Painted Lady Vanessa cardui, and the sedentary Common Blue Polyommatus icarus. There was a significant correlation between abundance of P. icarus and C. croceus. Furthermore, abundances of C.
    [Show full text]
  • How Much Biodiversity Is in Natura 2000?
    Alterra Wageningen UR Alterra Wageningen UR is the research institute for our green living environment. P.O. Box 47 We off er a combination of practical and scientifi c research in a multitude of How much Biodiversity is in Natura 2000? 6700 AA Wageningen disciplines related to the green world around us and the sustainable use of our living The Netherlands environment, such as fl ora and fauna, soil, water, the environment, geo-information The “Umbrella Eff ect” of the European Natura 2000 protected area network T +31 (0) 317 48 07 00 and remote sensing, landscape and spatial planning, man and society. www.wageningenUR.nl/en/alterra The mission of Wageningen UR (University & Research centre) is ‘To explore Technical report Alterra Report 2730B the potential of nature to improve the quality of life’. Within Wageningen UR, ISSN 1566-7197 nine specialised research institutes of the DLO Foundation have joined forces with Wageningen University to help answer the most important questions in the Theo van der Sluis, Ruud Foppen, Simon Gillings, Thomas Groen, René Henkens, Stephan Hennekens, domain of healthy food and living environment. With approximately 30 locations, 6,000 members of staff and 9,000 students, Wageningen UR is one of the leading Kim Huskens, David Noble, Fabrice Ottburg, Luca Santini, Henk Sierdsema, Andre van Kleunen, organisations in its domain worldwide. The integral approach to problems and Joop Schaminee, Chris van Swaay, Bert Toxopeus, Michiel Wallis de Vries and Lawrence Jones-Walters the cooperation between the various disciplines
    [Show full text]
  • Climate Change and Habitat Associations At
    CLIMATE CHANGE AND HABITAT ASSOCIATIONS AT SPECIES’ RANGE BOUNDARIES Thesis submitted by Rachel Mary Pateman For examination for the degree of PhD University of York Department of Biology July 2012 1 Abstract ABSTRACT Species are more restricted in their habitat associations at their leading-edge range margins where climatic conditions are marginal. Hence they are predicted to broaden their associations in these locations as the climate warms, potentially increasing habitat availability and rates of range expansion. I analysed long-term distribution records (collected by volunteers) and abundance data (UK Butterfly Monitoring Scheme transect data) to investigate how the habitat and host plant associations of two butterfly species that reach their leading-edge range margins in Britain have changed over 40 years of climate warming. The speckled wood (Pararge aegeria) is primarily associated with woodland but its habitat associations vary spatially and temporally. I found that this species has a weaker association with woodland in warmer parts of Britain, particularly in regions with warm and wet summers. Over time, its occurrence outside of woodland has increased most where summer and winter temperatures and summer rainfall have increased the most. Field experiments showed that larval performance is poorer in open (grassland) than closed (woodland) habitats, associated with microclimatic differences between habitats. Thus I conclude that slower population growth rates outside woodland play an important role in driving the observed variation in habitat associations. The brown argus (Aricia agestis) was previously restricted to using rockrose (Helianthemum nummularium) as its larval host plant in Britain, which grows in locations with warm microclimates. I have shown that warmer summers have allowed it to increase its use of Geraniaceae host species, which occur in cooler locations.
    [Show full text]
  • Download Document
    SANBI Biodiversity Series 16 Butterflies of South Africa’s National Botanical Gardens An illustrated checklist compiled by Christopher K. Willis & Steve E. Woodhall Pretoria 2010 SANBI Biodiversity Series The South African National Biodiversity Institute (SANBI) was established on 1 Sep- tember 2004 through the signing into force of the National Environmental Manage- ment: Biodiversity Act (NEMBA) No. 10 of 2004 by President Thabo Mbeki. The Act expands the mandate of the former National Botanical Institute to include responsibili- ties relating to the full diversity of South Africa’s fauna and flora, and builds on the internationally respected programmes in conservation, research, education and visitor services developed by the National Botanical Institute and its predecessors over the past century. The vision of SANBI: Biodiversity richness for all South Africans. SANBI’s mission is to champion the exploration, conservation, sustainable use, appre- ciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. SANBI Biodiversity Series publishes occasional reports on projects, technologies, work- shops, symposia and other activities initiated by or executed in partnership with SANBI. Photographs: Steve Woodhall, unless otherwise noted Technical editing: Emsie du Plessis Design & layout: Sandra Turck Cover design: Sandra Turck Cover photographs: Front: Pirate (Christopher Willis) Back, top: African Leaf Commodore (Christopher Willis) Back, centre: Dotted Blue (Steve Woodhall) Back, bottom: Green-veined Charaxes (Christopher Willis) Citing this publication WILLIS, C.K. & WOODHALL, S.E. (Compilers) 2010. Butterflies of South Africa’s National Botanical Gardens. SANBI Biodiversity Series 16. South African National Biodiversity Institute, Pretoria. ISBN 978-1-919976-57-0 © Published by: South African National Biodiversity Institute.
    [Show full text]
  • Phylogeny of European Butterflies V1.0
    bioRxiv preprint doi: https://doi.org/10.1101/844175; this version posted November 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A complete time-calibrated multi-gene phylogeny of the European butterflies Martin Wiemers1,2*, Nicolas Chazot3,4,5, Christopher W. Wheat6, Oliver Schweiger2, Niklas Wahlberg3 1Senckenberg Deutsches Entomologisches Institut, Eberswalder Straße 90, 15374 Müncheberg, Germany 2UFZ – Helmholtz Centre for Environmental Research, Department of Community Ecology, Theodor- Lieser-Str. 4, 06120 Halle, Germany 3Department of Biology, Lund University, 22362 Lund, Sweden 4Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Gothenburg, Sweden. 5Gothenburg Global Biodiversity Centre, Box 461, 405 30 Gothenburg, Sweden. 6Department of Zoology, Stockholm University, 10691 Stockholm, Sweden *corresponding author: e-mail: [email protected] Abstract With the aim of supporting ecological analyses in butterflies, the third most species-rich superfamily of Lepidoptera, this paper presents the first time-calibrated phylogeny of all 496 extant butterfly species in Europe, including 18 very localized endemics for which no public DNA sequences had been available previously. It is based on a concatenated alignment of the mitochondrial gene COI and up to 11 nuclear gene fragments, using Bayesian inference of phylogeny. To avoid analytical biases that could result from our region-focus sampling, our European tree was grafted upon a global genus- level backbone butterfly phylogeny for analyses. In addition to a consensus tree, we provide the posterior distribution of trees and the fully-concatenated alignment for future analyses.
    [Show full text]
  • Red Data Book of European Butterflies (Rhopalocera)
    Red Data Book of European Butterflies (Rhopalocera) Nature and Environment, No. 99 Red Data Book of European Butterflies (Rhopalocera) Chris van SWAAY Dutch Butterfly Conservation, Wageningen, The Netherlands and Martin WARREN British Butterfly Conservation, Wareham, United Kingdom Convention on the Conservation of European Wildlife and Natural Habitats Nature and Environment, No. 99 Council of Europe Publishing Production: Dutch Butterfly Conservation British Butterfly Conservation De Vlinderstichting P.O. Box 444 P.O. Box 506 Wareham NL-6700 AM Wageningen Dorset BH20 5YA The Netherlands United Kingdom tel.: +31-317-467346 tel.: +44-1929-400209 fax: +31-317-420296 fax: +44-1929-400210 email: [email protected] email: [email protected] homepage: http://www.bos.nl/vlinderstichting Financial support: Council of Europe English Nature Ministry of Agriculture, Nature Management and Fisheries, Directorate for Nature Management of The Netherlands Citation: Van Swaay, C.A.M. & Warren, M.S. (1999) Red Data book of European butterflies (Rhopalocera). Nature and Environment, No. 99, Council of Europe Publishing, Strasbourg. The British Butterfly Conservation Society Ltd. is registered in England no. 2206468, charity no. 254937 CONTENTS Executive summary ............................................ 7 Part I: Analysis and overview 1. Introduction ............................................... 12 2. Methods and criteria ........................................ 13 2.1 Collection of distribution and trend data ................... 13 2.2
    [Show full text]
  • Amurum Butterflies
    Oskar Brattström - Nigerian butterflies Click here to email the author Version 1.1 WHITES and SULPHURS (Family Pieridae) Savannah Dotted Border (Mylothris aburi) OSKAR BRATTSTRÖM UPDATED ON 16TH OF NOVEMBER, 2020 WHITES and SULPHURS (Family Pieridae) The Whites and Sulphurs are a family of medium- sized butterflies with mainly white, yellow and orange ground colour on their wings with darker, often black, additional markings. Many species are widespread and found in most parts of sub- Saharan Africa, but some genera like Mylothris, have numerous local endemics. Many Pieridae are intra-African migrants, following the annual rain cycle. In West Africa, that generally means they are found further south during the dry season, and then move back north during the wet season. This guide contains a selection of mostly common or easily identifiable species, while complex genera are only partially covered. DAVE MONTREUIL ACKNOWLEDGEMENTS The author would like to thank Nadia Van Gordon who proofread all the text sections, Jon Baker who provided many valuable comments, all the photographers without whose photos a project such as this would be close to impossible, all the early field testers who helped me work out technical issues, Steve Collins and the African Butterfly Research Institute (ABRI) for all the support over the years, A.P. Leventis Ornithological Research Institute (APLORI) for their incredible work to promote biodiversity in Nigeria, the Nigerian Bird Atlas Project for leading the way on Nigerian Citizen Science, and Ulf Ottosson for his constant enthusiasm and dedication to conservation. This project is dedicated to the memory of Dr. Torben B.
    [Show full text]
  • Diversity and Abundance of Butterfly Species and Farmers' Pesticide
    DIVERSITY AND ABUNDANCE OF BUTTERFLY SPECIES AND FARMERS’ PESTICIDE USE PRACTICES AND PERCEPTIONS ON INSECT POLLINATORS IN FARMLAND AND NGANGAO FOREST, TAITA HILLS, KENYA MWINZI DUNCAN KIOKO B.Sc. Agriculture (Hons.), University of Nairobi A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR AWARD OF THE DEGREE OF MASTER OF SCIENCE IN CROP PROTECTION DEPARTMENT OF PLANT SCIENCE AND CROP PROTECTION FACULTY OF AGRICULTURE UNIVERSITY OF NAIROBI NOVEMBER 2019 DECLARATION This thesis is my original work and has not been presented for a degree in any other university. Mwinzi Duncan Kioko …………………………………. Date …………………………. A56/82718/2015 Approval This thesis has been submitted for examination with our approval as University supervisors. Prof. John H. Nderitu ……………………………………Date…………………. Department of Plant Science and Crop Protection University of Nairobi Prof. John W. Kimenju ……………………………………….Date……………… Department of Plant Science and Crop Protection University of Nairobi Dr. Esther N. Kioko ……………………………………………Date………………. Zoology Department National Museums of Kenya i DEDICATION I dedicate this work to my parents, Mr. Jackson Mbondo and Mrs. Florence Mwinzi, my wife Beth Mbithe and my daughter Hope Mumo, for their love and support, which ensured successful completion of my studies. ii ACKNOWLEDGEMENTS I would like to thank God for the grace and favour He has shown me throughout my studies and project. I acknowledge the National Museums of Kenya (NMK) and JRS Biodiversity Foundation for the financial support for my project, The University of Nairobi for granting me a scholarship. I acknowledge and commend the constant support provided by supervisors, Prof. John Nderitu, Prof. John Kimenju and Dr. Esther Kioko. Without their invaluable advice, encouragement, contributions and guidance, the objectives of this study would not have been achieved.
    [Show full text]
  • Effects of Global Warming on Predatory Bugs Supported by Data Across Geographic and Seasonal Climatic Gradients
    Effects of Global Warming on Predatory Bugs Supported by Data Across Geographic and Seasonal Climatic Gradients Tarryn Schuldiner-Harpaz*, Moshe Coll Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel Abstract Global warming may affect species abundance and distribution, as well as temperature-dependent morphometric traits. In this study, we first used historical data to document changes in Orius (Heteroptera: Anthocoridae) species assemblage and individual morphometric traits over the past seven decades in Israel. We then tested whether these changes could have been temperature driven by searching for similar patterns across seasonal and geographic climatic gradients in a present survey. The historical records indicated a shift in the relative abundance of dominant Orius species; the relative abundance of O. albidipennis, a desert-adapted species, increased while that of O. laevigatus decreased in recent decades by 6 and 10– 15 folds, respectively. These shifts coincided with an overall increase of up to 2.1uC in mean daily temperatures over the last 25 years in Israel. Similar trends were found in contemporary data across two other climatic gradients, seasonal and geographic; O. albidipennis dominated Orius assemblages under warm conditions. Finally, specimens collected in the present survey were significantly smaller than those from the 1980’s, corresponding to significantly smaller individuals collected now during warmer than colder seasons. Taken together, results provide strong support to the hypothesis that temperature is the most likely driver of the observed shifts in species composition and body sizes because (1) historical changes in both species assemblage and body size were associated with rising temperatures in the study region over the last few decades; and (2) similar changes were observed as a result of contemporary drivers that are associated with temperature.
    [Show full text]