Mrcp Paces Manual

Total Page:16

File Type:pdf, Size:1020Kb

Mrcp Paces Manual MRCP PACES MANUAL Louise Pealing MA Hons (Cantab) MBBS MSc MRCP MRCGP General Practitioner and Clinical Research Fellow, Nuffield Department of Primary Care Health Sciences, University of Oxford Benjamin Mullish MB BChir MA (Cantab) MRCPAFHEA Specialty Registrar/Academic Clinical Fellow, Gastroenterology and Hepatology, St Mary’s Hospital, London Philip J Smith BMedSci (Hons) BMBS (Hons) MRCP MSc (Nutrition) Gastroenterology Specialist Registrar and MRC Clinical Research Training Fellow Gastroenterology Department, University College London Hospital, London Edited by Douglas C Macdonald BM (Hons) BSc (Hons) MRCP PhD Consultant Hepatologist, Royal Free London NHS Foundation Trust Royal Free Hospital, London Contents Preface vi Introduction vii STATION 1 ^ Respiratory and Abdominal Examinations 1 The abdominal examination 3 Abdominal scenarios 7 The respiratory examination 47 Respiratory scenarios 52 STATION 2 ^ History-Taking Examination 71 History-taking scenarios 77 STATION 3 ^ Cardiovascular and Neurological Examinations 169 The cardiovascular examination 170 Cardiovascular scenarios 175 The neurological examination 220 Neurological scenarios 241 STATION 4 ^ Communication skills and Ethics’ Examination 353 Approach to the communication skills and ethics station 355 Communication skills and ethics scenarios 359 STATION 5 ^ Integrated Clinical Assessment 393 Approach to Station 5 398 Integrated clinical assessment scenarios 407 Abbreviations 599 Index 605 v Station 3 Neurological scenarios 1. Multiple sclerosis 17. Median nerve palsy 2. Parkinson’s disease 18. Ulnar nerve palsy 3. Motor neuron disease 19. Radial nerve palsy 4. Hemiparesis 20. Common peroneal nerve 5. Spastic paraparesis palsy and L4–5 root lesions 6. Cervical myelopathy 21. Nystagmus 7. Syringomyelia/Syringobulbia 22. Ophthalmoplegia 8. Myotonic dystrophy 23. Visual field defect 9. Myasthenia gravis 24. Dysphasia 10. Muscular dystrophy 25. Bulbar and pseudobulbar 11. Charcot–Marie–Tooth palsy disease 26. Brain-stem syndromes 12. Friedreich’s ataxia 27. Cerebellopontine angle 13. Cerebellar syndrome lesion 14. Peripheral neuropathy 28. Jugular foramen syndrome 15. Facial nerve palsy 29. Old polio 16. Wasting of the small 30. Involuntary movements and muscles of the hand Huntington’s disease 306 MRCP PACES Manual SCENARIO 17. MEDIAN NERVE PALSY Identifying clinical signs profundus I and II and flexor digitorum super- ficialis, and unopposed action of the radial The median nerve serves the intrinsic small mus- nerve-innervated finger extensors. Some call this cles of the hand not served by the ulnar nerve. the ‘papal sign’. Look for surgical or traumatic The median nerve also serves muscles of the scars at the wrist, palmar crease, forearm or volar surface of the forearm, which includes the elbow. main wrist flexors. Motor function: there is weak thumb abduction The most common median nerve palsy appearing (abductor pollicis brevis), tested for by asking the in the PACES examination is a carpal tunnel patient to place the hand palm up and point the syndrome. Indeed this is the most common per- thumb up to the sky perpendicular to the plane ipheral mononeuropathy. However, there can be of the palm and test against resistance of your more proximal lesions of the median nerve that thumb. There is weakness of thumb opposition , offer more objective clinical signs. tested for by asking the patient to oppose the thumb with the little finger and stop you pulling Distal median nerve lesions (carpal them apart. There may be normal flexion at the tunnel syndrome) thumb MCP joint due to intact ulnar nerve in- Inspection: the hand shows thenar wasting (a nervation of flexor pollicis brevis. There is nor- late sign) with hypothenar and first dorsal inter- mal flexion of the thumb at the IP joint due to osseous sparing. The thumb is externally rotated intact innervation of flexor pollicis longus in the and adducted into the plain of the palm (Figure forearm. Arm pronation and wrist flexion are 3.18) due to weakness of opponens pollicis and also normal if the median nerve lesion is distal. abductor pollicis, and some refer to this as ‘ape- hand’ deformity (but it is best to describe the Sensory loss : there is sensory loss in the palmar position of the thumb). The index (first) and aspect of the thumb and lateral two and a half middle (second) fingers may also be held in fingers but normal sensation over the thenar extension due to weakness of flexor digitorum eminence (supplied by the palmar cutaneous branch of the median nerve which does not pass through the carpal tunnel). Additional tests: you can ask to perform Tinel’s test – tapping over the median nerve at the wrist may cause paraesthesia in the distal median dis- tribution. Phalen’s test involves flexing the wrist to 90 8 for at least 60 seconds, which may cause paraesthesia in the distal median distribution. The median nerve compression test involves pressing on the palmar aspect of the wrist for up to 60 seconds, which may cause paraesthesia in the distal median distribution. Figure 3.17 Median nerve cutaneous dis- Additional signs tribution Examine for signs of other diseases associated with carpal tunnel syndrome such as: The Cardiovascular and Neurological Examinations 307 Median nerve Pronator teres Flexor carpi radialis Palmaris longus Anterior interosseous nerve Flexor digitorum profundus I & II Flexor digitorum Flexor pollicis longus superficialis Pronator quadratus Abductor pollicis brevis Flexor pollicis brevis Opponens pollicis Second lumbrical First lumbrical Figure 3.18 Route and muscles innervated by the median nerve • Hypothyroidism: goitre, slowly relaxing Anterior interosseous nerve palsy reflexes, pretibial myxoedema This nerve has branches to flexor digitorum pro- • Acromegaly: supraorbital ridge, prognathism, fundus I and II, flexor pollicis longus and prona- interdental separation, bitemporal tor quadratus. It is typically affected by a hemianopia, large doughy hands, midshaft fracture of the radius, excessive exercise hypertension or penetrating injuries of the forearm. There is • Rheumatoid arthritis : deforming arthropathy, weakness of the thumb and index finger flexion , elbow nodules, steroid skin changes, best shown with the ‘okay’ sign, ie flattened due episcleritis/scleritis, interstitial lung disease to failure of distal flexion (see Figure 3.17). The • Diabetes mellitus: finger-prick testing, thenar eminence muscles are spared. There is no peripheral neuropathy, retinopathy sensory loss . • Gout: deforming arthropathy and gouty tophi on hands, ears and feet. Di¡erential diagnosis Proximal median nerve lesions Pronator syndrome: compression of the median • Elbow lesions: nerve can occur as it passes between the two • Fracture: supracondylar fractures are most heads of the pronator teres, high in the volar common aspect of the forearm. It can present with purely • Dislocation sensory symptoms of pain over the volar surface • Compression: ligament of Struthers of the forearm at rest or with forearm pronation. • Forearm lesions: There will be sensory loss within the median • Fracture: midshaft radial fracture causing distribution including the thenar eminence (un- anterior osseous nerve palsy like carpal tunnel syndrome). • Injury: penetrating injuries of the forearm 308 MRCP PACES Manual • Compression: pronator teres syndrome pothyroidism, diabetes, acromegaly, rheumatoid • Wrist lesions: arthritis, gout, renal failure, multiple myeloma • Fracture/trauma and amyloidosis. • Carpal tunnel syndrome (CTS). Investigations Electrophysiology: nerve conduction studies and Clinical judgement and EMG. maintaining patient welfare Imaging: seldom needed, but MRI might be con- CTS is caused by compression of the median sidered. nerve within the carpal tunnel, which is bound by the carpal bones below, flexor retinaculum Management above, radially by the scaphoid and trapezium, • Treat any underlying associated conditions and medially by the pisiform and hamate. • Physiotherapy and splint the wrists with a degree of dorsiflexion It is most commonly idiopathic, but associated • Steroid injections into the carpal tunnel area conditions include: pregnancy, menopause, hy- • Surgical decompression of the carpal tunnel. The Cardiovascular and Neurological Examinations 309 SCENARIO 18. ULNAR NERVE PALSY Identifying clinical signs the radial nerve). With the hands held supine, marked hypothenar wasting with sparing of the The ulnar nerve serves most of the intrinsic small thenar eminence can be seen, and no wasting of muscles of the hand. However, the ulnar nerve the forearm muscles. Look for scars or deformity also supplies two important extrinsic muscles of from trauma, surgery or arthritis around the fore- the hand: flexor carpi ulnaris and flexor digitor- arm and wrist. um profundus 4 and 5; it is important to remem- ber this when considering a claw hand deformity. Motor function: there is weak abduction (dorsal Clues pointing towards an ulnar nerve lesion interossei) and weak adduction (palmar inter- include unilateral signs, clawing of the hand and ossei) of the fingers. There is weak thumb adduc- wasting of the hypothenar eminence with sparing tion (adductor pollicis) as demonstrated by of the thenar eminence. attempting to grip a piece of paper held between the borders of the index finger and extended Distal ulnar nerve lesion (distal to the thumb. Grip can be maintained only using thumb elbow) flexion (intact flexor pollicis longus served by the Inspection: with the hands held prone there is median nerve), known as Froment’s sign
Recommended publications
  • Pseudo Bulbar Palsy: a Rare Cause of Extubation Failure
    Letters to the Editor 2. Deepak N A, Patel ND. Differential diagnosis of acute liver failure in Access this article online India. Ann Hepatol 2006;5:150‑6. Quick Response Code: 3. Singh V, Bhalla A, Sharma N, Mahi SK, Lal A, Singh P, et al. Website: Pathophysiology of jaundice in amoebic liver abscess. Am J Trop Med www.ijccm.org Hyg 2008;78:556‑9. 4. Kamarasu K, Malathi M, Rajagopal V, Subramani K, Jagadeeshramasamy D, Mathai E, et al. Serological evidence for wide DOI: distribution of spotted fevers & typhus fever in Tamil Nadu. Indian J 10.4103/ijccm.IJCCM_244_18 Med Res 2007;126:128‑30. 5. Poomalar GK, Rekha R. Scrub typhus in pregnancy. J Clin Diagn Res 2014;8:1‑3. How to cite this article: Mahto SK, Sheoran A, Goel A, Agarwal N. This is an open access journal, and articles are distributed under the terms of the Creative Uncommon cause of acute liver failure with encephalopathy. Indian J Crit Commons Attribution‑NonCommercial‑ShareAlike 4.0 License, which allows others to Care Med 2018;22:619‑20. remix, tweak, and build upon the work non‑commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. © 2018 Indian Journal of Critical Care Medicine | Published by Wolters Kluwer ‑ Medknow Pseudo Bulbar Palsy: A Rare Cause of Extubation Failure Sir, Extubation Failure (EF) following weaning trials is a well known entity in Intensive Care Units (ICUs). The varied prevalence (2%–25%) of EF depends on the population studied and the time frame (24–72 h) included for analysis.[1] Airway edema and nonresolution of the primary disease are a common cause.
    [Show full text]
  • Ulnar Claw-Hand Related Neglected Post-Traumatic Anterior Shoulder Joint Dislocation
    Open Access Library Journal 2017, Volume 4, e3454 ISSN Online: 2333-9721 ISSN Print: 2333-9705 Ulnar Claw-Hand Related Neglected Post-Traumatic Anterior Shoulder Joint Dislocation Hermawan Nagar Rasyid Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Padjadjaran, Dr. Hasan Sadikin Teaching Hospital, Bandung, Indonesia How to cite this paper: Rasyid, H.N. Abstract (2017) Ulnar Claw-Hand Related Neglected Post-Traumatic Anterior Shoulder Joint Shoulder joint is the most frequently dislocated joint. Humeral head disloca- Dislocation. Open Access Library Journal, tion pushed the nerve toward medial side. Neglected shoulder dislocation is 4: e3454. difficult to manage and requires extensive procedures to obtain good func- https://doi.org/10.4236/oalib.1103454 tional outcome. In the case of negligence, it is often found loss of the anterior Received: February 13, 2017 capsule due to absorption of the capsule. Nerve lesions, in particular the ulnar Accepted: March 17, 2017 nerve, often do not receive attention. Clinically, it often occurred from neura- Published: March 20, 2017 praxia to severe condition like claw-hand deformity. In my experience of a Copyright © 2017 by author and Open neglected case, there was a 53-year-old woman who presented to the ortho- Access Library Inc. paedic clinic with a left anterior shoulder fracture dislocation following a fall This work is licensed under the Creative onto the right shoulder and upper right arm. She had treated herself at home Commons Attribution International for around six months before visiting the clinic. She also complained of some License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ deformities on her ring and little fingers, known as ulnar claw-hand.
    [Show full text]
  • Hirayama Disease
    VIDEO CASE SOLUTION VIDEO CASE SOLUTION Hirayama Disease BY AZIZ SHAIBANI, MD, FACP, FAAN, FANA Last month’s case presented a 21-year-old shrimp peeler who developed weakness of his fingers five years earlier that pro- gressed to a point where he was unable to perform his job. CPK and 530 U/L and EMG revealed chronic diffuse denerva- tion of the arms and muscles with normal sensory and motor responses. Watch the exam at PracticalNeurology.com. Chronic unilateral or bilateral pure motor weakness of the hand and muscles in a young patient is not common. DIFFERENTIAL DIAGNOSIS • Cervical cord pathology such as Syringomyelia: dissociated sensory loss is typically present. • Brachial plexus pathology: sensory findings are usually present. • Motor neurons disease: ALS, spinal muscular atrophy (SMA). – Cervical Spines are usually investigated before neuromuscular referrals are made. – The lack of pain, radicular or sensory symptoms and normal sensory SNAPS and cervical MRIs ruled out most of the mentioned possibilities except: • distal myopathy (usually not unilaterial) and spinal muscular atrophy. • EMG/NCS demonstration of chronic distal denervation with normal sensory responses and no demyelinating features lim- ited the diagnosis to MND. • Segmental denervation pattern further narrows the diagnosis to Hirayama disease (HD). HIRAYAMA DISEASE • HD is a sporadic and focal form of SMA that affects predominantly males between the ages of 15 and 25 years. • Weakness and atrophy usually starts unilaterally in C8-T1 muscles of the hands and forearm (typically in the dominant hand). – In roughly one-third of cases, the other hand is affected and weakness may spread to the proximal muscles.
    [Show full text]
  • Physical Therapy Improved Hand Function in a Patient with Traumatic Peripheral Lesion: a Case Study
    American Medical Journal 3 (2): 161-168, 2012 ISSN 1949-0070 © 2012 Science Publications Physical Therapy Improved Hand Function in a Patient with Traumatic Peripheral Lesion: A Case Study 1,2 Marco Orsini, 2,3 Julio Guilherme Silva, 3Clynton Lourenco Correa, 4Diego Rogrigues, 5Acary Bulle Oliveira, 4Valeria Marques Coelho, 4Debora Gollo, 1Antonio Marcos da Silva Catharino, 6Dionis Machado, 6Victor Hugo do Vale Bastos, 1Marco Antonio Araujo Leite, 7Gabriela Guerra Leal Souza, 1Carlos Henrique Melo Reis and 2Sara Lucia Silveira de Menezes 1Departament of Neurology, Nova Iguacu University, Hospital Geral de Nova Iguacu, Nova Iguacu, RJ, Brazil 2Master’s Program in Science of Rehabilitation, Augusto Motta University Centre (UNISUAM), Rio de Janeiro, RJ, Brazil 3Department of Medical Clinic, Faculty of Medicine, School of Physiotherapy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil 4Fluminense Rehabilitation Association, Niteroi, RJ, Brazil 5Department of the, Neuromuscular Disease Federal University of Sao Paulo (UNIFESP), Vila Mariana, Sao Paulo, Brazil 6Department of the Physical Therapy Federal University of Piaui (UFPI), Parnaiba, Piaui, Brazil 7Department of Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil Abstract: Problem statement: Nerves are frequently injured by traumatic lesions, such as crushing, compression (entrapment), stretching, partial and total extraction, resulting in damages to the transmission of nerve impulses and to the reduction or loss of sensitivity, to the motility and to the reflexes of the innervated area. The objective of this study was to evaluate the results of a rehabilitation program that lasted three months in the process of traumatic injury recovery of the median and ulnar nerves in a 52 year-old patient.
    [Show full text]
  • An Unusual Cause of Pseudomedian Nerve Palsy
    Hindawi Publishing Corporation Case Reports in Neurological Medicine Volume 2011, Article ID 474271, 3 pages doi:10.1155/2011/474271 Case Report An Unusual Cause of Pseudomedian Nerve Palsy Zina-Mary Manjaly, Andreas R. Luft, and Hakan Sarikaya Department of Neurology, University Hospital Zurich, Frauenklinikstraße 26, 8091 Zurich,¨ Switzerland Correspondence should be addressed to Zina-Mary Manjaly, [email protected] Received 20 July 2011; Accepted 9 August 2011 Academic Editors: J. L. Gonzalez-Guti´ errez,´ V. Rajajee, and Y. Wakabayashi Copyright © 2011 Zina-Mary Manjaly et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We describe a patient who presented with an acute paresis of her distal right hand suggesting a peripheral median nerve lesion. However, on clinical examination a peripheral origin could not be verified, prompting further investigation. Diffusion-weighted magnetic resonance imaging revealed an acute ischaemic lesion in the hand knob area of the motor cortex. Isolated hand palsy in association with cerebral infarction has been reported occasionally. However, previously reported cases presented predominantly as ulnar or radial palsy. In this case report, we present a rather rare finding of an acute cerebral infarction mimicking median never palsy. 1. Case median nerve, which was normal (Figure 1(c)). Magnetic resonance imaging (MRI) on the same day revealed a small A 60-year-old woman presented to the emergency depart- diffusion restriction in a part of the left precentral gyrus that ffi ment with di culty in moving the thumb, index, and middle is known as “the hand knob” area (Figure 1(d))[2].
    [Show full text]
  • Melioidosis: a Potentially Life Threatening Infection
    CONTINUING MEDICAL EDUCATION Melioidosis: A Potentially Life Threatening Infection SH How, MMed*, CK Liam, FRCP*· *Department of Internal Medicine, Kulliyyah of Medicine, International Islamic University Malaysia, FO.Box 141, 27510, Kuantan, Pahang, Malaysia, **Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, MalaysIa Introduction example in Thailand, it is most commonly seen in the north-eastern region with an incidence of 4.4 per Melioidosis is caused by the gram-negative bacillus, 100,000 population per year'. In Northern Australia, Burkholderia pseudomallei, a common soil and fresh the incidence is higher (16.5 per 100,000 populations water saprophyte in tropical and subtropical regions. It 4 per yearY than that in Thailand • The incidence in is endemic in tropical Australial and in Southeast Asian Pahang and Singapore is 6.1 per 100, 000 population 23 4 countries, particularly Malaysia , Thailand and per year3 and 1.7 per 100,000 population per yearS, Singapores. However, only few doctors in these respectively. However, the true incidence may be endemic areas are fully aware of this infection. Hence, higher than that reported as most of these studies the management of this infection is often not included culture-confirmed cases only. Furthermore, appropriate and suboptimal. A recent study in Pahang some patients with mild infection from the rural areas has shown the incidence of this infection in Pahang3 is may not present to the hospital. More and more 4 comparable with that in northern Thailand • The melioidosis cases are being reported from previously overall mortality from this infection remains extremely unreported parts of the world especially southern high despite recent advancement in its treatment.
    [Show full text]
  • Classification of Finger Posture in Drop Finger Due to Cervical Foraminal Stenosis: a Mini-Review
    hysical M f P ed l o ic a in n r e u & o R J l e a h International Journal of Physical n a b o i t i l i a ISSN: 2329-9096t a n r t i e o t n n I Medicine & Rehabilitation Mini Review Classification of Finger Posture in Drop Finger Due to Cervical Foraminal Stenosis: A Mini-Review Mitsuru Furukawa1*, Michihiro Kamata2 1Department of Orthopedic Surgery, Murayama Medical Center, Tokyo, Japan; 2Department of Orthopedic Surgery, Keiyu Hospital, Kanagawa, Japan ABSTRACT Few reports have been published examining cervical foraminal stenosis as the cause of drop finger. This mini-review, therefore, will provide a summary of the findings of articles published on this topic, written in both English and Japanese. Cervical foraminal stenosis is difficult to diagnose from imaging findings alone; thus, physical examination findings are often needed to make a firm diagnosis. Numbness of the fingers, the extent of interscapular pain, and finger posture can be used to differentiate drop finger due to cervical foraminal stenosis from other diseases. It is crucial to provide sufficient explanation to the patient before a decompression surgery is performed because the recovery of muscle strength is often incomplete and the improvement may be small. Keywords: Drop finger; Cervical foraminal stenosis; C7 nerve root; C8 nerve root ABBREVIATIONS: RESULTS CFS: cervical foraminal stenosis; PION; Posterior Interosseous The search obtained three case reports, one clinical feature, and Nerve; ECR; Extensor Carpi Radialis; EDM; Extensor Digiti one surgical outcome from PubMed, whereas two case reports Minimi; EIP; Extensor Indicis Proprius and two reviews came from the Japan Medical Abstracts Society.
    [Show full text]
  • Table of Contents
    TABLE OF CONTENTS 1. INTRODUCTION . Faculty . Program 2. GUIDELINES . Fellowship Appointments . Fellow Selection 3. REQUIREMENTS . UAB Child Neurology Training Requirements . Call Requirements . Moonlighting Policy . ACGME Duty Hours . Policy on Fatigue . ABPN Training Requirements 4. GOALS AND OBJECTIVES . Overall Program Goals and Objectives . Adult Year PG3-PG4 . Inpatient PG4 . Inpatient PG5 . Outpatient . Neuromuscular . Epilepsy . Neuropathology . Psychiatry . Conferences . Required Research Survey Course 5. CURRICULUM IN CHILD NEUROLOGY . Purpose . Structure . Content 6. SALARY AND BENEFITS 7. CRITERIA FOR ADVANCEMENT . Educational Expectations . Disciplinary Procedures . Grievance Procedure 8. EVALUATIONS . Supervision of Fellows Policy . Fellow Evaluations . Attending Evaluations . Program Evaluations . Peer and Self Evaluations . Healthcare Professional Evaluations INTRODUCTION: Child Neurology is a specialty of both pediatrics and neurology which focuses on the nervous system of the pediatric population. The practice of child neurology requires competence and training in both pediatrics and neurology in order to understand and treat disorders of the pediatric nervous system. This manual outlines the goals and expectations as well as logistics of the Child Neurology training program at The University of Alabama at Birmingham. A. Clinical competence requires: 1. A solid fund of basic and clinical knowledge and the ability to maintain it at current levels for a lifetime of continuous education. 2. The ability to perform an adequate history and physical examination. 3. The ability to appropriately order and interpret diagnostic tests. 4. Adequate technical skills to carry out selected diagnostic procedures. 5. Clinical judgment to critically apply the above data to individual patients. 6. Attitudes conducive to the practice of neurology, including appropriate interpersonal interactions with patients and families, professional colleagues, supervisory faculty and all paramedical personnel.
    [Show full text]
  • EM Guidemap - Myopathy and Myoglobulinuria
    myopathy EM guidemap - Myopathy and myoglobulinuria Click on any of the headings or subheadings to rapidly navigate to the relevant section of the guidemap Introduction General principles ● endocrine myopathy ● toxic myopathy ● periodic paralyses ● myoglobinuria Introduction - this short guidemap supplements the neuromuscular weakness guidemap and offers the reader supplementary information on myopathies, and a short section on myoglobulinuria - this guidemap only consists of a few brief checklists of "causes of the different types of myopathy" that an emergency physician may encounter in clinical practice when dealing with a patient with acute/subacute muscular weakness General principles - a myopathy is suggested when generalized muscle weakness involves large proximal muscle groups, especially around the shoulder and proximal girdle, and when the diffuse muscle weakness is associated with normal tendon reflexes and no sensory findings - a simple classification of myopathy:- Hereditary ● muscular dystrophies ● congenital myopathies http://www.homestead.com/emguidemaps/files/myopathy.html (1 of 13)8/20/2004 5:14:27 PM myopathy ● myotonias ● channelopathies (periodic paralysis syndromes) ● metabolic myopathies ● mitochondrial myopathies Acquired ● inflammatory myopathy ● endocrine myopathies ● drug-induced/toxic myopathies ● myopathy associated with systemic illness - a myopathy can present with fixed weakness (muscular dystrophy, inflammatory myopathy) or episodic weakness (periodic paralysis due to a channelopathy, metabolic myopathy
    [Show full text]
  • Hand Surgery: a Guide for Medical Students
    Hand Surgery: A Guide for Medical Students Trevor Carroll and Margaret Jain MD Table of Contents Trigger Finger 3 Carpal Tunnel Syndrome 13 Basal Joint Arthritis 23 Ganglion Cyst 36 Scaphoid Fracture 43 Cubital Tunnel Syndrome 54 Low Ulnar Nerve Injury 64 Trigger Finger (stenosing tenosynovitis) • Anatomy and Mechanism of Injury • Risk Factors • Symptoms • Physical Exam • Classification • Treatments Trigger Finger: Anatomy and MOI (Thompson and Netter, p191) • The flexor tendons run within the synovial tendinous sheath in the finger • During flexion, the tendons contract, running underneath the pulley system • Overtime, the flexor tendons and/or the A1 pulley can get inflamed during finger flexion. • Occassionally, the flexor tendons and/or the A1 pulley abnormally thicken. This decreases the normal space between these structures necessary for the tendon to smoothly glide • In more severe cases, patients can have their fingers momentarily or permanently locked in flexion usually at the PIP joint (Trigger Finger‐OrthoInfo ) Trigger Finger: Risk Factors • Age: 40‐60 • Female > Male • Repetitive tasks may be related – Computers, machinery • Gout • Rheumatoid arthritis • Diabetes (poor prognostic sign) • Carpal tunnel syndrome (often concurrently) Trigger Finger: Subjective • C/O focal distal palm pain • Pain can radiate proximally in the palm and distally in finger • C/O finger locking, clicking, sticking—often worse during sleep or in the early morning • Sometimes “snapping” during flexion • Can improve throughout the day Trigger Finger:
    [Show full text]
  • Is the Diagnosis Written in the Palm?
    CLINICAL Is the diagnosis written in the palm? Compression neuropathy from a walking frame Anupam Datta Gupta ANSWER 1 cause significant functional limitations. The diagnosis is compression neuropathy In late cases where the hand muscles of the right ulnar nerve and bilateral have already undergone atrophy, the CASE carpal tunnel syndrome at the wrist. motor recovery of those muscles, even A man aged 72 years requires a walking Pigmentation, callosity and atrophy on the after surgical decompression, may frame for mobility because of weakness ulnar side (hypothenar) of the right hand be incomplete. For early diagnosis of of both legs secondary to poliomyelitis. are indicative of ulnar nerve compression compression neuropathies, it is important He presents to the rehabilitation around the Guyon’s tunnel. This is either to routinely look at the hands of patients medicine outpatient clinic with soreness caused or exacerbated by the excessive who are taking increased weight through and weakness of both hands, which he pressure around the wrist during walking their hands because of a lower extremity developed following the use of the walking with the frame. Wasting of the first web problem and using mobility aids. If not frame. He also complains of loss of grip space caused by denervation of the picked up early, compression neuropathies strength and tingling of his hands. He is first dorsal interosseous and adductor can compound the disability. using the heel of the hand to manipulate pollicis muscles is a telltale sign of ulnar objects. Examination reveals skin neuropathy. On the left hand, the pressure ANSWER 3 pigmentation and callosities on the ulnar areas are around the carpal tunnel, causing To establish a diagnosis, the patient side of both palms, distal to the wrist crease median nerve compression.
    [Show full text]
  • Cranial Nerve Disorders 11/05/2012
    Version 2.0 Cranial Nerve Disorders 11/05/2012 General Lesion possible locations: muscle, NMJ, nerve outside or inside brainstem Conditions that can affect any CN: DM, MS, Tumours, Sarcoid, Vasculitis (e.g. PAN), SLE, Syphilis, chronic meningitis (tends to pick off lower CN one by one). Olfactory (I) Nerve • Anatomy: Olfactory cells are a series of bipolar neurones which pass through the cribriform plate to the olfactory bulb. • Signs: Reduced taste and smell, but not to ammonia which stimulates the pain fibres carried in the trigeminal nerve. • Causes: Trauma; frontal lobe tumour; meningitis. Optic (II) Nerve • Anatomy: The optic nerve fibres are the axons of the retinal ganglion cells. Fibres from the nasal parts of retina decussate at optic chiasm, join with the non-decussating fibres and pass back in optic tracts to visual cortex. • Signs and causes: o Visual field defects: Field defects start as small areas of visual loss (scotomas). Monocular blindness: Lesions of one eye or optic nerve eg MS, giant cell arteritis. Bilateral blindness: Methyl alcohol, tobacco amblyopia; neurosyphilis. Bitemporal hemianopia: Optic chiasm compression eg internal carotid artery aneurysm, pituitary adenoma or craniopharyngioma Homonymous hemianopia: Affects half the visual field contralateral to the lesion in each eye. Lesions lie beyond the optic chiasm in the tracts, radiation or occipital cortex e.g. stroke, abscess, tumour. o Pupillary Abnormalities see pupillary abnormalities article. o Optic neuritis (pain on moving eye, loss of central vision, afferent pupillary defect, papilloedema). Causes: demyelination; rarely sinusitis, syphilis, collagen vascular disorders. o Optic atrophy (pale optic discs and reduced acuity): MS; frontal tumours; Friedreich's ataxia; retinitis pigmentosa; syphilis; glaucoma; Leber's optic atrophy; optic nerve compression.
    [Show full text]